
Preproceedings of the
Workshop on Applications of
Formal Methods and Digital Twins
Co-located with FM'23 in Lübeck, Germany

Report 505

Editors: Eduard Kamburjan, Stefan Hallerstede

ISBN: 978-82-7368-605-3
ISSN: 0806-3036

This technical reports contains the papers of the Workshop on Ap-
plications of Formal Methods and Digital Twins, which is held 06.03.23
in Lübeck, Germany, co-located with the 25th International Symposium
on Formal Methods. All papers were peer-reviewed prior to inclusion in
this volume by the program committee of the workshop, and we thank
the member of the PC for their constructive reviews. Additionally to the
papers, the workshop will feature an invited talk by Ana Cavalcanti title
�RoboStar Twins?�.

� Leveraging Runtime Veri�cation for the Monitoring of Digital Twins

by Sylvain Hallé, Chukri Soueidi and Yliès Falcone

� Emerging Challenges in Compositionality and Correctness for Digital Twins

by Eduard Kamburjan, Vidar Klungre, Silvia Lizeth Tapia Tarifa, Rudolf Schlatte,

Martin Giese, David Cameron and Einar Broch Johnsen

� Are Formal Contracts a useful Digital Twin of Software Systems?

by Jonas Schi� and Alexander Weigl

� Digital Twin for Rescue Missions � a Case Study

by Martin Leucker, Martin Sachenbacher and Lars Bernd Vosteen

� A Digital Twin for Coupling Mobility and Energy Optimization: The ReNuBiL

Living Lab

by Daniel Thoma, Martin Sachenbacher, Martin Leucker and Aliyu Tanko Ali

� Mining Digital Twins of a VPN Server

by Andrea Pferscher, BenjaminWunderling, Bernhard K. Aichernig and Edi Muskardin

Leveraging Runtime Verification for the
Monitoring of Digital Twins

Sylvain Hallé1, Chukri Soueidi2, and Yliès Falcone2

1 Laboratoire d’informatique formelle
Université du Québec à Chicoutimi, Canada

2 Laboratoire d’informatique de Grenoble
Université Grenoble Alpes, France

Abstract. The paper considers the problem of discovering divergences
between the actions of a digital twin and those of its real-world counterpart.
It observes the similarities between this problem and an existing field of
formal methods called Runtime Verification (RV), and suggests leveraging
and adapting RV techniques to this effect. Concretely, three important
aspects of the problem are identified and for which both theoretical and
practical challenges must be addressed.

1 Introduction

A digital twin is a virtual representation of a real-world entity [13]; it is often
presented as a predictive instrument, by enabling one to simulate multiple possible
outcomes of a real-world entity. In such a context, it is essential that the digital
twin exhibits behavior that is faithful to that of the system it seeks to mimic.
Any significant and sustained discrepancy between the twin and its concrete
counterpart can lead to incorrect predictions, false diagnoses, and generally to
an incorrect perception of the operation of the real system. Differences between
the operation of a twin and the real-world entity must therefore be monitored
and addressed in real time as they occur.

The process of detecting deviations can be summarized as illustrated in Figure
1. A real-world entity E is given inputs I, which can consist of controllable (i.e.
user-defined) values, as well as uncontrollable (i.e. environmental) objects, in
addition to any reading related to the entity’s current internal state. The entity
reacts to these inputs by producing outputs OE ; again, these outputs can be
actions directly performed by the entity, or measured values of the entity’s state
or the environment. In parallel, the inputs are recorded and fed to a digital twin
T , which simulates the real-world entity and produces its own outputs OT . The
observed output and the synthetic output are then fed to a comparison procedure
C, which decides whether they are in agreement (>) or not (⊥).

In this paper, we reveal the similarities that this problem shares with a
research topic crossing the fields of software engineering and formal methods,
called runtime verification (RV) [3]. Over the years, RV has been successfully
applied to various use cases, ranging from the monitoring of aerial drones [23] to

C

T

I OEE

OT

⊤/⊥

Fig. 1: Comparing the behavior of a real-world entity with that of a digital twin.

the detection of bugs in video games [28]. We identify elements of the problem
that require adaptations in order to leverage RV for digital twin monitoring, and
suggest possible ways in which these techniques could be used in this context.

2 A Property-Based Approach

Runtime verification is the discipline of computer science where an object called a
monitor is used to observe the behavior of another program. At various moments,
instrumented codepoints relay information about the program’s actions and
state to the monitor, producing a sequence of data elements called “events”,
denoted by σ = σ1, σ2, The monitor compares this event trace against a
formal specification ϕ of what constitutes a correct execution; any violation of the
specification is reported on-the-fly, as the monitored program executes. Research
on runtime verification has produced a variety of monitors supporting a large
class of specification languages [5, 7, 10,22,25].

A Passive Operation As in RV, the monitoring of digital twins is mostly a passive
procedure: one is not concerned with generating inputs that drive the system, as
is the case for conformance testing [8,20]; this is typically done by calculating the
sequences of inputs that have the potential to reveal a violation of the finite-state
machine specification by the system. However, in the context of digital twins,
one rarely has the possibility of sending unlimited sequences of inputs to the
concrete entity to ensure the conformity of the model, due to their associated
cost (in terms of time and resources). What is more, some scenarios may involve
compliance checking in situations where the actual system is damaged, and may
be excluded from the test cases from the outset for this reason. Realistically,
the best that can be done is to observe the behavior of the actual system in
its normal operation, and to make the most of these observations to detect any
discrepancies as they occur.

Properties on Digital Twins A first possible application of runtime verification
consists of an indirect comparison between the twin’s behavior and that of the
real-world entity. It supposes the existence of conditions ϕ1, . . . , ϕn, which are
known to be true for all executions of the digital twin; these properties, acting as
a form of “guarantee,” are extracted from the twin beforehand by an arbitrary
procedure G, as illustrated in Figure 2. These properties, in turn, can be converted
into monitors that observe the operation of the real-world entity in real time. Any
observed sequence that violates one of the ϕi is, by definition, a sequence that

2

cannot be produced by the digital twin for the same inputs, and thus indicates a
divergence between the twin and its real-world counterpart.

I E ⊤/⊥
φn

φ1

. . . ∧

T G φ1 φn,...,

Fig. 2: Using properties on input/output sequences to detect divergences in the
execution of a twin.

Note that in such a scenario, the twin itself does not need to be “executed”
—that is, it is unnecessary to have the twin generate one or more traces for
comparison with the real-world entity’s output. This approach can present
advantages in cases where running a twin may incur a high cost. Instead of a
constant synchronization between the twin and the real-world entity, the lighter
monitors may observe the output of the entity as long as it corresponds to
expected behavior. Further analysis (and possible adaptation of the twin) is only
required when one of the properties is violated by the observations. This, in itself,
may require substantial analysis to determine which are the relevant ϕi that need
to be monitored.

Declarative Definition of a Twin In this first suggested mode of operation, the
detection of divergences is sound: a violation of one of the properties indicates a
genuine discrepancy between the twin and the real-world entity. The detection
is complete if any sequence satisfying

∧
ϕi is also a possible (valid) sequence

produced by the twin. In such a case, the twin’s behavior is completely captured
by the conditions ϕi that serve as definitions. Thus, one can imagine specifying
the operation of the twin in a declarative way, as opposed to a “procedural” or
“imperative” way. Instead of programming the twin as an executable object that
receives inputs and produces outputs, the execution of the twin is driven by a
satisfiability (SAT) solver: given a sequence of inputs, the solver finds a sequence
of outputs satisfying the properties, and returns that sequence as the twin’s
reaction to the inputs. Such a declarative approach has already been attempted
to simulate the execution of web services from temporal logic specifications [14].

3 Generalizing Runtime Verification

This proposed approach is the most direct application of runtime verification
to digital twins. However, its soundness rests on the hypothesis that a set
of properties of the twin can be extracted and used as formal guarantees on
its execution. For a twin that is defined procedurally, those properties can be

3

deduced from its implementation (for example by defining properties manually and
verifying them through model checking [2], or by observing multiple executions of
the twin and deducing a formal model of its execution using process mining [27]).

However, obtaining these guarantees may be a complex process, and completely
capturing the behavior of the twin in such a way may not be a realistic assumption.
Another possibility consists of handling the twin as a black box, and to directly
compare its output to that of the real-world entity (for a given input sequence),
as described in Figure 1. A second point that this article puts forward is that
this comparison can be framed as a generalization of runtime verification.

Monitoring Two Traces Contrary to RV, monitoring twins involves not one, but
(at least) two traces at the same time (OE and OT). The “property” that needs
to be evaluated in such a case correlates the events observed in both traces. This
is a particular case of what is called a hyperproperty [6, 12]; while a property
determines whether a trace is valid or not in isolation, in hyperproperties traces
are valid or not based on their relation with other traces. It shall be noted that
this operation, taken in its most abstract form, can be any calculation; as we
shall discuss below, it is not restricted to the pairwise comparison of events at
matching indices in both traces, and can involve arbitrary constraints on the
values and ordering of events at various locations.

Expressiveness As a matter of fact, an anticipated challenge for the leveraging
of RV techniques to digital twin monitoring is the relatively low expressiveness
of the notations they use as their specification language. A recent taxonomy of
existing RV approaches highlights the fact that many of them use formalisms
based on propositional temporal logic or finite-state automata [11]. Some of them
have support for quantification over data values, or implement basic forms of
aggregation such as sum or average [5, 9, 10, 16]. However, these languages are
ill-suited in their present form to handle the rich event types and complex (and
often numerical) relationships that can involve the values they contain —and
most importantly, specification languages for hyperproperties are even more
restricted than for classical properties.

Towards Stream Processing In this context, it might be desirable to expand the
vision of the problem and to consider it as a more general form of complex event
processing (CEP) [1, 17]. CEP is typically concerned with data-rich events, and
considers arbitrary calculations over these events in order to produce higher-level
(i.e. “complex”) events. Its more general computational model could be harnessed
in order to express the potentially intricate operations required for uncovering
discrepancies between the output of a digital twin and that of its real-world
counterpart. Previous works have shown how CEP engines can evaluate proper-
ties specified in many languages used in RV and extend them with additional
constructs [15], making them good candidates to address the expressiveness issues
mentioned above.

4

4 Qualifying Divergence

Another important challenge lies in the fact that not all divergences between
an entity and its twin are meaningful and indicative of a problem. There are
situations where discrepancies between an entity and its twin are expected, if
not unavoidable, and still do not represent any malfunction, modeling error, or
significant drift between a twin and its real-world counterpart.

Sources of Divergence A first such case is caused by uncertainty in measurements.
A physical entity will typically have its environment and behavior measured
by sensors, whose output is intrinsically tainted with uncertainty, bias, or even
spurious drop-outs. Thus one cannot expect a strict equality between values
produced (or predicted) by a twin and those measured in a real-world system.
It turns out that several works in the field of RV have addressed the issue of
verifying properties in the presence of missing or imprecise events [4,18,26], which
could be leveraged to the context of digital twins.

A second source of divergence may be caused by different interleavings in
the events produced by a twin and its counterpart. This can happen when
events produced by multiple components of the system happen more or less
simultaneously, and are arbitrarily flattened to a particular ordering which
may differ depending on uncontrollable or external factors. Instrumentation is
sometimes designed on purpose to lose some ordering information, as is the case
in some cyber-physical systems [29].

A final source of divergences comes from under-specification. In some cases, it
is expected that the digital twin is run from a coarse-grained description of the
real-world entity that does not totally capture its internal state. This typically
shows up as the system appearing to operate non-deterministically, producing
different outputs in what are apparently identical input conditions. In some other
cases, non-determinism may simply arise from the fact that multiple possible (and
equally acceptable) outcomes are possible for the same set of initial conditions.

For all these reasons, it is unrealistic that the comparison procedure C shown
in Figure 1 looks at OE and OT and simply expects both to be identical. We
identify two ways of dealing with this issue, one being the opposite of the other,
and illustrated in Figure 3.

≈?

T

I E

⊤/⊥

(a) Loose equality

T

I E

⊤/⊥?∈

(b) Multiple worlds

Fig. 3: Two possible ways of comparing the output of a twin with that of a
real-world system while tolerating some divergence.

5

Single World, Loose Equality A first possibility, illustrated in Figure 3a is to let
a digital twin produce a unique output for a given input (i.e. a “single possible
world”). However, it is allowed (and even expected) that this output OT differs
slightly from OE ; therefore, the comparison procedure C does not look for strict
equality between the two streams, but rather evaluates a relaxed property. For
example, for a system producing a stream of numerical values, one may expect
that the running average over a sliding window of k values is the same, but not
the individual events produced by both systems. In mathematical terms, the
comparison criterion is an equivalence relation that is looser than equality. For
numerical values, this can be likened to fuzzy comparators [19].

This mode of operation brings challenges of its own. First, an appropriate
equivalence relation must be defined, and it is expected that such relation be
specific to each problem domain. Second is the necessity of evaluating this relation
efficiently at runtime, over two streams of events that are progressively produced
by both the twin and the real-world entity. Deviations should be reported on-the-
fly, as obviously one cannot wait for the executions to complete before starting
the comparison. This seemingly innocuous observation makes it difficult to use
well-known string distance criteria, such as Levenshtein distance [24], which have
a high computational complexity and typically expect strings to be completely
known in advance to calculate their value.

Multiple Worlds, Strict Equality An alternate approach, illustrated in Figure 3b,
is to allow a twin to produce multiple possible outputs for a given input. Each of
these outputs corresponds to one of the “possible worlds” the system can be in
for given input conditions. Strict equality is then sought between the real-world
entity’s output, and one of those possible worlds3. In this setting, the multiple
possible worlds can either be represented explicitly (as an enumeration of all
possible outputs) or implicitly (through an abstract property that it satisfied by
all possible worlds). For example, a numerical value associated with a precision
interval counts as an abstract representation of multiple exact numerical values.

The multi-world trace semantics has been used to address the question of
runtime verification with uncertainty [21,26], and could be adapted to the problem
of stream comparison for digital twins.

5 Conclusion

In this paper, we have highlighted the connections that can be made between the
question of detecting discrepancies between a digital twin and a concrete entity,
and the problem of runtime verification already studied in the community of
software engineering and formal methods. Although they present clear similarities,
these two problems are nevertheless distinct, and some adaptation is therefore
necessary in order to leverage existing runtime verification techniques to the
particular context of digital twins.
3 Stated otherwise, the entity’s output must be included in the possible outputs
produced by the twin.

6

The article identified several research directions aimed at enabling real-time
divergence checking using VR techniques, which will be explored in more detail
in future work. Among these, we note the design of specification languages that
are more expressive and appropriate to the problem of digital twins, as well
as the definition of trace comparison metrics that are less strict than a simple
position-by-position equality.

References

1. Event stream processing (ESP). In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of
Database Systems, p. 1064. Springer US (2009)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime

verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification -
Introductory and Advanced Topics, Lecture Notes in Computer Science, vol. 10457,
pp. 1–33. Springer (2018)

4. Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring compliance
policies over incomplete and disagreeing logs. In: Qadeer, S., Tasiran, S. (eds.) RV.
Lecture Notes in Computer Science, vol. 7687, pp. 151–167. Springer (2012)

5. Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring of temporal
first-order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285
(2015)

6. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF. pp. 51–65. IEEE
Computer Society (2008)

7. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time
Java programs (tool paper). In: Hung, D.V., Krishnan, P. (eds.) SEFM. pp. 33–37.
IEEE Computer Society (2009)

8. Constant, C., Jéron, T., Marchand, H., Rusu, V.: Integrating formal verification
and conformance testing for reactive systems. IEEE Trans. Software Eng. 33(8),
558–574 (2007)

9. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: Temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF. Lecture Notes in Computer Science, vol. 11254, pp. 144–162.
Springer (2018)

10. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: TIME. pp. 166–174. IEEE Computer Society (2005)

11. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021)

12. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Formal Methods Syst. Des. 54(3), 336–363 (2019)

13. Grieves, M., Vickers, J.: Digital Twin: Mitigating Unpredictable, Undesirable
Emergent Behavior in Complex Systems, pp. 85–113. Springer (2017)

14. Hallé, S.: Model-based simulation of SOAP web services from temporal logic
specifications. In: Perseil, I., Breitman, K.K., Sterritt, R. (eds.) ICECCS. pp.
95–104. IEEE Computer Society (2011)

15. Hallé, S., Khoury, R.: Writing domain-specific languages for beepbeep. In: Colombo,
C., Leucker, M. (eds.) Runtime Verification - 18th International Conference, RV 2018,
Limassol, Cyprus, November 10-13, 2018, Proceedings. Lecture Notes in Computer

7

Science, vol. 11237, pp. 447–457. Springer (2018). https://doi.org/10.1007/
978-3-030-03769-7_27, https://doi.org/10.1007/978-3-030-03769-7_27

16. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

17. Hallé, S.: Event Stream Processing With BeepBeep 3: Log Crunching and Analysis
Made Easy. Presses de l’Université du Québec (2018)

18. Joshi, Y., Tchamgoue, G.M., Fischmeister, S.: Runtime verification of LTL on
lossy traces. In: Seffah, A., Penzenstadler, B., Alves, C., Peng, X. (eds.) SAC. pp.
1379–1386. ACM (2017)

19. Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic: Theory and Appli-
cations. Van Nostrand Reinhold (1991)

20. Lee, D., Yannakakis, M.: Principles and methods of testing FSMs: A survey. Pro-
ceedings of the IEEE 84, 1089–1123 (1996)

21. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verification
for timed event streams with partial information. In: Finkbeiner, B., Mariani, L.
(eds.) RV. Lecture Notes in Computer Science, vol. 11757, pp. 273–291. Springer
(2019)

22. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transf. 14(3), 249–289
(2012)

23. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. Formal Methods Syst. Des. 51(1),
31–61 (2017)

24. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

25. Reger, G., Cruz, H.C., Rydeheard, D.E.: Marq: Monitoring at runtime with QEA. In:
Baier, C., Tinelli, C. (eds.) TACAS. Lecture Notes in Computer Science, vol. 9035,
pp. 596–610. Springer (2015)

26. Taleb, R., Khoury, R., Hallé, S.: Runtime verification under access restrictions.
In: Bliudze, S., Gnesi, S., Plat, N., Semini, L. (eds.) FormaliSE@ICSE. pp. 31–41.
IEEE (2021)

27. van der Aalst, W.: Process Mining: Data Science in Action. Springer (2016)
28. Varvaressos, S., Lavoie, K., Gaboury, S., Hallé, S.: Automated bug finding in video

games: A case study for runtime monitoring. Comput. Entertain. 15(1), 1:1–1:28
(2017)

29. Wang, S., Ayoub, A., Sokolsky, O., Lee, I.: Runtime verification of traces un-
der recording uncertainty. In: Khurshid, S., Sen, K. (eds.) RV. Lecture Notes in
Computer Science, vol. 7186, pp. 442–456. Springer (2011)

8

https://doi.org/10.1007/978-3-030-03769-7_27
https://doi.org/10.1007/978-3-030-03769-7_27
https://doi.org/10.1007/978-3-030-03769-7_27
https://doi.org/10.1007/978-3-030-03769-7_27
https://doi.org/10.1007/978-3-030-03769-7_27

Emerging Challenges in Compositionality and

Correctness for Digital Twins

Eduard Kamburjan, Vidar Norstein Klungre, S. Lizeth Tapia Tarifa,
Rudolf Schlatte, Martin Giese, David Cameron, and Einar Broch Johnsen

Department of Informatics, University of Oslo, Oslo, Norway
{eduard,vidarkl,sltarifa,rudi,einarj,martingi,davidbc}@ifi.uio.no

Abstract. A digital twin is an information system that analyzes the
behavior of a physical or digital system by connecting streams of obser-
vations to dynamic (e.g., simulation) and static (e.g., asset management)
models of this twinned system. In large-scale industrial settings, the dig-
ital twin will often need to manage a multitude of models for subsystems
re�ecting di�erent engineering disciplines, vendors, etc. To analyze such
complex systems, digital twins must ensure the correct composition of
these models and their correct exposure to the user. For the integration
and transfer of information between models, digital twins may pro�t from
a formalization of domain knowledge using ontologies, which have proven
e�ective to unify data models. However, it is an open challenge to formal-
ize and verify the correctness of digital twins. This paper discusses this
problem for digital twins and illustrates challenges for formal methods
with a focus on the composition of heterogeneous dynamic models.

1 Introduction

Digital twins, originally conceived for NASA's space programme [1], enable in-
dustry to signi�cantly improve the life-cycle management of physical assets. The
vision of digital twins is to create a digital replica (the �digital twin�), which is
connected in real time to the modelled, traditionally cyber-physical, system (the
�twinned system�). Via this real-time connection, the digital twin aims to provide
insights into the twinned system's state or behavior.

At the core of this vision, the digital twin coordinates data exchange between
(a) the twinned system, (b) a range of model-based analysis tools and (c) stake-
holders like engineers and analysts. The data about the twinned system typically
combine static asset models and time-series measurements (e.g., data streams
from sensors). The analysis tools typically combine simulators of physical models
with executable software models. The digital twin computes an approximation
of the behavior of the twinned system to explore �what-happened�, �what-may-
happen� and �what-if� scenarios. The engineer can interact with the digital twin
to access data, but also to perform more involved operations, e.g., to predict
the consequences of changing system parameters, replacing components in the
twinned system, or evaluate newly developed designs [2].

A digital twin is a composed, data-intensive system that needs to coordinate
its analysis tools, data exchange between the twinned system and models that are

2 E. Kamburjan et al.

relevant for a particular analysis, as well as between di�erent models if necessary.
If the twinned system is physical, it consists of a cyber-physical system (CPS)
in a physical environment, i.e., physical boundary conditions (e.g., temperature
or �uid pressure) and modelled external actions (e.g., motion tracking devices).
In the digital twin, both the CPS and the environment may be modeled by
several components, each re�ecting a part of the CPS or the dynamics of the
operational environment. These smaller, targeted models are typically created
by domain experts (e.g., chemical, mechanical or electrical engineers). Digital
twins in industry are built from proprietary black-box applications, supplied by
the vendor of the component. This limits the possibility to automate work�ows
within digital twins and to use formal tools to ensure basic correctness properties.

Nonetheless, digital twins are suited for formalization because of the inherent
connection to model-based concepts. Challenges arise, besides black-box simula-
tion, from the connection of complex data with complex dynamic models within
the digital twin. Observe that there is a dichotomy between correctness for static
and dynamic models: the integration of diverging static models can be achieved
using semantic technologies, while the correct behavior and compositional con-
straints for dynamic models can be ensured using formal methods. A crucial step
towards the formalization of digital twins is to connect these two approaches and
formalize data propagation inside the twin.

While digital twins are often discussed from a data or business perspective [3],
we take the formalization perspective in this paper to discuss the connection
between static models of data and the composition of dynamic models. Correct
data propagation between (and within) diverse models is related to orchestration
in co-simulation [4], which is usually restricted to static structure. To con�gure
a co-simulation system correctly for a particular analysis, di�erent simulators
need to be orchestrated to exchange data correctly. One particular approach
to solve the challenge outlined above, is to combine knowledge graphs with or-
chestration in generalized co-simulation to ensure correctness. In this article we
illustrate this, and further emerging challenges for formal methods with respect
to integrating asset models and semantic technologies for digital twins.

Related work. Semantically lifted programs integrate static models repre-
sented using semantic technologies and dynamic models such as simulation units,
into a programming language [5,6]. They have been applied to digital twins [7],
but correctness has only been considered for speci�c applications [8,7]. Recent
co-simulation surveys identify a lack of research into modular, stable, and accu-
rate coupling of simulators in dynamic scenarios [4,9]. There is a long tradition
to use semantic technologies to integrate data [10], in the digital twin context
this is recently discussed [2,11,12].

2 Background

We brie�y review the main concepts in co-simulation and ontologies, which form
the basis for our discussion of digital twins and semantic technologies.

Emerging Challenges in Compositionality and Correctness for Digital Twins 3

de
-e
th
an
ise
r

de
-p
ro
pa
ni
se
r

de
-b
ut
an
ise
r

liq
ue

fa
ct

io
n

liq
ue

fa
ct

io
n

to plant storage storage

storage
NGL input

ethane propane butane

natural gasoline

Fig. 1. Natural gas liquid fractionation plant, from [17].

Co-simulation denotes a way to implement global simulation of a complex sys-
tem via the composition of various dynamic models representing the system's
components [4]. Each individual model, or simulation unit, can be seen as a
black box capable of exhibiting behavior, consuming inputs and producing out-
puts. Assembling these simulation unit into a co-simulation poses some speci�c
coordination challenges. The models must be synchronized not only wrt. the
values they exchange (typically via point-to-point typed channels), but also on
the current simulation time and when and by how much to advance time.

The time model of simulations, and hence co-simulations, can be discrete or
continuous. In discrete event simulations, a simulation unit synchronizes with
the environment at speci�c timestamps to exchange values. If two events hap-
pen at the same time, both are processed before the simulated time progresses.
In continuous time simulation (e.g., for physical state), the state evolves contin-
uously, which introduces �exibility in the step size of the time synchronization.
For co-simulation scenarios which combine discrete and continuous parts, the
orchestrator needs to reconcile the di�erent assumptions about the inputs and
outputs of each unit to retain the properties of the constituent systems.

Semantic Technologies [13] are techniques to formally attach meaning to data
which can be used when constructing complex intelligent systems such as digital
twins [12]. These techniques are based on ontologies: formal, conceptual descrip-
tions of a domain, usually expressed in the Web Ontology Language (OWL) [14].
The ontology speci�es the vocabulary of classes and properties that can be used
by the system model, and a set of axioms, i.e., constraints, to which the model
must adhere. Ontologies are used in many di�erent domains, both within or-
ganizations, and as parts of large open projects, like SNOMED CT, an open
ontology for clinical terms [15]. By introducing instances and combining them
with classes and properties from the ontology, one can construct statements us-
ing the resource description framework (RDF) [16]; e.g., to model a concrete
storage tank in some facility, one can assign an identi�er (:st1) to the storage
tank instance and connect it to the storage tank class (:StorageTank) given
in the ontology: :st1 a :StorageTank. There is good tool support to check
consistency of the resulting knowledge graphs (e.g., do all axioms indeed hold?),
query them (e.g., what are all the storage tanks?), and reason over them to infer
new facts, or check if concrete facts are implied.

4 E. Kamburjan et al.

3 A Simple Engineering Model

We use a small example to illustrate the challenges for coordinating models
inside a digital twin. Fig. 1 shows the structure of a natural gas liquid (NGL)
fractionation plant. Its input is natural gas liquids, or condensate, which is a
mixture of light hydrocarbons (ethane, propane and butane). The purpose of the
plant is to separate the light hydrocarbons. In the plant, the natural gas liquids
are fed into distillation columns to isolate a single product: ethane, propane,
then butane. Each column outputs two streams: a top product gas and the
bottoms product that contains the remaining heavier hydrocarbons. The light
gas products are either directly sent to a consumer (ethane is, e.g., used as a
feed for petrochemicals plants or is burnt as fuel), or they are lique�ed for sale.

Distillation is an expensive and energy-intensive process. Operating the plant
requires us to monitor the fractionation process and determine optimal param-
eters like re�ux rates and operating pressures for each distillation column and
liquefaction unit. We can use dynamic models for simulation, based on non-
linear systems of di�erential equations [18]. Model composition is constrained
by domain knowledge about chemistry, thermodynamics and design practice.
The parameters of the distillation and liquefaction units depend on the expected
properties of the feed stock and constraints on the quality of the processed prod-
ucts. They are selected at design time to optimize the cost and performance of
the plant. These parameters may be continuous variables (diameter of a column)
or integers (number of trays in a distillation column).

Ontology. An ontology for the fractionation plant can include two main classes:
:Pipeline and :Component; each :Component must be either a :Separator, a
:StorageTank, or a :Liquefier. Pipelines and components are connected by
pipes, captured in the ontology with the object property :isConnectedTo. The
part of the ontology concerned with separators and pipelines is then as follows:

:Component a owl:Class. :Separator a owl:Class.

:Pipeline a owl:Class. :isConnectedTo a owl:ObjectProperty.

Using this ontology, we construct the pipeline from the feed source (:pipeline1)
and its connection to the de-ethaniser (:separator1) (see Fig. 1) as follows:

:pipeline1 a :Pipeline. :separator1 a :Separator.

:pipeline1 :isConnectedTo :separator1.

The model described here can be part of a digital twin, which additionally
ensures correct data exchange and consistency both within the model and in its
relation to the physical asset. (Remark that our terminology of a digital twin is
sometimes called a digital twin architecture or a digital twin environment [19].)
In particular, the digital twin must ensure correct data exchange not only be-
tween a dynamic model and a twinned system, but between di�erent possible
compositions of dynamic models, each running a di�erent �what-if� scenario.
These composed models cannot be used to control the twinned system, yet are
connected to data streams from it, and possibly to the controlling model � it is
paramount to keep explorative models connected to the controlling model, such
that these do not in�uence the behavior of the twinned system directly.

Emerging Challenges in Compositionality and Correctness for Digital Twins 5

Orchestrator

Fig. 2. An orchestrator managing the connections of three composed dynamic models,
based on Fig. 1; each box is a black-box simulator or a connection to a twinned asset.

4 Challenges

Development and formalization of digital twins beyond the industrial state of
the art poses a number of challenges to the technologies employed. We identify
two core challenges: Formalizing (a) the correctness of digital twins, and (b) the
principles of model composition for a targeted physical or digital system.

Consider Fig. 2, which shows the structure of models that make up the dig-
ital twin. Note that the orchestrator need not be monolithic and that each of
the boxes may be a dynamic model or a data stream from a twinned system. At
each point in time, several dynamic model compositions may exist, with di�er-
ent con�gurations, for di�erent purposes. Challenge (a) is to ensure that these
composed dynamic models are internally consistent (i.e., they form meaning-
ful co-simulation models), consistent with respect to the domain (i.e., they form
models of some possible asset) and consistent with the actual twinned asset (i.e.,
the composed models and the twinned asset have the same structure).

The Semantics of Composition. Beyond checking for datatype violations and
unconnected ports, the modeler must assess whether the composition of dynamic
models is meaningful. Further checks are necessary, for example, whether the
dynamic models are connected correctly with respect to the existing domain. In
Fig. 2, the two output ports of each fractionation unit will have the same data
type and physical unit (e.g., pressure or �ow) but di�erent semantic meanings;
such consistency is a correctness property that relies on domain knowledge.

Static and Dynamic Topologies. The above challenge generalizes beyond con-
nections: If the co-simulation is mirroring an asset (or asset model), then every
meaningful component of the asset should be included in the co-simulation. En-
suring that the topology of the con�guration is consistent with the domain must,
again, take domain knowledge into account.

Observe that the notion of a digital replica touches on coordination aspects
of self-organization [20], which must ensure that changing structure adheres to
its domain constraints: The structure of the twinned system may change, e.g.,
due to planned maintenance (some components are shut o� and exchanged)
or unplanned repair. Tracking such changes is typically not supported by co-
simulation frameworks or existing industrial practice such as [21], yet structural
re-con�guration is crucial in the digital twin to be able to use historical data
without restarting the simulation system.

In our example, this corresponds to three scenarios: (a) Is the dynamic model
indeed a replica of an existing system? (b) For a what-if analysis: is the modeled

6 E. Kamburjan et al.

system a possible fractionation plant? (c) For a maintenance analysis: does the
proposed modi�cation, adhere to the domain model? E.g., in the NGL example,
if more information about :separator1 and the connected tanks is available,
we can use the representation of domain knowledge in an ontology to deduce
whether the system adheres to the domain model.

Coordinating Speculative Analyses. The last challenges are concerned with one
dynamic model, but as the digital twin moves from reproducing �what-happened�
scenarios, in which the factual observations of the twinned system are known,
to exploring possible �what-if� scenarios for its future behavior, the knowledge
supplied by the twinned system decreases. E.g., one may want to explore how
replacing a distillation column, or high environmental temperature, would af-
fect the production of the plant as a whole. In these scenarios, there may be
many solutions to the composition problem and the digital twin may need to
speculatively explore and coordinate di�erent possible solutions. Several of the
composed models depicted in Fig. 2 may coexist; the composed models must
share the connection to the twinned system and may also share some models.

Asset Models. The structural correctness of a dynamic model with respect to
a twinned system requires that the twinned system already has a formal rep-
resentation. One approach is to use asset models and semantically lifted pro-

grams to uniformly represent the twinned system and the dynamically composed
model [7]. In particular for twinned physical systems, asset models can play a
central role to achieve correctness and compositionality for digital twins: they for-
mally describe requirements and topologies from the asset's perspective, thereby
providing the twin with static con�guration data for model composition [22].

An asset model is an organized description of the composition and proper-
ties of an asset [23,24,25], used to support, e.g., maintenance operations on an
asset. Asset models may be formalized as ontologies [26] or use them [27,28,29],
with semantic data access being a current research focus [30,31,26]. We are in
particular interested in top-down asset models which start by modeling the de-
sired functionality of a system as a whole, and then decompose the system into
functional sub-systems. This approach, which relates to model-driven engineer-
ing [32], is supported by modelling tools and languages such as SysML (e.g., [33]).
A top-down model provides a scalable framework for tracking requirements along
a system decomposition and linking requirements to individual components to
higher-level system requirements [34,35]. We conjencture that top-down asset
models can be used to tackle further challanges, by enriching them with infor-
mation speci�c to digital twins.

5 Conclusion

Digital twins connect the management and development of a physical or digi-
tal system by applying analyses to a digital model in real time. In large-scale
industrial settings, the asset is captured by a multitude of models, which stem
from di�erent engineering disciplines, di�erent domain models and di�erent ven-
dors. Digital twins need to correctly integrate and exchange data between such

Emerging Challenges in Compositionality and Correctness for Digital Twins 7

models. This paper discusses challenges for correctness and compositionality in
the setting of digital twins, and proposes the use of asset models and formalized
domain knowledge to enable formal methods to meet these challenges.

Acknowledgements This work was supported by the Norwegian Research
Council via the SIRIUS Centre (237898) and the PeTWIN project (294600).

References

1. Glaessgen, E., Stargel, D. In: The Digital Twin Paradigm for Future NASA and
U.S. Air Force Vehicles. AIAA (April 2012)

2. Cameron, D., Waaler, A., Komulainen, T.M.: Oil and gas digital twins after twenty
years. How can they be made sustainable, maintainable and useful? In: SIMS 59.
(2018)

3. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: De�nitions,
characteristics, applications, and design implications. IEEE Access 7 (2019)

4. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
A survey. ACM Comput. Surv. 51(3) (2018)

5. Kamburjan, E., Johnsen, E.B.: Knowledge Structures over Simulation Units. In:
ANNSIM, IEEE (2022)

6. Kamburjan, E., Klungre, V.N., Schlatte, R., Johnsen, E.B., Giese, M.: Program-

ming and Debugging with Semantically Lifted States. In: ESWC. Volume 12731 of
LNCS., Springer (2021)

7. Kamburjan, E., Klungre, V.N., Schlatte, R., Tapia, S.L.T., Cameron, D., Johnsen,
E.B.: Digital Twin Reconguration Using Asset Models. In: ISoLA. Volume 13704
of LNCS., Springer (2022)

8. Kamburjan, E., Din, C.C., Schlatte, R., Tapia, S.L.T., Johnsen, E.B.: Twinning-
by-Construction: Ensuring Correctness for Self-Adaptive Digital Twins. In: ISoLA.
Volume 13701 of LNCS., Springer (2022)

9. Schweiger, G., Gomes, C., Engel, G., Hafner, I., Schoeggl, J., Posch, A., Nouidui,
T.S.: An empirical survey on co-simulation: Promising standards, challenges and
research needs. Simul. Model. Pract. Theory 95 (2019)

10. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Ontology-
based data access and integration. In Liu, L., Özsu, M.T., eds.: Encyclopedia of
Database Systems. Springer New York, New York, NY (2018)

11. Rozanec, J.M., Jinzhi, L., Kosmerlj, A., Kenda, K., Dimitris, K., Jovanoski, V.,
Rupnik, J., Karlovcec, M., Fortuna, B.: Towards actionable cognitive digital twins
for manufacturing. In: SeDiT@ESWC. Volume 2615 of CEUR., CEUR-WS (2020)

12. Kharlamov, E., Martín-Recuerda, F., Perry, B., Cameron, D., Fjellheim, R.,
Waaler, A.: Towards semantically enhanced digital twins. In: BigData, IEEE
(2018)

13. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman and Hall/CRC Press (2010)

14. W3C, OWL Working Group: Web ontology language https://www.w3.org/OWL.
15. SNOMED International: SNOMED CT https://www.snomed.org/.
16. W3C, RDF Working Group: Resource description framework https://www.w3.

org/RDF.
17. Jahn, F., Cook, M., Graham, M.: Hydrocarbon Exploration and Production. 2nd

edn. Developments in Petroleum Science. Elsevier (2008)

https://www.w3.org/OWL
https://www.snomed.org/
https://www.w3.org/RDF
https://www.w3.org/RDF

8 E. Kamburjan et al.

18. Rahimi, A., Mustafa, M., Zaine, M., Ibrahim, N., Ibrahim, K., Yuso�, N., Al-
Mutairi, E., Abd.Hamid, M.: Energy e�ciency improvement in the natural gas
liquids fractionation unit. Chemical Engineering Transactions 45 (2015)

19. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital
twin: A systematic literature review. CIRP Journal of Manufacturing Science and
Technology 29 (2020)

20. Steiniger, A., Uhrmacher, A.M.: Composing variable structure models - A revision
of COMO. In Ören, T.I., Kacprzyk, J., Leifsson, L.Þ., Obaidat, M.S., Koziel, S.,
eds.: SIMULTECH, SciTePress (2013)

21. OSIsoft: The power of Asset Framework. Technical report, OSIsoft,
LLC (2015) Published at https://resources.osisoft.com/white-papers/

the-power-of-asset-framework/.
22. Cameron, D.B., Waaler, A., Komulainen, T.M.: Oil and Gas digital twins after

twenty years. How can they be made sustainable, maintainable and useful? In:
SIMS 59, Linköping University Electronic Press (2018)

23. Heaton, J., Parlikad, A.K.: Asset information model to support the adoption of a
digital twin: West cambridge case study. IFAC-PapersOnLine 53(3) (2020)

24. Rotondi, M., Cominelli, A., Di Giorgio, C., Rossi, R., Vignati, E., Carati, B.:
The bene�ts of integrated asset modelling: lessons learned from �eld cases. In:
Europec/EAGE Conf. and Exhibition, OnePetro (2008)

25. Wei, K., Sun, J.Z., Liu, R.J.: A review of asset administration shell. In: IEEM.
(2019)

26. Fjøsna, E., Waaler, A.: READI Information modelling framework (IMF). Asset
Information Modelling Framework. Technical report, READI Project (2021)

27. Mehmandarov, R., Waaler, A., Cameron, D., Fjellheim, R., Pettersen, T.B.: A
semantic approach to identi�er management in engineering systems. In: Big Data,
IEEE (2021)

28. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10 (2008)

29. Skjæveland, M.G., Giese, M., Hovland, D., Lian, E.H., Waaler, A.: Engineering
ontology-based access to real-world data sources. J. Web Semant. 33 (2015)

30. Wiedau, M., von Wedel, L., Temmen, H., Welke, R., Papakonstantinou, N.: EN-
PRO Data Integration: Extending DEXPI Towards the Asset Lifecycle. Chemie
Ingenieur Technik 91(3) (2019)

31. IOGP JIP 36: CFIHOS Standards. https://www.jip36-cfihos.org/

cfihos-standards/ Accessed: 2021-12-12.
32. Bickford, J., Van Bossuyt, D.L., Beery, P., Pollman, A.: Operationalizing digital

twins through model-based systems engineering methods. Systems Engineering
23(6) (2020)

33. Nigischer, C., Bougain, S., Riegler, R., Stanek, H.P., Gra�nger, M.: Multi-domain
simulation utilizing SysML: state of the art and future perspectives. Procedia
CIRP 100 (2021)

34. Delgoshaei, P., Austin, M.A., Veronica, D.A.: A Semantic Platform Infrastructure
for Requirements Traceability and System Assessment. In: ICONS, IARIA (2014)

35. Fraga, A., Llorens, J., Alonso, L., Fuentes, J.M.: Ontology-Assisted Systems Engi-
neering Process with Focus in the Requirements Engineering Process. In: Complex
Systems Design & Management, Springer (2015)

https://resources.osisoft.com/white-papers/the-power-of-asset-framework/
https://resources.osisoft.com/white-papers/the-power-of-asset-framework/
https://www.jip36-cfihos.org/cfihos-standards/
https://www.jip36-cfihos.org/cfihos-standards/

Are Formal Contracts a useful Digital Twin
of Software Systems??

Jonas Schiffl[0000−0002−9882−8177] and Alexander Weigl[0000−0001−8446−4598]

Karlsruhe Institute of Technology, Karlsruhe, Germany
{schiffl,weigl}@kit.edu

Abstract. Digital Twins are a trend topic in the industry today to
either manage runtime information or forecast properties of devices and
products. The techniques for Digitial Twins are already employed in
several disciplines of formal methods, in particular, formal verification,
runtime verification and specification inference.
In this paper, we connect the Digital Twin concept and existing research
areas in the field of formal methods. We sketch how digital twins for
software-centric systems can be forged from existing formal methods.

Keywords: Formal Verification· Runtime Verification· Specification Min-
ing· Temporal Logics

1 Introduction
Motivation Digital Twin is an emerging trend in many industries. The main
focus is on the coupling of cyber-physical systems to a digital representation of
the system, called the Digital Twin. The shape of a Digital Twin is tailored to the
twinned cyber-physical system and the required reasoning. However, boundary
constraints, such as performance restrictions, can also be involved. For example,
a Digital Twin for predictive maintenance, i.e., the forecast of upcoming failures
due to attrition, has different model elements from a Digital Twin for tracking
the material flow.

Formal methods are a well-established research area. Although niche in indus-
try adaption, they offer a rich toolbox for modeling systems. Therefore, formal
methods are a natural candidate for digital twins of software systems. A recent
survey paper states that only three of the surveyed approaches for Digital Twins
for industrial automation systems use formal methods in contrast to 13 papers
in the category “Exploratory investigation” and 17 in category “Testing” ([19,
Table 1]).

In this work, we show how formal methods, in particular formal contracts,
can be used to build a Digital Twin of a software system, update it according
to the state of the system, and derive predictions about system behavior and
safety properties.
? This work was supported by funding of the Helmholtz Association (HGF) through

the Competence Center for Applied Security Technology (KASTEL) and by the re-
search project SofDCar (19S21002), which is funded by the German Federal Ministry
for Economic Affairs and Climate Action

Contribution In this paper, we apply several formal methods and tools to es-
tablish a framework for Digital Twins of reactive systems using formal software
contracts. Therefore, we focus on twinning the software behavior of a reactive
system operation according to its formal model, which we define through con-
tracts.

The Digital Twin allows forecasting properties that depend on the behavior of
the system. However, forecasting is not limited to the specific instance to which it
is twinned. Moreover, knowledge learned from observation can be shared between
Digital Twins, and What-if analyses are available. To achieve this, we show how
existing formal methods, in particular formal verification, runtime verification,
specification mining and program repair, can be combined for a Digital Twin.

System
(Physical Domain)

Digital Twin

Generic Model
Configuration

Update

Prediction

Fig. 1. A Meta-model Digital Twin

A meta-model for Digital Twin For this paper, we assume a simple meta-
model of Digital Twins, sketched in Figure 1. This meta-model consists of the
original system that exists in the real world. Such systems can be cyber-physical
systems, like cars, automated production systems, or energy systems. For the
purposes of this discussion, we only consider pure software systems.

The Digital Twin is then a digital representation of an instance of a system.
In case of a cyber-physical system, this can be a specific car or an individual
transformer in the energy system. Coming from the domain of formal methods,
we build the Digital Twin by using symbolic logic based models. We will later
use contract-languages to represent the system. For software systems, the Dig-
ital Twin can be split into a generic part that is valid for all instances of the
system parameters, and instance-specific configuration. For example, the generic
consists of the classes and their contracts, but their use and composition is deter-
mined by the instance’s configuration. Note that the Digital Twin also contains
information about the environment. This is similar to the distinction between
ABox and TBox in description logics. The TBox, the generic part, holds the
axioms that are valid for all instances. The ABox, on the other hand, contains
the information for the specific instance [9]. The TBox determines which parts
of the ABox are relevant.

Operations The representation of a system as a Digital Twin should enable two
operations:

– Prediction of selected properties. Prediction means reasoning whether a
property holds for a specific instance or, due to the symbolic representation,
for a family of instances. Moreover, we can perform “What-If” analyses:
assuming a different configuration, we can predict properties on different
instances, after change on the system. We can also model a transfer to a dif-
ferent environment. Prediction can lead to effects on the system, e.g., only
configurations with a good predicted performance are deployed.

– The Update process consists of collecting and aggregating information from
the (real-world) instance and transferring these into the configuration part
of the model.

Desired Properties A Digital Twin also has to fulfill some properties. First, it
should be faithful in the sense that the derived predictions are precise. If precision
is too hard to achieve, we claim at least soundness: The prediction should be
a pessimistic (or conservative) evaluation with respect to the safety analysis.
The reasoning based on the Digital Twin should never attest safety falsely; if in
doubt, it should rather predict non-existing safety issues.

Additionally, compositionality of a Digital Twin brings the same advantages
as for the system. Systems can be built up by composition of multiple systems.
The same is desirable for the Digital Twins: the Digital Twin of the top system
is, ideally, a composition of the Digital Twins of the sub systems.

2 Contracts for Reactive Systems

In the following, we instantiate the Digital Twin meta-model for reactive software
systems. For this, we define the individual components: the system and the
formal model as well as the prediction and update processes.

The system. A reactive system is characterized by the following properties (cf.
[10]): Their runtime is infinite or undetermined, and they interact with the phys-
ical world, e.g., by reading sensor values and controlling actuators. Typical rep-
resentatives for reactive systems are embedded controllers in the automation or
automotive domain.

Reactive systems can be constructed via composition from smaller systems.
For example, Lingua Franca [18] defines reactive systems, named reactors, that
can be built of other reactors, or an executable program fragment. A similar ter-
minology can be found in IEC 61131-3 (the standard for programming languages
for automated production systems) as Function Block Diagrams. In this paper,
we assume the system model of [7], in which every system has an interface (input
and output variables) and is composed of connected subsystems.

The Digital Twin. Cimatti et al. [7] provide OCRA, a tool that enables a
design-by-contract methodology for reactive systems by defining components,
their composition and associated contracts. OCRA focuses on the refinement
relationship, thus verification of the program code against contract is left out.

Using the OCRA model, the Digital Twin of a system is its contract, which
consists of two properties given in Linear Temporal Logic (LTL). The first prop-
erty is an assumption on the system inputs. The second one is a guarantee of the
system outputs under the given assumptions. Note that LTL is just the language
we use for describing sets of traces. It can be replaced by any logic on traces (see
below). The advantage of LTL is acceptance by a wide range of tools.

In addition to the contract, the Digital Twin is also aware of the structural
architecture of the software given by the composition of subsystems and the
information flow between them. Parameterization (or configuration) of a system
is established via its input variables and by the selection of the sub-system during
the composition.

The contract is a syntactical notion that describe the set of allowed behaviors
of a system under a specified set of input traces. The behavior of a correct system
is a subset of the allowed behavior. Often, due to the determinism in the system
and the indeterminism (or abstraction) in the contract, the allowed behavior is
indeed a strict superset of the actual actual behavior. Additionally, a system
composition gives a refinement obligation, in which the composition, i.e., the
collective of sub-systems, needs to conjointly fulfill the super system’s contracts.
Furthermore, the systems within a composition also need to be compatible with
each other. Due to the over-approximating character of contracts, the Digital
Twin tends to be imprecise, but sound for safety analyses. However, it is not
possible to predict liveness properties. Note that proving the correctness of the
system is sometimes infeasible, e.g., due to unavailability of the source code,
complexity of the system (floating point, state explosion) or lack of knowledge
of the environment. Additionally, we do not assume that the system is always
compliant with the contract, especially, when the contracts are automatically
mined from observation, or extracted from natural language and not carefully
designed by the system creator and operators. This increases the need for a
robust update that incrementally tighten the coupling between the instance of
the system and Digital Twin built from contracts.

Update There are several update operations. The most simple one is detecting
the parameterization of the instance, i.e., determining the values of the different
inputs.

Moreover, the assumptions and guarantees in the contracts at the top-level
and sub-systems needs to be validated during operation to ensure that the system
operates in its expected boundaries. In particular, we check whether a system is
correctly invoked by its outer context or environment, and whether it behaves
as specified. To achieve this, Runtime Verification, such as [2] for LTL, can be
used. However, from Runtime Verification we can only learn about violation of
or adherence to a property.

Normally, we want to establish the correctness of a system statically, but
some properties are too hard to be established in advance. In the best case,
unexpected specification-violating runtime traces are recorded to enable specifi-
cation mining. Specification mining is the discipline to extract LTL properties
from traces. For example, Tuxedo [17] is a pattern-based approach, that instan-
tiates LTL patterns with state formulas and validates them against the traces.
An instantiated pattern must be fulfilled by a specified ratio of the observed
traces to be considered valid. The valid instantiated patterns help to adjust the
contracts. For example, in the case of a contract violation, we might consider
weakening the assumptions of a system. On the other hand, specification mining
may also be applied where the contracts are fulfilled. In this case, it can lead
to a tightening of the contracts for a specific configuration or environment. Be-
sides of mining specifications from recorded traces, there are tools for extracting
LTL properties from natural languages, e.g. requirement documentation or user
commands [22].

Prediction The prediction operation of our Digital Twin can be reduced to the
well-established model-checking problem which allows us to verify the validity
of a (LTL) property in a given Kripke structure. This covers the validation
that each contract is adhered to by the associated system, and that systems are
composed in a valid fashion.

But we benefit from the information learned during the Update operation: We
can testify the contract adherence specifically in the used system configuration,
and thus, we can save verification run-time without suffering a loss of verification
validity for a specific instance. Furthermore, it may be beneficial to limit the
verification process only to the recorded and mined environment of the instance
to be validated.

Of course, the Digital Twin allows to conduct “What-If” analyses by altering
the parameter of a system, or implementing it into a different environment. The
latter simply requires changing the mined properties. This also requires tracking
the origin of the formulas within the contracts.

But we are not limited to model-checking. Testing or simulation are also
in reach by using the contracts. In particular, formal contracts enable testing
and simulation even for software which is not executable in a simulation envi-
ronment (e.g., due to inaccessible resources). There are also more sophisticated
techniques. For example, Program Repair considers altering programs such that
the program fulfills its contract. For this, the source code of the program is mu-
tated until a suitable candidate is found [6,20]. A similar discipline is Parameter
Synthesis [5].

Limitations By using assume-guarantee contracts and LTL as the specifica-
tion language, we focus on describing behavior on a certain abstraction level.
This allows us to reason well on the possibility to reach bad system states, but
other properties are not predictable. For example, security properties that are

expressible as reachability are covered, i.e., integrity of the system, but confiden-
tiality (e.g., secure information flow), and availability (liveness properties) are
not. Moreover, runtime predictions, e.g., worst case execution time (WCET), are
also not in our setup, due to the abstraction of time in LTL.

Other contract languages. Note that OCRA uses LTL, but its approach is
not limited to a particular contract grammar. There are many variants of tem-
poral logics. For example, Metric Temporal Logic (MTL) extends LTL to include
real-time capabilities [14]. In MTL, temporal operators have an additional time
span in which the formula needs to be fulfilled. MTL formulas are evaluated
on “data words”—event traces with an explicit time value. MTL is well studied
for runtime verification [21,11] and specification mining [12]. Additionally, Run-
time Verification for MTL can also be quantitative by measuring how large the
violation of the specification is [8].

Temporal logic formulas tend to be very hard to understand. Therefore, an
additional goal is comprehensibility of the contracts and thus the Digital Twin.
For example, Generalized Test Tables (GTTs) [4] are an engineer-friendly spec-
ification language derived from test tables used in the automation industry. A
GTT describes a behavior in a particular scenario without the aspiration to be
a complete specification. The rows in a GTT are the sequential steps of a test
protocol, where each step consists of multiple assumptions and assertions (the
table columns) for each input-output variable. Due to the table-based format,
a fine-grained runtime monitoring is possible [24] in which the violation of sin-
gle constraints can be tracked. Specification mining is currently not available,
but might be adopted from approaches for learning finite-state machine based
specifications (e.g., [15]).

3 Closing Remarks

In this paper, we present the idea of using formal contracts – existing in current
design-by-contract approaches – for the representation of Digital Twins. Due
to tool support, we focus on reactive systems and LTL, but the principle is
also applicable to batch systems. For example, the Java Modeling Language
(JML) [16] is an established specification language for Java source code with
support of deductive verification [1] and runtime verification [13]. Specification
mining (of method contracts) based on runtime information is currently not
well-researched.

Software and its refinement. When we fade out the physical environment and
concentrate on the software, we can state that the software, as it is digital, is
itself the most precise definition of its behavior, and can also been seen as its
own contract. Every other contract for a system over-approximates. But the
abstraction of contracts is needed, as it allows us to hide the complexity of
the implementation. Indeed, more abstract software models are often used in
software engineering: For example, the buildability of a user-configurable product

is defined by a feature model. Feature models reflect the compatibility of software
modules, which also depends on the behavior of the software.

Evolution of Digital Twins with Relational Verification. For our framework, we
have only considered the classical specification and verification of single traces.
A possible extension is the verification of relational properties [3] (or multi-
properties). A relational property describes the relationship between multiple
runs of the same or different systems. For example, regression verification – a
relaxed program equivalence – is a relational property which helps to identify the
introduction of unintended behavior during the co-evolution of hard- and soft-
ware. Regression verification requires a description of the relationship between
the common behavior of both systems [23]. As the regression contracts help with
the co-evolution by coupling the old to the new version, they also support the
evolution step of the Digital Twins by coupling mined knowledge from the old
twin to the new twin.

References
1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.

(eds.): Deductive Software Verification - The KeY Book - From Theory to
Practice, Lecture Notes in Computer Science, vol. 10001. Springer (2016).
https://doi.org/10.1007/978-3-319-49812-6

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL
and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4) (sep 2011).
https://doi.org/10.1145/2000799.2000800

3. Beckert, B., Ulbrich, M.: Trends in relational program verification. In: Müller, P.,
Schaefer, I. (eds.) Principled Software Development - Essays Dedicated to Arnd
Poetzsch-Heffter on the Occasion of his 60th Birthday. pp. 41–58. Springer (2018).
https://doi.org/10.1007/978-3-319-98047-8 3

4. Beckert, B., Ulbrich, M., Vogel-Heuser, B., Weigl, A.: Generalized test tables: A
domain-specific specification language for automated production systems. In: Seidl,
H., Liu, Z., Pasareanu, C.S. (eds.) Theoretical Aspects of Computing - ICTAC
2022 - 19th International Colloquium, Tbilisi, Georgia, September 27-29, 2022,
Proceedings. Lecture Notes in Computer Science, vol. 13572, pp. 7–13. Springer
(2022). https://doi.org/10.1007/978-3-031-17715-6 2

5. Bezdek, P., Benes, N., Barnat, J., Cerná, I.: LTL parameter synthesis of parametric
timed automata. In: Nicola, R.D., Kühn, E. (eds.) Software Engineering and Formal
Methods - 14th International Conference, SEFM 2016, Held as Part of STAF 2016,
Vienna, Austria, July 4-8, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9763, pp. 172–187. Springer (2016). https://doi.org/10.1007/978-3-319-41591-
8 12

6. Brizzio, M., Degiovanni, R., Cordy, M., Papadakis, M., Aguirre, N.: Auto-
mated repair of unrealisable LTL specifications guided by model counting. CoRR
abs/2105.12595 (2021)

7. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the refine-
ment of temporal contracts. In: Denney, E., Bultan, T., Zeller, A. (eds.) 2013 28th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2013, Silicon Valley, CA, USA, November 11-15, 2013. pp. 702–705. IEEE (2013).
https://doi.org/10.1109/ASE.2013.6693137

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-319-98047-8_3
https://doi.org/10.1007/978-3-031-17715-6_2
https://doi.org/10.1007/978-3-319-41591-8_12
https://doi.org/10.1007/978-3-319-41591-8_12
https://doi.org/10.1109/ASE.2013.6693137

8. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification - 5th
International Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8734, pp. 231–246. Springer
(2014). https://doi.org/10.1007/978-3-319-11164-3 19

9. Giacomo, G.D., Lenzerini, M.: TBox and ABox reasoning in expressive descrip-
tion logics. In: Padgham, L., Franconi, E., Gehrke, M., McGuinness, D.L., Patel-
Schneider, P.F. (eds.) Proceedings of the 1996 International Workshop on Descrip-
tion Logics, November 2-4, 1996, Cambridge, MA, USA. AAAI Technical Report,
vol. WS-96-05, pp. 37–48. AAAI Press (1996)

10. Halbwachs, N.: Synchronous programming of reactive systems. In: Hu, A.J.,
Vardi, M.Y. (eds.) Computer Aided Verification, 10th International Confer-
ence, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceed-
ings. Lecture Notes in Computer Science, vol. 1427, pp. 1–16. Springer (1998).
https://doi.org/10.1007/BFb0028726

11. Ho, H., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In:
Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification - 5th International
Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8734, pp. 178–192. Springer (2014).
https://doi.org/10.1007/978-3-319-11164-3 15

12. Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic proper-
ties in model-based design for cyber-physical systems. Int. J. Softw. Tools Technol.
Transf. 20(1), 79–93 (2018). https://doi.org/10.1007/s10009-017-0447-4

13. Hussain, F., Leavens, G.T.: temporaljmlc: A JML runtime assertion checker exten-
sion for specification and checking of temporal properties. In: Fiadeiro, J.L., Gnesi,
S., Maggiolo-Schettini, A. (eds.) 8th IEEE International Conference on Software
Engineering and Formal Methods, SEFM 2010, Pisa, Italy, 13-18 September 2010.
pp. 63–72. IEEE Computer Society (2010). https://doi.org/10.1109/SEFM.2010.15

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

15. Le, T.B., Lo, D.: Deep specification mining. In: Tip, F., Bodden, E. (eds.) Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018. pp. 106–
117. ACM (2018). https://doi.org/10.1145/3213846.3213876

16. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the
design of JML accommodates both runtime assertion checking and
formal verification. Sci. Comput. Program. 55(1-3), 185–208 (2005).
https://doi.org/10.1016/j.scico.2004.05.015

17. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T).
In: Cohen, M.B., Grunske, L., Whalen, M. (eds.) 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015. pp. 81–92. IEEE Computer Society (2015).
https://doi.org/10.1109/ASE.2015.71

18. Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a Lingua Franca for
deterministic concurrent systems. ACM Trans. Embed. Comput. Syst. 20(4) (may
2021). https://doi.org/10.1145/3448128

19. Löcklin, A., Müller, M., Jung, T., Jazdi, N., White, D., Weyrich, M.: Dig-
ital twin for verification and validation of industrial automation systems
– a survey. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). vol. 1, pp. 851–858 (2020).
https://doi.org/10.1109/ETFA46521.2020.9212051

https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/BFb0028726
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/s10009-017-0447-4
https://doi.org/10.1109/SEFM.2010.15
https://doi.org/10.1007/BF01995674
https://doi.org/10.1145/3213846.3213876
https://doi.org/10.1016/j.scico.2004.05.015
https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1145/3448128
https://doi.org/10.1109/ETFA46521.2020.9212051

20. Mironovich, V., Buzdalov, M., Vyatkin, V.: Automatic generation of func-
tion block applications using evolutionary algorithms: Initial explorations.
In: 15th IEEE International Conference on Industrial Informatics, INDIN
2017, Emden, Germany, July 24-26, 2017. pp. 700–705. IEEE (2017).
https://doi.org/10.1109/INDIN.2017.8104858

21. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications.
In: Havelund, K., Rosu, G. (eds.) Proceedings of the Fourth Workshop on Run-
time Verification, RV@ETAPS 2004, Barcelona, Spain, April 3, 2004. Electronic
Notes in Theoretical Computer Science, vol. 113, pp. 145–162. Elsevier (2004).
https://doi.org/10.1016/j.entcs.2004.01.029

22. Wang, C., Ross, C., Kuo, Y., Katz, B., Barbu, A.: Learning a natural-language to
LTL executable semantic parser for grounded robotics. In: Kober, J., Ramos, F.,
Tomlin, C.J. (eds.) 4th Conference on Robot Learning, CoRL 2020, 16-18 Novem-
ber 2020, Virtual Event / Cambridge, MA, USA. Proceedings of Machine Learning
Research, vol. 155, pp. 1706–1718. PMLR (2020)

23. Weigl, A., Ulbrich, M., Cha, S., Beckert, B., Vogel-Heuser, B.: Relational test
tables: A practical specification language for evolution and security. In: Bae, K.,
Bianculli, D., Gnesi, S., Plat, N. (eds.) FormaliSE@ICSE 2020: 8th International
Conference on Formal Methods in Software Engineering, Seoul, Republic of Korea,
July 13, 2020. pp. 77–86. ACM (2020). https://doi.org/10.1145/3372020.3391566

24. Weigl, A., Ulbrich, M., Tyszberowicz, S.S., Klamroth, J.: Runtime verification of
generalized test tables. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A.,
Perez, I. (eds.) NASA Formal Methods - 13th International Symposium, NFM
2021, Virtual Event, May 24-28, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12673, pp. 358–374. Springer (2021). https://doi.org/10.1007/978-3-
030-76384-8 22

https://doi.org/10.1109/INDIN.2017.8104858
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1145/3372020.3391566
https://doi.org/10.1007/978-3-030-76384-8_22
https://doi.org/10.1007/978-3-030-76384-8_22

Digital Twin for Rescue Missions – a Case Study?

Martin Leucker , Martin Sachenbacher , and Lars B. Vosteen

Institute for Software Engineering and Programming Languages,
Universität zu Lübeck, Lübeck, Germany

{leucker,sachenbacher,vosteen}@isp.uni-luebeck.de

Abstract. In this paper, we explain through a case study how to develop
a digital twin that can be used for safety analysis of missions in physical
contexts. More specifically, we consider a scenario where firefighters are
operating inside a building under fire, but communicating online with
a mission control station. One of the main tasks of the mission control
is to ensure that the firefighters always have enough oxygen to exit the
building safely. To this end, a Digital Twin can be created that reflects the
physical structure of the burning building, the location of the firefighters
and the oxygen level in their breathing apparatus. The Digital Twin
uses these models and a shortest path algorithm to estimate the oxygen
required to exit the building, and alerts mission control and the respective
firefighter to exit the building on time. The case study is used to illustrate
key concepts for building Digital Twins in safety-critical contexts.

Keywords: Digital Twin · Safety Analysis · Complex Systems Engi-
neering

1 Introduction

Digital Twins (DT) have gained significant attention in various industries, partic-
ularly those involving safety-critical operations. In this paper, we aim to demon-
strate the practical application of a DT in monitoring a safety asset through a
case study analysis. The scenario under consideration is firefighters communicat-
ing with a mission control team amid a burning building. A primary objective
of the mission control team is to ensure that the firefighters have sufficient oxy-
gen supply to evacuate the building safely. To facilitate this, we propose the
implementation of a digital twin that reflects the physical characteristics of the
building, the current location of the firefighters and the oxygen levels in their
breathing apparatus.

We follow Feng et al. [9] and define a DT as a digital representation of a
physical process that uses various techniques such as communication and data
storage, data visualisation, modelling and calibration, state estimation, monitor-
ing and what-if simulation to enhance the value of the physical system. The DT
receives data from the physical system and maintains it for further analysis and
? Funded by: German Federal Ministry for Economic Affairs and Climate Action, due
to a resolution of the German Bundestag in the context of the project O5G-N-IoT

http://orcid.org/0000-0002-3696-9222
http://orcid.org/0000-0002-5418-1885
http://orcid.org/0000-0002-6777-7733

2 Martin Leucker , Martin Sachenbacher, and Lars B. Vosteen

visualisation, presents the data clearly and concisely, uses mathematical models
to simulate the behaviour of the physical system, estimates the current state
of the system, continuously monitors the physical system and triggers alarms
when predetermined conditions are met, and enables the user to simulate var-
ious scenarios and predict the expected outcome, thereby facilitating decision
making.

This paper focuses on the problem class of safety-critical missions regarding
a dedicated use case. Most of the different aspects of the use case have been
considered in isolation. For example, [5,17,18,22] study indoor navigation [7]
based on on the building information model (BIM, [2]) or its fragment IFC [1].
The robot operating system (ROS) [24] has been extended to support navigation
[11,16], also using the BIM model. Related to the problem of firefighter support is
the indoor-emergency-navigation-system for complex buildings [23], which again
uses BIM. Note that [6] gives an overview of state of the art in BIM and Fire
Safety Engineering.

While DT have proven to be beneficiary [10,13,20], it is still a challenge to
design and build up suitable DT. The goal of this paper is not to provide yet
another solution for supporting firefighter scenarios but to identify key artefacts
occurring in this and similar use cases. We identify their mathematical nature
and discuss corresponding formal modelling and analysis techniques as well as
supporting tools. We identify that in our use case, we have to deal with

– building models
– discrete mathematical objects and optimisation, and
– physical processes, typically modelled as differential equations.

We discuss formal representations from a computer science perspective and tools
to be used for realising the case study. We implement our case study using state
of the art tools (ROS and Python) to validate our findings.

In Section 2, a case study is provided, motivating a problem suitable for
using a DT; it is analysed regarding its artefacts, and main categories of objects
and processes are determined. Their formal models and supporting tools are
discussed in Section 3.1 and their integration in Section 3.2. In Section 4, we
have implemented our case study to gain first practical insights.

The research is part of the O5G-N-IoT project1, which aims to enhance
security components with 5G technology.

2 The case study in detail

Let us describe our case study in detail to derive the main kinds of artefacts
informally before we identify their mathematical nature.

1 https://o5g-n-iot.de/

https://o5g-n-iot.de/

Digital Twin for Rescue Missions – a Case Study 3

2.1 A typical scenario

The case study presented in this paper deals with firefighters’ rescue from a
burning building. We depict our scenario for buildings ranging from one to about
five storeys and approximately 200m2, ensuring that a single team of firefighters
is sufficient to deal with the fire. We assume that a fire is detected and reported
to a central fire station, which sends out an appropriate response team. The team
is usually divided into two functional groups: mission command and emergency
personnel. The mission commander operates from the mission control centre,
part of one of the fire vehicles outside the building. The emergency personnel can
be a group of up to 40 firefighters who carry out different tasks inside the building
(see Fig. 1). The main tasks we have in mind are rescuing people, checking for
people to be rescued and containing the fire. The firefighters operating in the
building are supplied with oxygen by a self-contained breathing apparatus with
a compressed air tank. The firefighters are in constant contact with the mission
command centre via a permanent voice radio. Since this is the aim of our project,
we also assume that 5G will be used for both voice radio and a data link to each
firefighter. The data link is used, among other things, to receive vital signs data
from each firefighter. We assume that their position and level of the compressed
air tank are transmitted to the mission control centre.

The current state of the art is for the mission command to manually record
the position of each firefighter and the corresponding air pressure levels regularly
by radio and to record these values on a board in the mission control centre. As
soon as a critical pressure value is detected for a firefighter, he or she is instructed
to leave the building (again by radio). The incident commander can also draw
up a plan to search the entire building for people. Last but not least, the incident
commander continuously monitors the spread of the fire. The project aims to
digitise and improve the first two tasks.

2.2 Analysis of the scenario

Let us revisit the scenario described above. We identify the following artefacts:

– There is a mission commander in direct contact with the firefighters.
– There is a constant data link sending vital data such as air pressure and

position in the building.
– There is a plan of the building used for coordination and mission planning.
– There are physical processes taking place, such as the deflation of the air

containers and the spread of the fire.
– There are optimisation problems, such as mission planning to search the

whole building.
– There is a critical property that needs to be checked, i.e. the assessment

of the remaining oxygen level in relation to the distance/time required to
evacuate the building.

To support the tasks in question, we plan to model these (and similar) sce-
narios using a DT and apply simulation and optimisation methods based on the
DT. To this end, we use the following simplifications:

4 Martin Leucker , Martin Sachenbacher, and Lars B. Vosteen

– We assume that our 5G network connection provides a reliable voice and
data link.

– We assume there is an existing reliable indoor location solution – see [21,27]
for an overview of current methods.

– We assume that a suitable 3D plan of the building is available, although we
discuss different options in the next section.

– We consider “simple” physical processes, such as the emptying of the air
reservoirs, but leave “complicated” physical phenomena to later studies. In
particular, we assume a static digital plan to represent the building initially
but ignore any changes to the building, for example, due to fire.

– As a concrete task, we only consider the intelligent estimation of the remain-
ing oxygen level with respect to the time needed to leave the building.

Clearly, these are highly simplifying assumptions. However, the current setup
already shows important challenges and basic solutions.

2.3 The artefacts to be formalised

We identify the need for

– modelling the structure (e.g. floor plan) and semantics (e.g. accessible doors
and stairs) of a building to represent locations of people and plan (feasible)
routes

– solving discrete optimisation problems, such as finding the shortest path to
an exit and travelling salesman to search all rooms (although the latter is
not discussed in this paper)

– modelling physical processes, such as draining a compressed air supply

In the next section, we discuss different modelling and digital solution options
for these artefacts, both mathematical and using standard formats and tools, and
their interplay. In Section 4 we then show a concrete implementation together
with a first evaluation.

3 Formalisation options for the artefacts of digital twins

In the previous paragraph, we identified building models, discrete optimisation
problems, and physical processes as the main artefacts to be formalised and
addressed. Let us discuss the corresponding possibilities in the following.

3.1 The artefacts categories

Building models There are a wide range of standards and variants for the digital
representation of buildings, from human-readable drawings to machine-usable
3D graphics with semantic metadata.

City Geography Markup Language (CityGML)2 is an open standard that
defines a conceptual model and exchange format for describing the geometry and
2 https://www.ogc.org/standards/citygml

Digital Twin for Rescue Missions – a Case Study 5

Fig. 1. Schematic representation of the mission, showing the three different types of ar-
tifact categories – building models, discrete optimisation processes (indoor navigation)
and physical processes (loss of remaining air pressure)

appearance, topology (relationships, neighbourhoods) and semantics (meaning)
of 3D city objects, facilitating the integration of urban geodata for applications
in smart cities and digital city twins. It supports different levels of detail (LoD
0-3) so that objects become more detailed as the LOD increases to represent
elements such as rooms, doors, corridors, stairs and even furniture. CityGML
is based on standards from the Open Geospatial Consortium (OGC) and ISO
191XX.

Building Information Modelling (BIM) technology, as opposed to traditional
CAD technology, can represent geometric and rich semantic information about
building components and their relationships to support lifecycle data sharing.
BIM is defined in ISO 29481-1:2016 as: “[the] use of a shared digital representa-
tion of a built object (including buildings, bridges, roads, process plants, etc.)
to facilitate design, construction and operation processes to form a reliable basis
for decisions.”

An important data exchange standard for BIM is the IFC (Industry Foun-
dation Classes)3 standard. The IFC object-based data model contains geometric
and rich semantic information about building components and is supported by
most BIM software vendors. A body of research has focused on extracting and
managing semantic information about building components in the form of IFC
for various applications, including indoor path planning [17].

The Green Building XML Schema (gbXML)4 is an open schema developed
to facilitate the transfer of building data stored in BIMs to engineering analysis
tools. It is integrated into several computer-aided design (CAD) software pack-
ages, notably Autodesk. gbXML is a type of XML file with over 500 types of
elements and attributes that can be used to describe all aspects of a building.

Discrete optimisation processes The optimisation problem described in the sce-
nario is to find the shortest path to any existing exit. This can be seen as a
3 https://www.buildingsmart.org/
4 https://www.gbxml.org/

6 Martin Leucker , Martin Sachenbacher, and Lars B. Vosteen

shortest path graph problem as the building model can be formed into a graph
where each door is a node, and each direct connection between doors is a weighted
edge. In the taxonomy provided in [19], the scenario is static, as the weights of
the graph do not change over time.

Physical processes Physical processes are usually specified in terms of differential
equations, which can then be solved explicitly in simple cases. In (real) more
complex cases, this is usually not possible in an acceptable amount of time, so
approximation algorithms are used.

This can be addressed in three types of approaches:

– Solving by hand or writing custom code adapted to the equation in question.
– Using dedicated libraries in appropriate programming languages (e.g. scipy [25]

in Python, dsolve in Matlab or Mathematica).
– Use of languages specifically designed to describe physical processes (e.g.

Modelica [12,4,8,3]). This can be complemented by the use of the Functional
Mock-up Interface (FMI)5 – a standard that defines a container and in-
terfaces for exchanging dynamic simulation models from different modelling
tools. It also specifies co-simulation Functional Mock-up Units (FMU), which
contain the model and the simulation solver. In this way, simulation models
with different time steps can be coupled.

In our setting, the digital twin needs to model physical processes to predict
the depletion of compressed air over time, which may also depend on the type of
activity, such as walking up or down stairs, whether additional equipment needs
to be carried, and so on. Accurate modelling may require modular, multi-domain
models of individual component models.

3.2 Integration of the three artefacts categories

In the previous subsection, we have identified key artefact categories of safety-
critical rescue missions in buildings. However, it is essential that the concrete
formalisation and supporting tools can be integrated into a single digital twin.
A typical approach is encapsulating all artefacts as functional mock-up units
and using a manually written integrator as coordinator. This approach has been
mechanised by providing a programming layer to encapsulate simulators compli-
ant with the FMI standard into OO structures, integrate FMOs into the class,
and type systems [14].

4 Example implementation

To obtain practical insights into developing Digital Twins, we have implemented
the discussed scenario following the discussion in the previous sections. To this
extent, we focus on constantly checking whether each firefighter has enough air
pressure to continue operating. To this end, two predictions must be made:
5 https://fmi-standard.org/

Digital Twin for Rescue Missions – a Case Study 7

Fig. 2. Design view of the building model used for experimentation

– How long will it take the person to reach the nearest exit?
– How long will the air last?

The localisation and the building model are used to calculate the time it will
take to exit the building.

Therefore, based on the building plan, a graph can be created where passage-
ways are nodes like doors, and all passageways directly connected by rooms are
connected by edges weighted by distance. On this graph, a shortest path analy-
sis can be performed from a given starting point to all possible exits, with the
minimum result describing the shortest exit path. This can then be converted
(e.g. by assuming a constant speed) into an estimated running time.

The pressure curve can be used to estimate how long the remaining air pres-
sure in the tank will last. This is described by a monotonically decreasing func-
tion, which can be approximated, for example, by a polynomial.

The two durations must be determined periodically – in our scenario, with
a buffer of a few minutes, low frequencies such as 0.1Hz are sufficient since the
emergency personnel cover a maximum of 10 s equivalent distance within 10 s
and thus add a maximum of 20 s time compared to immediate detection.

After subtracting the buffer, an alarm is triggered as soon as the time needed
to evacuate the building falls below the time that breathing air is safely available.

Our implementation of the DT to support rescue missions uses the Robot
Operating System (ROS)6 as a way of determining routes in a building map and
implements the air pressure forecast as a linear approximation. Currently, the
implementation has the following limitations:

– Only one floor is taken into account.
– Building changes (e.g. caused by fire) are not considered, as the fire itself,

and its ability to make pathways impassable are not considered.
– Air consumption is approximated as constant, ignoring influences such as

load, fitness and environmental characteristics such as temperature.

A plan suitable for navigation is created based on a 3D model of a house (see
Fig. 2). A file in IFC format can be reformatted [15] into a ROS-usable image file
6 https://www.ros.org/

8 Martin Leucker , Martin Sachenbacher, and Lars B. Vosteen

in PGM format using a toolkit called ifcOpenShell7. If a scale is known, it can be
added to a ROS-usable YAML file with metadata. The resulting plan (see Fig. 3)
is used as input for the ROS navigation stack8, and a path to a fixed location (like
the exits) can then be calculated by calling the GetPlan service9. By calculating
the length of the returned path and assuming a constant walking speed, the time
required to leave the building via a selected exit can be estimated. In the case
of multiple exits, the shortest path to an exit is used for further calculations.

Fig. 3. overview of the floor plan [26] of the building used in the simulation and a path
found by ROS

A simple approximation of the remaining air pressure is obtained by assuming
that the tank capacity is known and the respiration rate is constant; therefore,
the remaining usable time of the gas container can be estimated. The elapsed
time is then subtracted from this to obtain the remaining time.

In our prototype, both the time needed to leave the building and the time
of remaining oxygen are calculated every ten seconds. A warning is issued if the
difference falls below a safety margin of 300 seconds.

5 Discussion and outlook

In this paper, we have considered a real-world case study. We examined the
artefact categories of Digital Twins and explored how to model them from a

7 https://ifcopenshell.org/
8 https://wiki.ros.org/navigation
9 https://docs.ros.org/en/api/nav_msgs/html/srv/GetPlan.html

https://ifcopenshell.org/
https://wiki.ros.org/navigation
https://docs.ros.org/en/api/nav_msgs/html/srv/GetPlan.html

Digital Twin for Rescue Missions – a Case Study 9

mathematical and computer science point of view. Additionally, we briefly out-
lined tool support and identified integration techniques. We do not claim any
completeness of the overviews, yet hope to contribute a valuable contribution
when building digital twins. We have implemented our scenario to gain practical
insights and understand the limits of current approaches and tool support.

For our implementation, we considered several simplifications but also learned
that many additional simplifications are needed to make the problem easier to
handle. Notably, it was assumed that a suitable 3D model of the building al-
ready existed, that there was a stable radio link throughout the building, that
sufficiently accurate indoor localisation was possible, and that the fire itself was
disregarded entirely. While these simplifications have made the problem more
tractable, it is important to note that, in reality, these assumptions may not hold
(but may be overcome in future improvements/extensions of the approach). It is
also important to note that no real-world experiments have yet been conducted,
with only a simulation having been evaluated at this stage.

In future studies, conducting experiments in real-world environments would
be beneficial to validate the proposed system. In addition, it seems useful to
extend the Digital Twin to enable more comprehensive mission planning. The
Digital Twin can simulate possible mission scenarios, assist in route planning
for systematic searches, and estimate whether a task force can reach a specific
location. This can lead to increased safety and efficiency in rescue operations.

Nevertheless, as our main finding, we learn that further tool support is es-
sential to limit the burden of building up and employing digital twins.

References

1. ISO 16739-1:2018, https://www.iso.org/standard/70303.html
2. ISO 19650-1:2018, https://www.iso.org/standard/68078.html
3. Blochwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C., Elmqvist, H.,

Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.: Func-
tional mockup interface 2.0: The standard for tool independent exchange of simu-
lation models. Proceedings (09 2012). https://doi.org/10.3384/ecp12076173

4. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H., Jung-
hanns, A., Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson, H., Peetz,
J.V., Wolf, S.: The functional mockup interface for tool independent exchange of
simulation models. Proceedings of the 8th International Modelica Conference pp.
105–114 (03 2011). https://doi.org/10.3384/ecp11063105

5. Boysen, M., de Haas, C., Lu, H., Xie, X.: A journey from ifc files to indoor navi-
gation. Web and Wireless Geographical Information Systems pp. 148–165 (2014)

6. Davidson, Anne, Gales, John: BIM and fire safety engineering - overview of state
of the art. International Journal of High-Rise Buildings 10(4), 251–263

7. El-Sheimy, N., Li, Y.: Indoor navigation: state of the art and future trends. Satellite
Navigation 2(1), 7. https://doi.org/10.1186/s43020-021-00041-3

8. Elsheikh, A., Awais, M.U., Widl, E., Palensky, P.: Modelica-enabled rapid pro-
totyping of cyber-physical energy systems via the functional mockup interface.
2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems,
MSCPES 2013 (05 2013). https://doi.org/10.1109/MSCPES.2013.6623315

https://www.iso.org/standard/70303.html
https://www.iso.org/standard/68078.html
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp11063105
https://doi.org/10.3384/ecp11063105
https://doi.org/10.1186/s43020-021-00041-3
https://doi.org/10.1186/s43020-021-00041-3
https://doi.org/10.1109/MSCPES.2013.6623315
https://doi.org/10.1109/MSCPES.2013.6623315

10 Martin Leucker , Martin Sachenbacher, and Lars B. Vosteen

9. Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.: Introduc-
tion to digital twin engineering. 2021 Annual Modeling and Simulation Conference
(ANNSIM) pp. 1–12. https://doi.org/10.23919/ANNSIM52504.2021.9552135

10. Gao, Y., Chang, D., Chen, C.H., Xu, Z.: Design of digital twin applications in
automated storage yard scheduling. Advanced Engineering Informatics 51, 101477
(2022). https://doi.org/https://doi.org/10.1016/j.aei.2021.101477,
https://www.sciencedirect.com/science/article/pii/S1474034621002275

11. Gopee, M.A., Prieto, S.A., de Soto, B.G.: IFC-based generation of seman-
tic obstacle maps for autonomous robotic systems, Computing in Construc-
tion, vol. 3. University of Turin, Rhodes, Greece (July 2022). https://doi.org/
10.35490/EC3.2022.161, https://ec-3.org/publications/conference/paper/
?id=EC32022_161

12. Jiang, H., Qin, S., Fu, J., Zhang, J., Ding, G.: How to model and implement connec-
tions between physical and virtual models for digital twin application. Journal of
Manufacturing Systems 58 (06 2020). https://doi.org/10.1016/j.jmsy.2020.
05.012

13. Jin, T., Sun, Z., Li, L., Zhang, Q., Zhu, M., Zhang, Z., Yuan, G., Chen, T., Tian,
Y., Hou, X., Lee, C.: Triboelectric nanogenerator sensors for soft robotics aiming at
digital twin applications. Nature Communications 11(1), 5381. https://doi.org/
10.1038/s41467-020-19059-3, https://doi.org/10.1038/s41467-020-19059-3

14. Kamburjan, E., Johnsen, E.B.: Knowledge structures over simulation units pp.
78–89 (2022). https://doi.org/10.23919/ANNSIM55834.2022.9859490, https://
doi.org/10.23919/ANNSIM55834.2022.9859490

15. Kaulfuß, E.: Navigation of Mobile Robots for Interiorer Constructions Tasks. Diplo-
marbeit, Technische Universität Dresden (2021), page: 64

16. Kim, S., Peavy, M., Huang, P.C., Kim, K.: Development of bim-integrated
construction robot task planning and simulation system. Automation in Con-
struction 127, 103720 (2021). https://doi.org/https://doi.org/10.1016/j.
autcon.2021.103720, https://www.sciencedirect.com/science/article/pii/
S0926580521001710

17. Lin, Y.H., Liu, Y.S., Gao, G., Han, X.G., Lai, C.Y., Gu, M.: The IFC-based path
planning for 3D indoor spaces. Advanced Engineering Informatics 27(2), 189–205
(2013)

18. Liu, L., Li, B., Zlatanova, S., van Oosterom, P.: Indoor navigation sup-
ported by the industry foundation classes (ifc): A survey. Automation in Con-
struction 121, 103436 (2021). https://doi.org/https://doi.org/10.1016/j.
autcon.2020.103436, https://www.sciencedirect.com/science/article/pii/
S0926580520310165

19. Madkour, A., Aref, W.G., ur Rehman, F., Rahman, M.A., Basalamah, S.M.: A
survey of shortest-path algorithms. ArXiv abs/1705.02044 (2017)

20. Madubuike, O.C., Anumba, C.J., Khallaf, R.: A review of digital twin ap-
plications in construction. Journal of Information Technology in Construc-
tion 27, 145–172. https://doi.org/10.36680/j.itcon.2022.008, https://www.
itcon.org/paper/2022/8

21. Obeidat, H., Shuaieb, W., Obeidat, O., Abd-Alhameed, R.: A review of in-
door localization techniques and wireless technologies. Wireless Personal Com-
munications 119(1), 289–327. https://doi.org/10.1007/s11277-021-08209-5,
https://doi.org/10.1007/s11277-021-08209-5

22. Palacz, W., Ślusarczyk, G., Strug, B., Grabska, E.: Indoor Robot Navigation Using
Graph Models Based on BIM/IFC, pp. 654–665 (05 2019). https://doi.org/10.
1007/978-3-030-20915-5_58

https://doi.org/10.23919/ANNSIM52504.2021.9552135
https://doi.org/10.23919/ANNSIM52504.2021.9552135
https://doi.org/https://doi.org/10.1016/j.aei.2021.101477
https://doi.org/https://doi.org/10.1016/j.aei.2021.101477
https://www.sciencedirect.com/science/article/pii/S1474034621002275
https://doi.org/10.35490/EC3.2022.161
https://doi.org/10.35490/EC3.2022.161
https://doi.org/10.35490/EC3.2022.161
https://doi.org/10.35490/EC3.2022.161
https://ec-3.org/publications/conference/paper/?id=EC32022_161
https://ec-3.org/publications/conference/paper/?id=EC32022_161
https://doi.org/10.1016/j.jmsy.2020.05.012
https://doi.org/10.1016/j.jmsy.2020.05.012
https://doi.org/10.1016/j.jmsy.2020.05.012
https://doi.org/10.1016/j.jmsy.2020.05.012
https://doi.org/10.1038/s41467-020-19059-3
https://doi.org/10.1038/s41467-020-19059-3
https://doi.org/10.1038/s41467-020-19059-3
https://doi.org/10.1038/s41467-020-19059-3
https://doi.org/10.1038/s41467-020-19059-3
https://doi.org/10.23919/ANNSIM55834.2022.9859490
https://doi.org/10.23919/ANNSIM55834.2022.9859490
https://doi.org/10.23919/ANNSIM55834.2022.9859490
https://doi.org/10.23919/ANNSIM55834.2022.9859490
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103720
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103720
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103720
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103720
https://www.sciencedirect.com/science/article/pii/S0926580521001710
https://www.sciencedirect.com/science/article/pii/S0926580521001710
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103436
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103436
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103436
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103436
https://www.sciencedirect.com/science/article/pii/S0926580520310165
https://www.sciencedirect.com/science/article/pii/S0926580520310165
https://doi.org/10.36680/j.itcon.2022.008
https://doi.org/10.36680/j.itcon.2022.008
https://www.itcon.org/paper/2022/8
https://www.itcon.org/paper/2022/8
https://doi.org/10.1007/s11277-021-08209-5
https://doi.org/10.1007/s11277-021-08209-5
https://doi.org/10.1007/s11277-021-08209-5
https://doi.org/10.1007/978-3-030-20915-5_58
https://doi.org/10.1007/978-3-030-20915-5_58
https://doi.org/10.1007/978-3-030-20915-5_58
https://doi.org/10.1007/978-3-030-20915-5_58

Digital Twin for Rescue Missions – a Case Study 11

23. Rueppel, U., Stuebbe, K.M.: BIM-based indoor-emergency-navigation-system
for complex buildings. Tsinghua Science and Technology 13, 362–367.
https://doi.org/10.1016/S1007-0214(08)70175-5, http://ieeexplore.ieee.
org/document/6073006/

24. Stanford Artificial Intelligence Laboratory et al.: Robotic operating system, https:
//www.ros.org

25. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt,
S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones,
E., Kern, R., Larson, E., Carey, C.J., Polat, , Feng, Y., Moore, E.W., Vander-
Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A.,
Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vi-
jaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A.,
Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzger-
ald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E.,
Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold,
G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J.,
Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L.,
de Miranda Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-
Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M.,
Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N.,
Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S.,
Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T.,
Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T.,
Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y., SciPy 1.0 Con-
tributors: SciPy 1.0: fundamental algorithms for scientific computing in python.
Nature Methods 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2,
https://doi.org/10.1038/s41592-019-0686-2

26. Williams, C., Schroeder, A.: Utilizing ROS 1 and the turtlebot3 in a multi-robot
system, http://arxiv.org/abs/2011.10488

27. Yassin, A., Nasser, Y., Awad, M., Al-Dubai, A., Liu, R., Yuen, C., Raulefs, R.,
Aboutanios, E.: Recent advances in indoor localization: A survey on theoretical
approaches and applications. IEEE Communications Surveys Tutorials 19(2),
1327–1346 (2017). https://doi.org/10.1109/COMST.2016.2632427

https://doi.org/10.1016/S1007-0214(08)70175-5
https://doi.org/10.1016/S1007-0214(08)70175-5
http://ieeexplore.ieee.org/document/6073006/
http://ieeexplore.ieee.org/document/6073006/
https://www.ros.org
https://www.ros.org
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://arxiv.org/abs/2011.10488
https://doi.org/10.1109/COMST.2016.2632427
https://doi.org/10.1109/COMST.2016.2632427

A Digital Twin for Coupling Mobility and Energy
Optimization: The ReNuBiL Living Lab?

Daniel Thoma, Martin Sachenbacher, Martin Leucker, and Aliyu Tanko Ali

Institute for Software Engineering and Programming Languages,
University of Lübeck, Lübeck, Germany

{thoma,sachenbacher,leucker,aliyu.ali}@isp.uni-luebeck.de

Abstract. This paper presents a use case in the energy domain showing
the benefits of digital twins. More specifically, we study the problem of
peak shaving, which aims for managing a micro power grid in such a
way that the energy demanded from the surrounding global power grid
does not exceed certain limits. We examine a living lab consisting of
university buildings as power consumers and power buffers in forms of
fixed installed batteries as well as power-to-grid capable electrical vehi-
cles that are booked by users. We provide a formal model of the relevant
aspects of the micro grid and show how an artificial intelligence based
prediction established from historical data as well as suitable simulation
and optimization algorithms help to improve peak shaving.

Keywords: peak shaving · bi-directional charging · car sharing

1 Introduction

The ongoing transition to renewable and climate-neutral energy sources, such as
wind and solar power, means that the production of electrical energy becomes
more volatile and fluctuating on a daily and seasonal scale. This creates a need
for technical solutions to intermediately store electrical energy, and to better
forecast energy supply, in order to meet the demand.

However, technical solutions on the energy supply side alone will not be
sufficient; instead, more flexibility on the consumption side and user participation
will also be necessary. For instance in Germany, the largest electricity market in
Europe, the installation of smart meters in private households will soon become
mandatory and allow more consumers to shift load to times when energy is
more abundant. For particularly energy-intensive devices, such as heat pumps
or wallboxes for electric car charging, users get incentives if communication links
allow grid providers to switch them off temporarily1.

Besides the energy sector, the mobility sector is still a large source of climate
gas emissions. Battery-powered electric vehicles have the potential to reduce
? This research was supported by the European Regional Development Fund (EFRE).
1 Energy Industry Act (EnWG), §14a Network-oriented control of controllable con-
sumption devices and controllable network connections, German Federal Ministry
for Economic Affairs and Climate Action (BMWK), 2022

2 Thoma et al.

carbon emissions, if operated with green electricity; the positive effects can be
even greater in a car sharing context when vehicles are shared among several
users and thus the initial cost and carbon “backpack” of battery production is
faster amortized. In addition, during idle times when the vehicles are parked
and connected to the grid, their batteries can be used as buffers to store excess
electricity and feed it back to the grid during peak demand times. Such so-called
vehicle-to-grid concepts are now extensively studied in pilot projects [4, 7, 6]
and corresponding norms to introduce bi-directional charging in the automotive
market have recently been rolled out [2].

In this paper, we study a use case, on the campus of our university, that com-
bines both the mobility and energy domain. The scenario consists of a fleet of
electric vehicles with bi-directional charging capabilities and a stationary buffer
battery, connected to a micro grid with additional consumers (buildings on the
campus). The cars can be booked by users for trips, and the charging and dis-
charging of the batteries (cars and stationary buffer) needs to be managed in
such a way that the range of the cars suffices for the trips, while the total power
demand of the micro grid should not exceed a given limit. The latter is called
peak shaving and is important for grid stability, but also for electricity costs:
grid usage fees, which make up a large proportion of the electricity costs, are
based on the maximal power used in the billing period (monthly or annually),
even if this maximum is reached only for a short period of time2.

It is easy in this scenario to devise a simple controller strategy that will, at
each point in time, try to stay within the power limit by immediately reducing
the charging power and – if this is not sufficient and there is energy left in the
batteries – feeding back energy from the batteries into the grid. However, in
our setting such a (myopic) controller might (depending on the additional load
of other consumers in the micro grid) render user bookings infeasible by failing
to charge the cars on time, or discharging them below the range required for
upcoming bookings.

In the following, we present a formal model of this problem and propose a
digital twin [1] solution that uses AI-based load forecasting, simulation and op-
timization to intelligently improve the balance between peak shaving and user’s
mobility needs. In particular, the approach will simulate the effect of bookings on
the micro grid to assess new bookings requested by users, while at the same time
safeguarding already committed bookings such that the cars will have enough
range for the planned trips. The system has been prototypically implemented
and experiments have been conducted with carsharing users in a living lab on
our university’s campus.

The rest of the paper is organized as follows: Section 2 presents the case study
and our living lab in more detail, and introduces a mathematical optimization
model to describe the problem formally. Section 3 describes our proposed digital
twin solution on this model. Section 4 concludes with a discussion and directions
for further work.

2 This policy is typical for many energy providers, and also the case for our campus’
energy provider.

Digital Twin for Coupling Mobility and Energy Optimization 3

2 Case study: The ReNuBiL living lab

In the EU-funded research project ReNuBiL3 (living lab for user-oriented bi-
directional charging), an infrastructure for experimenting with vehicle-to-grid
concepts in the context of battery-powered electric vehicles shared among dif-
ferent users was set up on University of Lübeck’s campus. It consists of (see also
Figure 1):

– a Nissan LEAF passenger car with a battery capacity of 62kWh and approx-
imate range of 385km

– a Nissan e-NV200 transporter with a battery capacity of 40kWh and approx-
imate range of 275km

– two EVTEC4 “coffee&charge” bi-directional charging stations with 20kW
power output each

– an EVTEC “save&charge” stationary (second-life) battery with a capacity
of 24kWh

The vehicles are connected to the stations using CHAdeMo plugs (direct cur-
rent) for charging and discharging. The lab components come with an embedded
software (EVTEC “barista”) that can be used to control the charging and dis-
charging power of the batteries (in the cars and the container), provided that
the vehicles are idle (i.e. not booked by customers for trips) and the charging
levels of the batteries are sufficiently high. The lab infrastructure is set up next
to the largest lecture hall (Audimax) on the campus, and so the components
are connected to the local micro-grid of this building that is part of the overall
campus’ power grid. Electricity meters were installed to record the energy flows
(charging and discharging power, battery charge levels, etc.) in the lab and the
adjacent Audimax building. Also, the vehicles themselves log data about their
current position and energy consumption. The data is collected periodically since
January 2021 and stored in a time-series database.

The vehicles can be booked by users via the project partner StattAuto5,
who operates a fleet of more than 200 cars in the region and has included the
ReNuBiL vehicles in its car sharing system so they can be booked by any of
their customers.

StattAuto’s current solution for safeguarding bookings is to leave a gap of
three hours between bookings, enough for the vehicles to fully recharge. Clearly,
this is not optimal from the point of view of the carsharing operator but also in
terms of peak shaving.

Problem Description. In our tackled setting, the cars are rented by customers
and picked up at and brought back to the charging stations. While customers are
free to charge the cars during a rental at third party stations, they are unlikely
to do so except for very long trips. Although it is technically possible to utilize
3 http://www.renubil.de
4 https://www.evtec.ch/
5 https://www.stattauto-hl.de/

4 Thoma et al.

Fig. 1. ReNuBiL living lab on University of Lübeck’s campus with two electric cars,
two bi-directional charging stations, and stationary battery container

the full charging power of the stations at all times, as outlined above our aim
is to stay below a power consumption limit (in our experiments of 45 kW) for
the micro-grid including the charging stations, the stationary battery and the
Audimax building, and avoid any peaks above this threshold.

Batteries can be charged from the grid while simultaneously other batteries
are discharged into the grid. We therefore have a multilevel optimization prob-
lem: our highest priority is to enable bookings we have already confirmed to
users (safeguarding bookings). To this end, users have to provide their requested
range with each booking. Our second priority is to utilize both, the buffer as
well as the car batteries in order to avoid exceeding the power consumption
limit (peak shaving). Our third priority is to keep the cars available for short
notice bookings, i.e. keep the cars charged as much as possible.

Formal Model. We first developed a formal model of our scenario as depicted in
Fig. 2. The model describes the charging and discharging behaviours of the bat-
teries involved. We treat both the car batteries as well as the stationary buffer
battery equivalently as they differ only in their ability to be booked by users.
Parameters and variables are indexed by the battery id i. For each battery, the
model has the following parameters: bookingsi is the set of associated bookings
comprising a start (t1) and end time (t2) and a required driving distance r.
batChargei and disChargei assign a maximal charging or discharging power re-
spectively to each level of charge. These parameters allow us to model the power
restrictions of the batteries (see also [9, 5]). efficiencyi assigns an efficiency factor
to a level of (dis-)charging power to model the power loss during (dis-)charging.

Digital Twin for Coupling Mobility and Energy Optimization 5

Parameters
bookingsi ⊆ {(t1, t2, r) ∈ R+

0 ×R+
0 ×R+

0 | t1 < t2}
batChargei : R+

0 → R
batDischargei : R+

0 → R
efficiencyi : R+

0 → [0, 1]
demandi : R+

0 → R
ci : R+

0

Variables
energyi : R+

0 → R+
0

poweri : R+
0 → R

Goal
f : (R→ R)→ R
f(g) =

∫∞
0

max(0, (g(t)− limit(t))) dt
minimize: f(power)

Constraints
(1) energy(0)i = ci
(2) ∀(t1, t2, r) ∈ bookingsi : energyi(t2) = energyi(t1) + demandi(r)
(3) ∀(t1, t2, r) ∈ bookingsi, t1 < t < t2 : energyi(t) = 0

(4) ∀(t1, t2) ∈ between(bookingsi), t1 < t ≤ t2 : energyi(t) = energyi(t1) +
∫ t

t1
efficiencyi(poweri(t)) poweri(t) dt

(5) ∀(t1, t2) ∈ between(bookingsi), t1 < t ≤ t2 : batDischargei(energyi(t)) ≤ poweri(t) ≤ batChargei(energyi(t))
(6) ∀(t1, t2, r) ∈ bookings : chargei(t1) >= demand(r)
(7) power(t) =

∑
i
poweri(t)

Fig. 2. Formal model of the peak-shaving problem for bi-directional charging and car-
sharing

demandi maps driving distance to energy demand and ci specifies the initial
charge energy of the battery.

The variables of our models are two functions: the charge energy of a battery
by time energyi and the current (dis-)charge power of a battery by time poweri.
The model only is defined in terms of the energy stored in the batteries not the
actual charge as the energy stored by charge varies with voltage. Charging and
discharging are distinguished by positive and negative power values.

The possible solutions for the power and energy functions are now defined by
(1) the initial energy, (2) the consumption of required energy during bookings, (3)
the inability to use car batteries during bookings, (4) the charging/discharging
according to the assigned power with respective efficiency when batteries are
available, (5) the power restrictions of the batteries and (6) the requirement to
provide the required energy for bookings before they start.

Optimization goals can then be expressed as functions reducing the accumu-
lative power function power defined by (7). The optimization goal to minimize
the excess of a power limit can be expressed by the function f defined in Fig. 2.
The limit there depends on time and therefore can take the external power con-
sumption into account.

Charge Strategy. During operation of the charging station the (dis-)charging of
the batteries has to be constantly optimized according to the charging model and
our optimization goals. Solving the constraint model on the fly can be difficult to
impossible especially considering the non-linear behavior of battery constraints.
We therefore designed a dedicated charge strategy that achieves our goals com-
prising the following rules (stated here only informally due to lack of space):

1. for each battery, if we need to start charging at full power in order to facilitate
the next (or a subsequent) booking, do so.

2. for each battery that remains, charge if we are below the limit, discharge, if
we are above the limit.

6 Thoma et al.

3. prefer car batteries when charging, prefer buffer battery when discharging.

As our optimization goal is linear, i.e. exceeding the limit moderately for a long
time is not better than exceeding the limit excessively for a short time, rules 1.
and 2. result in an optimal strategy. Rule 3 deviates from that slightly to also
optimize for availability for short notice bookings.

Booking Assessment. In contrast to other work such as [3], we are not considering
a scheduling problem here: bookings are not scheduled but have to be assessed
and facilitated when they are requested by the users. When a user wants to book
a car, we provide him with a rating of that booking based on the optimization
goal. This rating is computed by simulating the current bookings excluding and
including the new booking according to the constraint model and the charge
strategy. We then take the difference between the values of the goal function,
i.e. the additional violation of the peak shaving power limit caused by adding
the new booking. For high ratings, i.e. bookings that would force us to violate
the limit by a large amount, we ask the user to consider changing his booking
to a different time slot. The simulation incorporates a prediction of the future
external power consumption, which is either done directly on multiple historical
data traces or on a prediction generated by machine learning from these traces.

3 Proposed Solution: Digital Twin Approach

Our solution is based on the idea of a digital and a physical twin. The physical
twin is constituted by the cars, the charging station and the university grid.
The digital twin is constituted by the formal model of the charging station and
car batteries, and the historical consumption data of the university grid and the
machine learning model based on that data.

The physical charging station is controlled by the charging strategy designed
above. The strategy provides control outputs to the battery control units and
receives measurements from them as well as from the meters of the university
grid. In addition, it receives minimal charge requirements for the car batteries
that have to be observed in order to facilitate the currently confirmed bookings.
These requirements are computed in the digital twin, i.e. the formal model using
a backward simulation of the charging process with maximal possible charging
power.

The second use case of the digital twin is the booking process: when request-
ing a booking, the user is provided with a rating. This rating is calculated by
simulating the charging strategy over a prediction of the power consumption
of the university grid. We support two prediction schemes: generating example
traces from a machine learning model using LSTM networks (see [8] for accord-
ing details) or directly using a set of historic traces. The rating presented to the
user is then based on the average additional violation of the power consumption
limit caused by the requested booking.

Digital Twin for Coupling Mobility and Energy Optimization 7

(a) violation 33 kWh

0 kW

10 kW

20 kW

30 kW

40 kW

50 kW

60 kW

0 h 12 h 24 h 36 h 48 h 60 h 72 h
0 kWh

10 kWh

20 kWh

30 kWh

40 kWh

50 kWh

60 kWh

limit
audimax

total
leaf

env200
buffer

(b) violation 21 kWh

0 kW

10 kW

20 kW

30 kW

40 kW

50 kW

60 kW

0 h 12 h 24 h 36 h 48 h 60 h 72 h
0 kWh

10 kWh

20 kWh

30 kWh

40 kWh

50 kWh

60 kWh

limit
audimax

total
leaf

env200
buffer

(c) violation 0 kWh

Fig. 3. Simulated scenario

3.1 Simulation and Experiments

We have simulated our solution extensively using the setup described above. Let
us explain our approach using a typical simulation for three consecutive days
Sunday 00:00h to Tuesday 24:00h of a typical week during the lecture period
(week 2 of year 2023), as depicted in Fig. 3a.

Let us first concentrate on the upper part of the diagram. The purple curve
shows the actual power consumption of the Audimax, our lecture hall acting as
main consumer. We can see that the power demand is around 25-25 kW during
night time and above 45 kW during day time with peaks up to 70 kW on work
days. This curve serves as a prediction of the Audimax power consumption for
the simulated scenario.

The red curve shows the simulated total power consumption that would arise
from running our charging strategy with one booking request for the LEAF with
the given Audimax power consumption. The considered booking request starts
at 32 h with a duration of 5 h and requires the complete battery capacity of
62 kWh.

8 Thoma et al.

The anticipated limit of energy consumption is set to 45 kW as depicted by
the grey horizontal line. Whenever this limit is reached, the energy of the fixed
installed batteries (buffer) and those of the electric vehicles may be used to
reduce the energy consumption from the global grid. Whenever surplus power
is available, the battery may be charged. We can observe this behavior starting
from 45 h. The energy levels of the batteries are depicted in the lower part of the
diagram, blue and cyan for the LEAF and the e-NV200, respectively, and green
for the buffer. As we can see, the system starts to charge the vehicle batteries
as soon as surplus power is available. As there is not enough power available
to charge the buffer as well and vehicles are prioritized, charging the buffer is
delayed. Conversely, when the limit is reached at 54 h the buffer is discharged
first.

Due to the booking, the LEAF is not available from 32 h to 37 h and is
completely discharged after the booking. As a consequence after 36 h the system
is not able to maintain the power limit and the total power starts to coincide
with the Audimax power consumption until 45 h. Note that the batteries have
a discharge limit of 10 kWh to avoid deep discharge. The system respects that
limit but the vehicle batteries can be discharged further when driving.

In this scenario the limit would be violated by 33 kWh which in this case
is due to the single booking. Fig. 3b depicts how the scenario would change if
we were to move the booking to 46 h. Here, we can observe how the system
prioritizes bookings over the power limit. The system manages to uphold the
limit up to 46h, but due to the booking then has to switch to charging the
battery of the LEAF resulting in a large violation. Consequently, the violation
in this sceario is still 21 kWh.

Fig. 3c shows how moving the booking to 19 h, the previous evening, allows
the vehicle to be charged over night, makes it available for power management
during the day and avoids overshooting the power limit completely. In total, we
see that intelligent peak shaving works out in many situations yet going beyond
the limit could not be completely avoided by our system.

4 Discussion and Conclusion

Future energy systems will need a tighter and more intelligent integration be-
tween different sectors, in particular the sectors of mobility and electrical power.
This includes comprehensive sensor meter gathering, data-driven trend analysis
and forecasting, and real-time mathematical optimization of control parameters.
Simultaneously, such systems must enable and support more flexibility on the
user side, allowing consumers to express their desires/needs and receive rele-
vant information that enables them to adjust their behavior accordingly, thus
contributing to overall stability and sustainability goals.

In this paper, we presented an approach towards this goal in the setting of
electric car sharing and bi-directional charging. The batteries of the cars can
feed back their energy into the local micro grid, in order to limit the total power
consumption (peak shaving). The users request to book the vehicles at certain

Digital Twin for Coupling Mobility and Energy Optimization 9

times and for certain desired ranges, such that they are not available as buffers
for peak shaving during these times and also need to be re-charged, creating
further load on the micro grid.

Our approach uses a digital twin model to balance the two conflicting con-
cerns of optimal peak shaving and user mobility. The digital twin allows to
simulate and assess user’s requests (at query time) and give recommendations
to adapt their behavior (by possibly shifting their bookings to earlier or later
times of the day). The user requests are typically issued several hours or days
ahead of the actual bookings and so the evaluation/planning is based on predic-
tions using historical data. In our setting, the objective to fulfill user’s bookings
is prioritized over the objective of peak shaving. Thus, during execution time,
the digital twin model is used to appropriately control charging and discharging
(full-power charging to enable committed bookings, vs. reduced-power charging
and discharging to do peak shaving).

As another partner in the ReNuBiL project, the Institute for Engineering
Psychology6 studies possible incentives to motivate users to adjust bookings and
participate in peak shaving. Clearly the system could also be further optimized
if users would be asked (and convinced) to re-schedule older, already committed
bookings that turn out not to fit well with newer bookings. Due to the involved
user interaction via the car sharing provider, this has not been considered so far.

Our current work includes the implementation of an alternative approach
that uses constraint optimization on the formal model to synthesize optimal
strategies, instead of selecting between pre-defined charge strategies (peak shav-
ing and full-power charging). However, while this allows more flexibility and
accuracy, the computational cost is much higher. Furthermore, we are trying to
extend the machine learning approach to forecast not only the grid load, but also
bookings, which is inherently difficult as much fewer training data is available.

References

1. Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.: Introduc-
tion to digital twin engineering. In: 2021 Annual Modeling and Simulation Confer-
ence (ANNSIM). pp. 1–12. IEEE (2021)

2. ISO 15118-1:2019 Road vehicles – Vehicle to grid communication interface – Part 1:
General information and use-case definition. Standard, International Organization
for Standardization (2019)

3. Klein, P.S., Schiffer, M.: Electric vehicle charge scheduling with flex-
ible service operations (2022). https://doi.org/10.48550/ARXIV.2201.03972,
https://arxiv.org/abs/2201.03972

4. Mwasilu, F., Justo, J.J., Kim, E.K., Do, T.D., Jung, J.W.: Electric vehicles and
smart grid interaction: A review on vehicle to grid and renewable energy sources
integration. Renewable and sustainable energy reviews 34, 501–516 (2014)

5. Plett, G.L.: Battery Management Systems, vol. 1. Artech House Power Engineering
and Power Electronics (2015)

6 https://www.imis.uni-luebeck.de/de

10 Thoma et al.

6. Tepe, B., Figgener, J., Englberger, S., Sauer, D.U., Jossen, A., Hesse, H.: Optimal
pool composition of commercial electric vehicles in v2g fleet operation of various
electricity markets. Applied Energy 308 (2022)

7. Van Kriekinge, G., De Cauwer, C., Sapountzoglou, N., Coosemans, T., Messagie,
M.: Peak shaving and cost minimization using model predictive control for uni-and
bi-directional charging of electric vehicles. Energy Reports 7, 8760–8771 (2021)

8. Walther, C.: Machine Learning for Time Series Prediction of Energy Data. Mas-
ter’s thesis, Institute for Software Engineering and Programming Languages of the
University of Lübeck, Germany (Nov 2021)

9. Weydanz, W., Jossen, A.: Moderne Akkumulatoren richtig einsetzen (in German).
Reichardt Verlag (January 2006)

Mining Digital Twins of a VPN Server

Andrea Pferscher1[0000−0002−9446−9541], Benjamin Wunderling1, Bernhard
K. Aichernig1[0000−0002−3484−5584], and Edi Muškardin1,2[0000−0001−8089−5024]

1Institute of Software Technology, Graz University of Technology, Graz, Austria
2TU Graz - SAL DES Lab, Silicon Austria Labs, Graz, Austria

{aichernig,andrea.pferscher}@ist.tugraz.at,
benjamin.wunderling@gmail.com, edi.muskardin@silicon-austria.com

Abstract. Virtual private networks (VPNs) are widely used to create
a secure communication mode between multiple parties over an insecure
channel. A common use case for VPNs is secure access to company net-
works. Therefore, bugs in VPN software are often severe. The Internet
Key Exchange protocol (IKE) is a protocol in the Internet Protocol Se-
curity (IPsec) protocol suite used in VPNs. There are two version of
IKE, IPsec-IKEv1 and the newer IPsec-IKEv2, with IPsec-IKEv1 still
widely used in practice. While IPsec-IKEv2 has been investigated in the
context of automata learning, no such work exists for IPsec-IKEv1. This
paper closes the gap for the IPsec-IKEv1 protocol and shows the steps
taken to learn a digital twin of an IPsec server using automata learning.
We present and contrast two learned models of an IPsec server. Using
learning, we also found security issues in encryption libraries.

Keywords: IPsec · VPN · Active automata learning · Digital twin ·
Model mining.

1 Introduction

Virtual Private Networks (VPNs) allow secure communication over an insecure
channel. The importance of VPNs has increased dramatically since the COVID-
19 pandemic due to the influx of people working from home [4]. This makes
finding vulnerabilities in VPN software more critical than ever. In practice, VPNs
are set up based on third-party components, which are usually closed source. In
addition, multiple parties are involved in VPN communications. These challenges
make it difficult to test possible security vulnerabilities in all scenarios.

Behavioral models are a useful tool for testing and verifying complex systems.
A model can be viewed as a digital twin that simulates the behavior of the
system. The availability of models, however, might be limited for the following
reasons. First, the manual creation of a model can be a tedious and error-prone
process. Second, the model must always be kept up to date.

Automata learning has proven itself as a useful technique for automatically
generating behavioral models of various communication protocols, e.g., Blue-
tooth Low Energy [15], TLS [19], SSL [7], or MQTT [23]. Active learning tech-
niques create a behavioral model by actively querying the system to gain knowl-
edge about it. In this way, not only a model is created, but also a stateful testing

2 A. Pferscher et al.

approach for black-box systems. The learned model represents a digital twin of
the system under learning, which can then be used for other model-based tech-
niques, like model-based test-case generation or model checking.

In this paper, we investigate the applicability of automata learning for mining
security-critical components of a VPN. For this, we learn the behavioral model of
the Internet Key Exchange protocol (IKE) protocol which is part of the Internet
Protocol Security (IPsec) protocol suite. IKE is used to share authenticated
key material between the involved parties. For learning, we use a VPN client to
query the VPN server instantiation. This allows us to create a digital twin of the
security-critical part of a VPN server without knowing its internals (black-box).
The work is part of LearnTwins, a research project on learning digital twins1.

The paper is organized as follows. Sect. 2 provides details about the used
modeling-formalism, the learning algorithm, and the system-under-learning. Sec-
tion 3 provides a comparison with related work. In Sect. 4, we present our learn-
ing setup for mining a digital twin of a VPN. In Sect. 5 we present our learned
models and, finally, in Sect. 6 we draw our conclusions.

2 Preliminaries

2.1 Mealy Machines

Mealy machines are a modeling formalism for reactive systems such as commu-
nication protocols. They are finite-state machines in which each transition is
labeled with an input and the corresponding output action. We consider Mealy
machines to describe deterministic behavior. More formally, a Mealy machine
is defined as a 6-tuple M = {S, s0, I, O, δ, λ}, where S is a finite set of states,
s0 ∈ S is the initial state, I is a finite set called input alphabet, O is a finite set
called output alphabet, δ is the state-transition function δ:S×I → S that maps
a state and an element of the input alphabet to another state in S and λ is the
output function λ:S × I → O that maps a state-input pair to an output in O.

2.2 Automata Learning

Automata learning algorithms generate a model that describes the behavior of
the system under learning (SUL). We differentiate between active and passive
automata learning. Passive learning creates a behavioral model based on a given
data set, e.g., log files, while active learning directly queries the SUL. For learning
a digital twin, we prefer active learning since active algorithms can query unusual
or rare scenarios, whereas passive learning depends heavily on the provided data.

Today, many active learning algorithms are based on concepts derived from
Angluin’s L∗ algorithm [1], which was designed to identify deterministic finite au-
tomata formalizing regular languages. In her seminal work, Angluin introduced
the concept of the minimally adequate teacher (MAT), in which a learner queries
a teacher about the SUL to iteratively generate a behavioral model. The teacher

1 https://learntwins.ist.tugraz.at

https://learntwins.ist.tugraz.at

Mining Digital Twins of a VPN Server 3

answers membership and equivalence queries posed by the learner regarding the
SUL. Membership queries are used to check whether a word is accepted by the
SUL. The learner then updates their model of the SUL based on the answers
to their queries. Equivalence queries are used to check if a learned model ex-
actly matches the behavior of the SUL. If the teacher provides a counterexample
that represents the behavioral difference between the learned model and SUL,
the learner improves the model by asking more membership queries. The MAT
concept has been extended to facilitate other model formalisms like Mealy ma-
chines [21], where membership queries are renamed to output queries. Output
queries are used to retrieve outputs to the corresponding input sequences.

The MAT concept is also used by other active learning algorithms. Kearns
and Vazirani [12] propose an active learning algorithm that uses an underlying
tree-based data structure to construct a model. We refer to their learning algo-
rithm as KV. KV’s tree-based data structure can reduce the number of required
output queries compared to the table-based technique used in the L∗ algorithm.

2.3 Internet Protocol Security

M
ain

M
o
d
e

Q
u
ick

M
o
d
e

Initiator Responder

ISAKMP SA {proposals}

ISAKMP SA {proposal}

KEY EX {pkeyi, noncei}

KEY EX {pkeyr, noncer}

AUTH {hashi}

AUTH {hashr}

IPSEC SA {proposals}

IPSEC SA {proposal}

ACK

Fig. 1. IKEv1 between two parties

Internet Protocol Security (IPsec)
is a VPN Layer 3 protocol suite
used to securely communicate over
an insecure channel. It includes three
sub-protocols: Internet Key Exchange
protocol (IKE), the Authentication
Header (AH), and the Encapsulating
Security Payload (ESP) protocol. IKE
is mainly used for authentication, and
the secure exchange and management
of keys. IKE has two versions, IKEv1
and IKEv2, with IKEv2 being the
newer and recommended version [2].
Following a successful IKE round, ei-
ther AH or ESP is used to send pack-
ets securely between parties. While AH only ensures the integrity and authen-
ticity of messages, ESP also ensures their confidentiality through encryption.

Compared to other protocols, IPsec offers a high degree of customizability,
allowing it to be fitted for many use cases. However, in a cryptographic evaluation
of the protocol, Ferguson and Schneier [5] criticize the complexity arising from
the high degree of customizability as the biggest weakness of IPsec. To address its
main criticism, IPsec-IKEv2 was introduced in RFC 7296 [11] to replace IKEv1.
Nevertheless, IPsec-IKEv1, RFC 2409 [10], is still in widespread use to this day,
with the largest router producer in Germany, AVM, still only supporting IKEv1
in their routers [8]. We investigate IPsec-IKEv1 with ESP in this paper and focus
on the IKE protocol.

The IKEv1 protocol works in two main phases, both relying on the Internet
Security Association and Key Management Protocol (ISAKMP). A typical key

4 A. Pferscher et al.

exchange between two parties, an initiator and a responder, can be seen in Fig. 1.
In phase one (Main Mode), the initiator sends a Security Association (SA) to the
responder. A SA essentially details important security attributes for a connection
such as the encryption algorithm and key-size to use, as well as the authentication
method and the used hashing algorithm.

These options are bundled in containers called proposals, with each proposal
describing a possible security configuration. While the initiator can send multiple
proposals to give the responder more options to choose from. In comparison, the
responder must answer with only one proposal, provided it supports one of the
suggestions. Subsequently, the two parties perform a Diffie-Hellman key exchange
and exchange nonces to generate a shared secret key. This secret key is used as
a seed key for all further session keys. Following a successful key exchange, all
further messages are encrypted. Finally, both parties exchange hashed authen-
tication material (usually pre-shared keys or certificates). If the hashes can be
verified, a secure channel is created and used for phase two communication.

The shorter phase two (Quick Mode) begins with another SA exchange. This
time, however, the SA describes the security parameters of the ensuing ESP/AH
communication. This is followed by a single acknowledge message from the initia-
tor to confirm the agreed upon proposal. After the acknowledgment, all further
communication is done via ESP/AH packets.

3 Related Work

Model learning became a popular tool for creating behavioral models of var-
ious communication protocols, e.g., TLS [19], TCP [6], SSL [7], MQTT [23],
802.11 4-Way Handshake of Wi-Fi [22], or BLE [15]. The learned models reveal
differences in the specification or provide a useful extension to the unspecified
properties. In addition, the learned models serve as a basis for further techniques
like model-checking or model-based security testing. In the VPN domain, Daniel
et al. [3] learned a model of two OpenVPN implementations. The challenges of
implementing a learning setup for OpenVPN were discussed by Novickis [14].
In contrast to our technique, they learned a more abstract model of the entire
OpenVPN session, where details about the key exchange were abstracted in the
learned model. Closely related to our work, Guo et al. [9] learned a model of the
IPsec-IKEv2 protocol. The authors stress that IPsec-IKEv1 is more complicated
to configure securely, which highlights the need to test the configuration of the
older version as well, since it is still widely used [8]. With our work, we complete
the learning approaches for all IKE versions.

4 Method

Environment Setup. As our SUL, we used a Linux Strongswan2 US.9.5/K5.15.0-
25-generic. Learning was done using two VirtualBox 6.1 virtual machines (VMs)

2 https://www.strongswan.org/

https://www.strongswan.org/

Mining Digital Twins of a VPN Server 5

Learning
Algorithm

Mapper
Interface
(Initiator)

SUL
(Responder)

abstract
input

abstract
output

concrete
input

concrete
output

UDP

Fig. 2. Automata learning setup for learning a model of IPsec-IKEv1.

running standard Ubuntu 22.04 LTS distributions. Both VMs were allotted 4GB
of memory and one CPU core. All communication took place in an isolated vir-
tual network to eliminate external influences. During learning, all power-saving
options and similar potential causes of disruptions were disabled. The IPsec
server was restarted before the start of each learning procedure to ensure identi-
cal conditions. We designated one VM as the initiator and one as the responder
to create a typical client-server setup. The open-source IPsec implementation
was installed on the responder VM and set to listen for incoming connections
from the initiator VM. The Strongswan server was configured to use pre-shared
keys for authentication and default recommended security settings. Additionally,
it was set up to allow unencrypted notification messages, which we used to reset
the connection during the learning process. For learning, we used the Python
library AALpy [13] version 1.2.9 in conjunction with the packet manipulation
library Scapy [20], version 2.4.5. Significant effort was invested into expanding
the ISAKMP Scapy module to support all packets required for IPsec.

Learning Setup. Figure 2 gives an overview of the learning setup, adapted from
Tappler et al. [23]. The learning algorithm sends abstract inputs chosen from
the input alphabet to the mapper, which converts them to concrete inputs. The
concrete inputs, which are actual IPsec packets, are then sent to the SUL, by
means of a UDP communication interface. The interface represents the initiator
whereas the SUL is the responder represented by a Strongswan server instance.
This separation between abstract and concrete inputs and outputs allows us to
learn a generic model in a reasonable amount of time.

The abstract inputs consist of the initiator-to-responder messages: isakmp sa,
key ex, auth, ipsec sa and ack. The responder-to-initiator outputs from Fig. 1
were extended by NONE and ERROR, where NONE signifies a lack of response
from the SUL and ERROR is used as a collection of received error notifications.
We use the KV [12] algorithm for learning with the improved counterexample-
processing of Rivest and Schapire [18]. Since a perfect equivalence oracle cannot
be assumed in practice, we substitute the equivalence oracle with model-based
conformance testing between the intermediate learned model and the SUL. The
conformance tests provide state-coverage combined with randomness.

Our mapper implements translation methods for each communication step
in a typical IPsec-IKEv1 exchange, as described in Sect. 2. We use the Python
library Scapy to construct IKEv1 packets. This approach allows us to change
the fields and values of generated packets at will, opening up the possibility of
fuzz testing these fields in future work as shown by Pferscher and Aichernig [16].

6 A. Pferscher et al.

Parsing was made more difficult by the fact that Scapy does not support all the
packets required by IPsec-IKEv1. To solve this problem, we implemented the
missing packets in the Scapy ISAKMP class and used this modified version.

The IPsec packets generated by the mapper are then passed on to our inter-
face for the SUL that handles all incoming and outgoing UDP packets. Addi-
tionally, it converts responses from the SUL into valid Scapy packets and passes
them on to the mapper. The mapper class then parses the responses received
from the interface and returns an abstract output representing the received data
to the learning algorithm. Since part of communication is encrypted, we require
a framework that correctly handles the en/decryption of messages. For each re-
quest, we store the base key and the responses for use in the next message,
and update affected key material as needed. Most notably, the initialization vec-
tors (IVs) are updated in almost every request and differ between messages.
Informational requests also handle their IVs separately. For each request that
we send, if available, we try to parse the response, decrypting it if necessary and
resetting or adjusting internal variables as required to match the server.

Automata learning requires that the SUL can be reset to an initial state
after each query. We implement this using a combination of the ISAKMP delete
request and general ISAKMP informational error messages. While delete works
for established connections in phase two of IKE, we require informational error
messages to trigger a reset in phase one. Implementation was hindered at times
by unclear RFC specifications, but this was overcome by manually comparing
packet dumps and Strongswan logs to fix encryption errors.

Combating Non-determinism. During learning, the server occasionally exhibited
non-deterministic behavior. For this, we implemented two methods of counter-
acting it. In our first method, we simply repeat the output query if we observe
non-deterministic behavior. In this case, we select the output that occurs most
often. Additionally, using timed waits after each input also helped to further
decrease the number of non-determinism errors. However, learning still failed
occasionally with these mitigation mechanisms for non-deterministic behavior.

A closer examination of the remaining non-deterministic behavior led to the
discovery that it is caused by so-called retransmissions. Essentially, the IKE
specification allows for previous messages to be retransmitted if deemed useful
by the server. A possible trigger could be the final message of an IKE exchange
being skipped/lost. For example, if instead of an AUTH message, the server
receives a phase two IPSEC SA message, the server would not know if it missed
a message or if there was an error on the other party’s side. In this case, the
Strongswan server reacts by retransmitting the previous message, prior to the
missing one in an attempt to signal to the other party, that they should resend
the missing message. To counteract this behavior, we implemented checks in our
mapper to allow for the ignoring of retransmissions. If a repeated message ID
is found, it is flagged as a retransmission. With this addition, the IPsec server
behaved deterministically. The downside of this method is that it completely
ignores the retransmissions, which could be a good source of information for
fingerprinting different IPsec servers.

Mining Digital Twins of a VPN Server 7

5 Evaluation

In our evaluation, we used two different learning setups to learn a model of
the Linux Strongswan server. The first setup considers retransmitted messages
from the server as outputs, whereas the second setup filters out any retrans-
mitted messages. We included the model with retransmitted messages in the
Appendix A, see Fig. 4. The model without retransmission is shown in Fig. 3.
To enhance the readability of the models, we simplified the depicted models.
The complete models are available as supplementary material [17].

For learning the models, we compared the active automata learning algo-
rithms: L∗ and KV. Both algorithms use an improved counterexample processing
following Rivest and Schapire [18]. We prefer the usage of KV since it required
fewer queries and less time to learn a model. Learning with KV was about one-
fifth faster than L∗ and required less than half the output queries. The model
with retransmission (Fig. 4) has 13 states, whereas the model without retrans-
missions (Fig. 3) has only six states. For readability, we group together several
different error messages in the output ERROR. The models also include NONE
responses, which were used in cases where the input misses sensible information
to establish an encrypted communication. While observing the behavior of the
server when exposed to completely non-sensible input is interesting from a secu-
rity testing standpoint, as all specifications state that the encryption requires a
prior keying procedure, we decided to ignore those few cases. However, for future
work in the field of fuzzing, these edge-cases should be considered as well.

We state the learning results of learning without retransmissions, since learn-
ing was more reliable in this case. We repeated each experiment five times and
averaged the results. KV required approximately 38 minutes (2296 seconds) to
learn, 79 output queries and 60 conformance tests were performed in 753 and 991
steps respectively. Learning performed four equivalences queries. The learning
results for the other model can be found in the Appendix A.

Examining both models, especially Fig. 4, we can clearly see the separation
between the two phases of the IKEv1 protocol. Phase one (Main Mode) com-
pletes in state s3, and phase two (Quick Mode) begins right thereafter in state
s4. Comparing the models, we see that for the states s0 to s3 both models are
identical. This is likely due to the fact, that most differences were caused by re-

s0

s1

s2 s3 s4 s5

isakmp sa/
ISAKMP SA

key ex/
KEY EX

ack/NONE

ack/ERROR

isakmp sa/ERROR
key ex req/ERROR

auth/
AUTH

ipsec sa/
IPSEC SA

ipsec sa/
IPSEC SA

+/NONE

+/
NONE

+/NONE +/NONE
isakmp sa/ISAKMP SA

isakmp sa/
ISAKMP SA

Fig. 3. Simplifed model of Strongswan server learned without retransmitted messages.
The ‘+’-symbol is an abbreviation for all inputs that are not explicitly shown.

8 A. Pferscher et al.

transmissions which only occur in phase two. The model depicted in Fig. 3 shows
streamlined behavior that fits our reference IKE exchange (see Fig. 1) almost
perfectly. The clean automaton makes it easy to see, that after a connection has
been established, we can still create new connections or restablish existing ones
by sending another IPSEC SA message and then acknowledging the response.

The synthesis of a digital twin from the Linux Strongswan server not only
provides interesting insight into the behavioral aspects of the implementation,
especially regarding unexpected retransmitted messages. It also helped to test
the general environment that is used to establish a VPN. A notable finding was
the discovery of a very niche bug in a used Python Diffie-Hellman (DH) key
exchange library3. The bug was very elusive and only found thanks to the ex-
haustive number of packets sent by the learning algorithm. It turns out there
was a very niche bug in the library where, if the most significant byte (MSB) was
a zero, it would be omitted from the response, causing the local result to be one
byte shorter than the value calculated by the SUL. Regardless, it could compro-
mise the security of affected systems and therefore the maintainer of the library
has been notified of the problem. Due to the elusive nature of this bug, it would
very likely not have been noticed without the exhaustive communication done
by the model learning process and without seeing the resulting non-deterministic
behavior of the SUL due to the truncated message.

6 Conclusion

We presented an automata learning framework that automates the generation of
a digital twin of a VPN server. More precisely, the learned digital twin represents
a behavioral model of the security-critical key-exchange procedure. Albeit creat-
ing a learning interface was not straightforward, the interface has to be created
only once and can now be used to synthesize a new digital twin within less than
one hour in case the VPN server is modified. Already the learning procedure of
the digital twin revealed security issues in the libraries used to establish a se-
cure VPN. The applications for these mined models are manifold. For example,
the twin models can be used to simulate VPN components in a network infras-
tructure. This can be useful when we want to simulate differences in behavior
between distinct VPN servers. Instead of setting up each VPN server individu-
ally, the mined models can be used. A second application could be model-based
verification of the VPN server. By checking formal properties, gaps between the
mined model and the VPN specification can be investigated. In future work,
we want to use the digital twin to apply further model-based techniques, like
stateful fuzz testing or model checking.

Acknowledgement. This work is supported by the LearnTwins project funded
by FFG (Österreichische Forschungsförderungsgesellschaft) under grant 880852,
and the “University SAL Labs” initiative of Silicon Austria Labs (SAL) and
its Austrian partner universities for applied fundamental research for electronic
based systems.

3 https://github.com/TOPDapp/py-diffie-hellman

https://github.com/TOPDapp/py-diffie-hellman

Mining Digital Twins of a VPN Server 9

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Infor-
mation and Computation 75(2), 87–106 (1987). https://doi.org/10.1016/0890-
5401(87)90052-6

2. Barker, E., Dang, Q., Frankel, S., Scarfone, K., Wouters, P.: Guide to IPsec VPNs.
https://doi.org/10.6028/NIST.SP.800-77r1

3. Daniel, L.A., Poll, E., de Ruiter, J.: Inferring OpenVPN state machines using pro-
tocol state fuzzing. In: 2018 IEEE European Symposium On Security And Privacy
Workshops (Euros&PW). pp. 11–19. IEEE (2018)

4. Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., Wagner,
D., Wichtlhuber, M., Tapiador, J., Vallina-Rodriguez, N., Hohlfeld, O., Smarag-
dakis, G.: A year in lockdown: How the waves of COVID-19 impact internet traffic.
Commun. ACM 64(7), 101–108 (2021). https://doi.org/10.1145/3465212

5. Ferguson, N., Schneier, B.: A cryptographic evaluation of IPsec (1999)
6. Fiterau-Brostean, P., Janssen, R., Vaandrager, F.W.: Combining model learn-

ing and model checking to analyze TCP implementations. In: Chaudhuri, S.,
Farzan, A. (eds.) Computer Aided Verification - 28th International Confer-
ence, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 9780, pp. 454–471. Springer (2016).
https://doi.org/10.1007/978-3-319-41540-6 25

7. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: Erdogmus,
H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July
10-14, 2017. pp. 142–151. ACM (2017). https://doi.org/10.1145/3092282.3092289

8. GmbH, A.C.V.: Connecting the FRITZ!Box with
a company’s VPN, https://en.avm.de/service/vpn/

connecting-the-fritzbox-with-a-companys-vpn-ipsec/, accessed: 2023-03-03
9. Guo, J., Gu, C., Chen, X., Wei, F.: Model learning and model checking of ipsec

implementations for internet of things. IEEE Access 7, 171322–171332 (2019).
https://doi.org/10.1109/ACCESS.2019.2956062

10. Harkins, D., Carrel, D.: The internet key exchange (IKE). RFC 2409, RFC Editor
(11 1998), https://www.rfc-editor.org/rfc/rfc2409.txt

11. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., Kivinen, T.: Internet key ex-
change protocol version 2 (IKEv2). RFC 7298, RFC Editor (10 2014), https:

//www.rfc-editor.org/rfc/rfc7296.txt
12. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learn-

ing Theory. MIT Press (1994), https://mitpress.mit.edu/books/

introduction-computational-learning-theory
13. Muskardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: Aalpy: an

active automata learning library. Innov. Syst. Softw. Eng. 18(3), 417–426 (2022).
https://doi.org/10.1007/s11334-022-00449-3

14. Novickis, T., Poll, E., Altan, K.: Protocol state fuzzing of an OpenVPN. Ph.D. the-
sis, PhD thesis. MS thesis, Fac. Sci. Master Kerckhoffs Comput. Secur., Radboud
Univ (2016)

15. Pferscher, A., Aichernig, B.K.: Fingerprinting Bluetooth Low Energy devices via
active automata learning. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) Formal
Methods - 24th International Symposium, FM 2021, Virtual Event, November 20-
26, 2021, Proceedings. Lecture Notes in Computer Science, vol. 13047, pp. 524–542.
Springer (2021). https://doi.org/10.1007/978-3-030-90870-6 28

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.6028/NIST.SP.800-77r1
https://doi.org/10.1145/3465212
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://en.avm.de/service/vpn/connecting-the-fritzbox-with-a-companys-vpn-ipsec/
https://en.avm.de/service/vpn/connecting-the-fritzbox-with-a-companys-vpn-ipsec/
https://doi.org/10.1109/ACCESS.2019.2956062
https://www.rfc-editor.org/rfc/rfc2409.txt
https://www.rfc-editor.org/rfc/rfc7296.txt
https://www.rfc-editor.org/rfc/rfc7296.txt
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1007/978-3-030-90870-6_28

10 A. Pferscher et al.

16. Pferscher, A., Aichernig, B.K.: Stateful black-box fuzzing of Bluetooth devices
using automata learning. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA
Formal Methods - 14th International Symposium, NFM 2022, Pasadena, CA, USA,
May 24-27, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13260, pp.
373–392. Springer (2022). https://doi.org/10.1007/978-3-031-06773-0 20

17. Pferscher, A., Wunderling, B.: Supplemental material “Mining Digital Twins of
a VPN Server”, https://doi.org/10.6084/m9.figshare.21953222.v1, accessed:
2023-01-25

18. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

19. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Secu-
rity 15, Washington, D.C., USA, August 12-14, 2015. pp. 193–206. USENIX
Association (2015), https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/de-ruiter

20. S, R.R., R, R., Moharir, M., G, S.: Scapy - a powerful interactive
packet manipulation program. In: 2018 International Conference on Net-
working, Embedded and Wireless Systems (ICNEWS). pp. 1–5 (2018).
https://doi.org/10.1109/ICNEWS.2018.8903954

21. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams, D.
(eds.) FM 2009: Formal Methods, Second World Congress, Eindhoven, The Nether-
lands, November 2-6, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5850, pp. 207–222. Springer (2009). https://doi.org/10.1007/978-3-642-05089-
3 14

22. Stone, C.M., Chothia, T., de Ruiter, J.: Extending automated protocol state learn-
ing for the 802.11 4-way handshake. In: López, J., Zhou, J., Soriano, M. (eds.)
Computer Security - 23rd European Symposium on Research in Computer Secu-
rity, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 11098, pp. 325–345. Springer (2018).
https://doi.org/10.1007/978-3-319-99073-6 16

23. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT commu-
nication via active automata learning. In: 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST 2017, Tokyo,
Japan, March 13-17, 2017. pp. 276–287. IEEE Computer Society (2017).
https://doi.org/10.1109/ICST.2017.32

https://doi.org/10.1007/978-3-031-06773-0_20
https://doi.org/10.6084/m9.figshare.21953222.v1
https://doi.org/10.1006/inco.1993.1021
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1109/ICNEWS.2018.8903954
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.1109/ICST.2017.32

Mining Digital Twins of a VPN Server 11

Appendix A Learned Models

s0 key_ex_main/Noneauthenticate/Nonesa_quick/Noneack_quick/None

s1

sa_main/ISAKMP_SA

sa_main/ISAKMP_SAauthenticate/Nonesa_quick/Noneack_quick/None

s2

key_ex_main/ISAKMP_KEY_EX

sa_main/INVALID-PAYLOAD-TYPE key_ex_main/INVALID-PAYLOAD-TYPE

sa_quick/Noneack_quick/None

s3

authenticate/ISAKMP_AUTH

sa_main/Nonekey_ex_main/Noneauthenticate/Noneack_quick/None

s4

sa_quick/IPSEC_SA

sa_quick/IPSEC_SA

s5

ack_quick/None

s6

sa_main/None key_ex_main/None authenticate/None

sa_quick/IPSEC_SA

sa_main/Nonekey_ex_main/Noneauthenticate/None

s7

ack_quick/INVALID-PAYLOAD-TYPE

sa_quick/IPSEC_SA

ack_quick/None

s8

sa_main/IPSEC_SA key_ex_main/IPSEC_SA authenticate/IPSEC_SA

sa_quick/IPSEC_SA

ack_quick/None

sa_main/Nonekey_ex_main/Noneauthenticate/None

sa_quick/IPSEC_SA

ack_quick/None

s9

sa_main/None key_ex_main/None authenticate/None

sa_quick/IPSEC_SA

ack_quick/None

s10

sa_main/None key_ex_main/Noneauthenticate/None

sa_quick/IPSEC_SA

ack_quick/None

s11

sa_main/IPSEC_SA key_ex_main/IPSEC_SAauthenticate/IPSEC_SA

sa_quick/IPSEC_SA

ack_quick/Nones12

sa_main/None key_ex_main/Noneauthenticate/None

sa_quick/IPSEC_SA

ack_quick/None

sa_main/None key_ex_main/None authenticate/None

Fig. 4. Strongswan Server automata with retransmissions. The model took approxi-
mately 200 minutes (12187 seconds) to learn with the L∗ algorithm, spread over five
learning rounds. 631 membership queries and 130 equivalence queries were performed
in 5188 and 1947 steps respectively. On average, three to four non-determinism errors
were caught and fixed per learned model, arising from differing timings causing re-
transmissions to be sent at different points.

	Emerging Challenges in Compositionality and Correctness for Digital Twins[-10pt]
	Are Formal Contracts a useful Digital Twin of Software Systems?
	Digital Twin for Rescue Missions – a Case Study
	Mining Digital Twins of a VPN Server

