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Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Data represented as knowledge graphs, tools summarized as semantic technologies
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Problems for Programmers

How to use ontologies in programming?
• Make domain knowledge available to the programmer
• Reduce redundancy between program and other artifacts
• Simplify communication with users/domain experts

How to program applications around ontologies?
• Using multiple semantic technologies can be tricky
• Programmer must be aware of logical and formal pitfalls
• Correct interplay must be ensured manually
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Tutorial Outline

• Part I Semantic Reflection in Programs
How to add domain knowledge to imperative programming?

• Part II Self-Adaptation in Digital Twins
How to use ontological asset models for structural self-adaptation?

• Part III Correctness and Verification
How to ensure type safety and functional correctness?



Semantic Reflection in Programs



Knowledge Graphs

• Knowledge can be described ad hoc or in a structural manner

• Semantic Technologies/Knowledge Graph facilitate the description of
structured knowledge, consistency checking and reasoning

• In this tutorial W3C standards:
• For data: RDF (Resource description framework)

• For knowledge: OWL (Web Ontology language)

• For queries: SPARQL(an RDF query language)
4/37



RDF (Resource description framework)

Data in RDF is expressed using a triple pattern, which consists of
a subject, a predicate, and an object

Example:

Alice id 111 Bob id 222 Charlie id 333

Person Person Person

hasChild hasChild
a a a

Turtle syntax: Alice a Person. Alice hasChild Bob.
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OWL (Web Ontology language)

OWL: Description Logic based language(s) to build ontologies, i.e., structured, gen-
eral domain knowledge.

Example:

Alice id 111 Bob id 222 Charlie id 333

Person Person Person

hasChild hasChild
a a a

GrandParent

a

∀x∃y∃z · hasChild(x , y) ∧ hasChild(y , z) ∧ Person(z) =⇒ GrandParent(x)

hasChild some (hasChild some Person) subClassOf GrandParent
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SPARQL

SPARQL is an RDF query language:
a query language for databases stored in RDF format

Alice id 111 Bob id 222 Charlie id 333

Person Person Person

hasChild hasChild
a a a

GrandParent

a

SELECT ?x WHERE { ?x a :Person }

SELECT ?x ?y WHERE { ?x a :Person. ?x :hasChild ?y }

SELECT ?x WHERE { ?x a :GrandParent }
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Assets as Knowledge Graphs

Asset Models
Asset models contain the current, past and designed structure of a facility, plus general
knowledge for it. Aim: Use graph-based asset models to manage engineering lifecycle.
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ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)
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Semantically Lifted Programs

app app
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Direct Mapping of Program States

SMOL: Integration of Semantics and Semantic Technologies
Map each program state to a knowledge graph and allow pro-
gram to operate on the KG. Implemented in SMOL.

1 class C (Int i) Unit inc(){ this.i = this.i + 1; } end
2 Main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
run:proc1 a prog:process.
run:proc1 prog:runsOn run:obj1.
....

[K. et al., Programming and Debugging with Semantically Lifted States, ESWC’21]
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Semantic Reflection: Reasoning about oneself

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa. ?x :in %street}");
5 this.inspectAll(l);
6 end
7 end

Villa EquivalentTo: rooms o length some xsd:int [>= 3]
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Semantic Reflection: Reasoning about oneself – GeoSimulator

Case study of using SMOL for a geological simulator
• SMOL simulators describes the effects of the process
• SMOL state is interpreted through ontology
• Geological ontology describes under which conditions a geological process starts

[Qu, K., Torabi, and Giese, Semantically triggered qualitative simulation of a geological process, Appl. Comp. and Geosc., 2024]
11/37



Semantic Reflection: Reasoning about oneself – GeoSimulator

Modeling of a geological shale structure in SMOL
1 class ShaleUnit extends GeoUnit
2 (Double temperature,
3 Boolean hasKerogenSource,
4 Int maturedUnits)
5 models
6 a GeoReservoirOntology_sedimentary_geological_object;
7 location_of [a domain:amount_of_organic_matter];
8 GeoCoreOntology_constituted_by [a domain:shale];
9 has_quality [domain:datavalue %temperature; a domain:temperature].

10 end

12/37



Semantic Reflection: Reasoning about oneself – GeoSimulator

Resulting (part of the) knowledge graph

run:obj1 smol:models domain:obj1.
domain:obj1 a GeoReservoirOntology_sedimentary_geological_object;

location_of [a domain:amount_of_organic_matter];
GeoCoreOntology_constituted_by [a domain:shale];
has_quality [domain:datavalue "10.0"^^xsd:Double; a domain:temperature].
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Semantic Reflection: Reasoning about oneself – GeoSimulator

Simulation driver
1 List<ShaleUnit> fs =
2 member(smol:models some (participates_in some maturation_trigger))
3 while fs != null do
4 fs.content.mature(); fs = fs.next
5 end

For Mandal-Ekofisk field, simulation gives similar results as original study (2mya steps)
SMOL Cornford’94 Time Difference

Start M. 52ma ∼50ma ∼2mya
End M. 14ma ∼23ma ∼9mya

Crit. Moment 28ma ∼30ma ∼2mya

14/37



Self-Adaptation in Digital Twins



Structural Self-Adaptation

• We can access the sensors of the physical system,
• access the structure of the physical system, and
• simulate the digital design.

Putting it all together
• Compare simulations to sensors
• Compare digital with physical structure

How to formalize consistency?

• Self-adapt to changes in physical system

How to repair?

15/37



Structural Self-Adaptation

• We can access the sensors of the physical system,
• access the structure of the physical system, and
• simulate the digital design.

Putting it all together
• Compare simulations to sensors
• Compare digital with physical structure

How to formalize consistency?

• Self-adapt to changes in physical system

How to repair?

DTPT

Commands

Sensor Data

15/37



Structural Self-Adaptation

• We can access the sensors of the physical system,
• access the structure of the physical system, and
• simulate the digital design.

Putting it all together
• Compare simulations to sensors
• Compare digital with physical structure

How to formalize consistency?

• Self-adapt to changes in physical system

How to repair?

DTPT

Commands

Sensor Data

15/37



Structural Self-Adaptation

• We can access the sensors of the physical system,
• access the structure of the physical system, and
• simulate the digital design.

Putting it all together
• Compare simulations to sensors
• Compare digital with physical structure

How to formalize consistency?
• Self-adapt to changes in physical system

How to repair?

DTPT

Commands

Sensor Data

15/37



Structural Self-Adaptation

• We can access the sensors of the physical system,
• access the structure of the physical system, and
• simulate the digital design.

Putting it all together
• Compare simulations to sensors
• Compare digital with physical structure

How to formalize consistency?
• Self-adapt to changes in physical system

How to repair?

DTPT

Commands

Sensor Data

15/37



Self-Adaptation (I)

Digital Twins: Self-Adaptation
Self-adaptation means to automatically reestablish some property of a system, by
reacting to outside stimuli. For Digital Twins, the “outside” is the physical system.

Two kinds of self-adaptation to reestablish the twinning property:

• Behavioral self-adaptation if sensors and simulators mismatch
• Structural self-adaptation if structures mismatch

16/37



MAPE-K

MAPE-K is an established conceptual framework to structure self-adaptive systems.

• A Knowledge component keeps track of
information and goals for the self-adaptation
loop:

• Monitor the situation
• Analyze whether the situation requires

adaptation
• Plan the adaptation
• Execute the plan

Monitor

Analyse Plan

Execute

Self-Adaptive DT 

AM

PT

Knowledge

KB
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Self-Adaptation (II)

Behavioral Self-Adaptation

Simulated (=expected) behavior of certain components does not match the real
(=measured) behavior of the sensors.

• Monitor sensors
• Analyze the relation to simulation
• Plan repair by, e.g., finding new simulation parameters
• Exchange simulators or send signal to physical system

Reasons
• Sensor drift
• Modeling errors
• Faults
• Unexpected events 18/37



Self-Adaptation (III)

Structural Self-Adaptation

Simulated

(= lifted)

structure of digital system does not match real (= expressed in
asset model) structure.

Semantically Lifted Programs
We need to express the program structure, so we can uniformly access it together
with the asset model. How to apply semantic web technologies on programs? ⇒
Semantical lifting.

Semantical lifting is a mechanism to automatically generate the knowledge
graph of a program state.

19/37
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Self-Adaptation (III)
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Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model
• Changes of PT are visible in asset model
• Asset model accessible directly to DT
• Detect changes through combined knowledge graph
• Information for repair available there!
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Example

Back to digital twins
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• Monitor consistency
• Monitor twinning
• Adapt to addition of new rooms
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Model Description

<fmiModelDescription fmiVersion="2.0" modelName="Example" ...>
<CoSimulation needsExecutionTool="true" .../>
<ModelVariables>

<ScalarVariable name="p" variability="continuous"
causality ="parameter">

<Real start="0.0"/>
</ScalarVariable>
<ScalarVariable name="input" variability="continuous"

causality ="input">
<Real start="0.0"/>

</ScalarVariable>
<ScalarVariable name="val" variability ="continuous"

causality ="output" initial ="calculated">
<Real/>

</ModelVariables>
<ModelStructure> ... </ModelStructure>

</fmiModelDescription> 22/37



SMOL and FMI

Functional Mock-Up Objects (FMOs)

Tight integration of simulation units using FMI into programs.

1 //setup
2 FMO[out Double val] shadow =
3 simulate("Sim.fmu", input=sys.val, p=1.0);
4 FMO[out Double val] sys = simulate("Realsys.fmu");
5 Monitor m = new Monitor(sys,shadow); m.run(1.0);

Integration
• Type of FMO directly checked against model description
• Variables become fields, functions become methods
• Causality reflected in type

23/37
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SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units (FMUs). Can also
serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(FMO[out Double val] sys,
3 FMO[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Is this twinning something? Is this setup correctly?
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SMOL and FMI

SMOL with FMOs
FMOs are objects, so they are part of the knowledge graph.

1 class Monitor(FMO[out Double val] sys,
2 FMO[out Double val] shadow)

run:monitor run:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l
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Using the Semantical Lifting

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { ?ctrl a prog:Controller.
?ctrl prog:Controller_left ?room.
?ctrl prog:Controller_right ?room }

24/37



Using the Semantical Lifting

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { ?o1 prog:Room_id ?id1. ?h1 asset:id ?id1.
?o2 prog:Room_id ?id2. ?h2 asset:id ?id2.
?h1 htLeftOf ?h2.
?c a prog:Controller.
?c prog:Controller_left ?o1.
?c prog:Controller_right ?o2}
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Demo

Inconsistent Twinning



Self-Adapting to Structural Drift

Detecting Structural Drift
The previous query can detect that some mismatch between asset model and program
state exists.
How to detect where the mismatch is and how to repair it?

• Retrieve all assets, and their connections by id (M)
• Remove all ids present in the digital twin
• If any id is left, assets needs to be twinned (A)
• Find kind of defect to plan repair (P)
• Execute repair according to connections (E)
• Monitor connections using previous query
• (And v.v. to detect twins that must be removed)
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Example: Adding a New Room

• Get all (asset) rooms and their neighboring walls
• Remove all (twinned) rooms with the same id
• Use the information about walls to
• Assumption: at least one new room is next to an existing one

1 class RoomAsrt(String room, String wallLt, String wallRt) end
2 ....
3 List<RoomAsrt> newRooms =
4 construct(" SELECT ?room ?wallLt ?wallRt WHERE
5 { ?x a asset:Room;
6 asset:right [asset:Wall_id ?wallRt];
7 asset:left [asset:Wall_id ?wallLt]; asset:Room_id ?room.
8 FILTER NOT EXISTS {?y a prog:Room; prog:Room_id ?room.} }");

26/37



Demo

Repair



Remarks

Assumptions
• We know all the possible modifications up-front

E.g., how to deal with a heater getting new features?
• We know how to always correct structural drift
• Changes do not happen faster than we can repair

Monitoring is still needed to (a) ensure that repairs work correctly, and (b) detect loss
of twinning due to, e.g., unexpected structural drift.
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Type Safety and Interfaces

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa. ?x :in %street}");
5 this.inspectAll(l);
6 end
7 end

Villa EquivalentTo: rooms o length some xsd:int [>= 3]

Is this type safe?

• Depends on the ontology – it is safe if every villa is a building
• Requires reasoning, e.g., about the domain of rooms
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Type Safety for Semantic Reflection

Types & subject reduction
• SMOL is statically typed, . . .

even with an untyped query language
• We can guarantee safe query access if ontology K is known
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∃C . ∃ȳ .
(
ϕ
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Functional Correctness

So far, we can

• integrate knowledge intro control flow at runtime,
• use combined knowledge graph to check for consistency at runtime, and
• ensure statically that runtime queries results are representable.

Can we use ontologies also for specification of behavior and static verification?
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What is a Car?

Suppose you model the assembly process of a car
1 procedure addWheels(p) nrWheels := p end

Programmer
This procedure sets the number of wheels
in a car to the value of p.

{⊤}addWheels(p){nrWheels .= p}

Subject Matter Expert
I want that in the end of this step, the car
has 4 wheels.

{⊤}addWheels(p){HasFourWheels(c)}

How to enable both of them to specify that?

• SME does not know about how the car c is encoded
• Programmer does not know what it means for a car to be small.
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Lifted Specification

{
−

p .= 4

}
addWheels(p)

{
HasFourWheels(c)

−

}

• Upper component specifies lifted state
• Lower component specifies non-lifted state

HasBody ⊑ HasChassis ⊑ Car ∃doors.∃hasValue.2 ≡ HasTwoDoors

∃wheels.∃hasValue.4 ≡ HasFourWheels

We can lift the state at runtime, but at compile-time we need to lift the specification...
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Specification

State Lifting
Function µ from runtime states to knowledge graphs.

Specification Lifting
Function µ̂ from program assertions to axioms. Must be compatible to state lifting:

σ |= ϕ → µ(σ) |= µ̂(ϕ)

This is not enough for the specification – the lifted specification cannot be used for
domain specification

µ̂(nrWheels .= 4) = {hasValue(nrWheels, 4), wheels(c, nrWheels)}

But we need to derive the state assertions from HasFourWheels
33/37



A Signature Perspective

lifting

recovering

    state
specification

St
at

e 
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 lifted state
specification

   domain
specificationinferences

Kernel and Generator
Let Σ be the signature of the domain specification.

• The kernel of µ̂ is a signature ker µ̂ ⊆ Σ.
• A core generator α maps axioms ∆ to axioms α(∆) with α(∆) |= ∆

• Kernel generator can either implement deduction, or abduction
• In case of abduction: ABox abduction with signature abducibles

[K. and Gurov, A Hoare Logic for Domain Specification, 2024] 34/37



Rules (I)

• First you generate the kernel
• Additional premise trivial if α

is deductive

∆2 |=K α(∆2)
K ⊢

{∆1
Φ1

}
s
{∆2,α(∆2)

Φ2

}
pre-core

K ⊢
{∆1

Φ1

}
s
{∆2

Φ2

}

• Second you generate state assertions from the
kernel axioms

K ⊢
{∆1

Φ1

}
s
{ ∆,∆2

Φ2∧µ̂−1(∆2)
}

post-inv sig(∆2) ⊆ ker µ̂
K ⊢

{∆1
Φ1

}
s
{∆,∆2

Φ2

}
• Same for precondition
• On state assertions, we can now use standard Hoare rules
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A Car is a Car

• Standard Hoare calculus rules must check that specifications are consistent, and
• remove all domain knowledge, as it may have changed

µ̂(Φ) |=K ∆var
K ⊢

{ ∅
Φ[v\expr]

}
v := expr

{∆
Φ

} skip
K ⊢

{∆
Φ

}
skip

{∆
Φ

}

But now, we can prove that our program does the right thing:

hasValue(wheelsVar, 4) |=K HasFourWheels(c), hasValue(wheelsVar, 4)
K ⊢

{ −
p
.=4

}
nrWheels := p

{HasFourWheels(c),hasValue(wheelsVar,4)
nrWheels

.=4
}

K ⊢
{ −

p
.=4

}
nrWheels := p

{HasFourWheels(c),hasValue(wheelsVar,4)
−

}
K ⊢

{ −
p
.=4

}
nrWheels := p

{HasFourWheels(c)
−

}
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Conclusion



Summary

conf conf'

conf''

Semantic Lifting and Programming
Interpret program state as knowledge graph and connect with
external graph knowledge and data using standard tools.

Semantic Lifting and Digital Twins
Interpret program state as knowledge graph to connect with
asset model, express structural correctness with graph queries.

lifting

recovering

    state
specification

St
at

e 
L
og

ic

D
om

ain L
ogic

 lifted state
specification

   domain
specificationinferences

Semantic Lifting and Correctness
Semantical lifting on specification can be used to rea-
son about correctness w.r.t. domain specification.
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