
Semantical Reflection for Computational Structures

Eduard Kamburjan
and collaborators
SIRIUS Lunch Seminar 14.11.23

University of Oslo

Reflection

What is Reflection?
• Reasoning about oneself
• Reasoning about the relation to the

environment
• Forming insights: expectations and memories
• Acting on reflective insights

How can we program reflective applications?

Reflection

What is Reflection?
• Reasoning about oneself
• Reasoning about the relation to the

environment
• Forming insights: expectations and memories
• Acting on reflective insights

How can we program reflective applications?

Appearance

Beyond OO Reflection
In programming, reflection refers to the ability to manipulate runtime structures, such
as classes directly – We want more:

• Reasoning about runtime structures
• Relate runtime structures to application domain
• Formulate models and data based on this relation

• How to connect a program with its application domain?
• How to interpret a program through the lens of it domain?
• How to express and adhere to domain knowledge at runtime?

Semantically Lifted Programs

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF), reason (OWL) over, and
query (SPARQL) domain knowledge and data. Example: Asset model of a house.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF), reason (OWL) over, and
query (SPARQL) domain knowledge and data. Example: Asset model of a house.

Controller
O

u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF), reason (OWL) over, and
query (SPARQL) domain knowledge and data. Example: Asset model of a house.

Controller
O

u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF), reason (OWL) over, and
query (SPARQL) domain knowledge and data. Example: Asset model of a house.

Controller
O

u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Semantically Lifted Programs

app app

Semantically Lifted Programs

app app

Semantically Lifted Programs

app app

Semantically Lifted Programs

app app

Semantically Lifted Programs

app app

Semantically Lifted Programs

app app

Direct Mapping of Program States

SMOL: Integration of Semantics and Semantic Technologies
Map each program state to a knowledge graph and allow program to operate on the
KG. Implemented in SMOL (smolang.org).

1 class C (Int i) Unit inc(){ this.i = this.i + 1; } end
2 Main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
run:proc1 a prog:process.
run:proc1 prog:runsOn run:obj1.
....

[K. et al., Programming and Debugging with Semantically Lifted States, ESWC’21]

Direct Mapping of Program States

SMOL: Integration of Semantics and Semantic Technologies
Map each program state to a knowledge graph and allow program to operate on the
KG. Implemented in SMOL (smolang.org).

1 class C (Int i) Unit inc(){ this.i = this.i + 1; } end
2 Main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
run:proc1 a prog:process.
run:proc1 prog:runsOn run:obj1.
....

[K. et al., Programming and Debugging with Semantically Lifted States, ESWC’21]

Semantic Reflection: Reasoning about oneself

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa. ?x :in %

street}");
5 this.inspectAll(l);
6 end
7 end

Villa EquivalentTo: rooms o length some xsd:int [>= 3]

Semantic Reflection: Reasoning about oneself

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa. ?x :in %

street}");
5 this.inspectAll(l);
6 end
7 end

Villa EquivalentTo: rooms o length some xsd:int [>= 3]

Semantic Reflection: Reasoning about oneself – GeoSimulator

Case study of using SMOL for a geological simulator
• SMOL simulators describes the effects of the process
• SMOL state is interpreted through ontology
• Geological ontology describes under which conditions a geological process starts

[Qu, K., and Giese, A Geological Case Study on Semantically Triggered Processes, ESWC’23]

Semantic Reflection: Reasoning about oneself – GeoSimulator

Modeling of a geological shale structure in SMOL
1 class ShaleUnit extends GeoUnit
2 (Double temperature,
3 Boolean hasKerogenSource,
4 Int maturedUnits)
5 models
6 "a GeoReservoirOntology_sedimentary_geological_object;
7 location_of [a domain:amount_of_organic_matter];
8 GeoCoreOntology_constituted_by [a domain:shale];
9 has_quality [domain:datavalue %temperature; a domain:temperature

].";
10 end

Semantic Reflection: Reasoning about oneself – GeoSimulator

Resulting (part of the) knowledge graph

run:obj1 smol:models domain:obj1.
domain:obj1 a GeoReservoirOntology_sedimentary_geological_object;

location_of [a domain:amount_of_organic_matter];
GeoCoreOntology_constituted_by [a domain:shale];
has_quality [domain:datavalue "10.0"^^xsd:Double; a domain:temperature].

Semantic Reflection: Reasoning about oneself – GeoSimulator

Simulation driver
1 List<ShaleUnit> fs =
2 member(domain:models some (obo:participates_in some domain:

oil_window_maturation_trigger));
3 while fs != null do
4 fs.content.mature(); fs = fs.next;
5 end

For Mandal-Ekofisk field, simulation gives similar results as original study (2mya steps)
SMOL Cornford’94 Time Difference

Start M. 52ma ∼50ma ∼2mya
End M. 14ma ∼23ma ∼9mya

Crit. Moment 28ma ∼30ma ∼2mya

Semantic Reflection:
Structurally Self-Adaptive Digital
Twins

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”

Semantic Reflection: Structurally Self-Adaptive Digital Twins – SMOL/FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units (FMUs). Can also
serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(FMO[out Double val] sys,
3 FMO[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Knowledge Structures over Simulation Units, K. and Johnsen. [ANNSIM’22]

Semantic Reflection: Structurally Self-Adaptive Digital Twins – SMOL/FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units (FMUs). Can also
serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(FMO[out Double val] sys,
3 FMO[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Knowledge Structures over Simulation Units, K. and Johnsen. [ANNSIM’22]

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twins.

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twins.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

1 class Room(FMO f, Wall inner, Wall outer, Controller ctrl, Int id) end
2 class Controller(FMO f, Room left, Room right, Int id) end
3 class InnerWall(FMO f, Room left, Room right) end

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twins.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

1 class Room(FMO f, Wall inner, Wall outer, Controller ctrl, Int id) end
2 class Controller(FMO f, Room left, Room right, Int id) end
3 class InnerWall(FMO f, Room left, Room right) end

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { ?ctrl a prog:Controller.
?ctrl prog:left ?room.
?ctrl prog:right ?room }

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { ?o1 prog:id ?id1. ?h1 ast:id ?id1.
?o2 prog:id ?id2. ?h2 ast:id ?id2.
?h1 htLeftOf ?h2.
?c a prog:Controller.
?c prog:left ?o1. ?c prog:right ?o2.}

Semantic Reflection: Structurally Self-Adaptive Digital Twins

Semantic Reflection
One can use the knowledge graph within the program to detect structural drift: For-
mulate query to retrieve all mismatching parts

1
2 List<Repairs> repairs =
3 construct("SELECT ?room ?wallLeft ?wallRight WHERE
4 {?x ast:id ?room.
5 ?x ast:right [ast:id ?wallRight].
6 ?x ast:left [ast:id ?wallLeft].
7 FILTER NOT EXISTS {?y a prog:Room; prog:id ?room.}}");

[K. et al., Digital Twin Reconfiguration Using Asset Models, ISoLA’22]

Semantic Reflection:
Software Engineering Aspects

Software Engineering Semantic Reflection

Static Guarantees
How can we ensure that semantic reflection does not cause runtime errors?

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa}");
5 this.inspectAll(l);
6 end
7 end

Type checking reflection reduces to query containment, if the ontology K is known.

Villa ⊑K Building

[K. and Kostylev, Type Checking Semantically Lifted Programs via Query Containment under Entailment Regimes, DL’21]

Software Engineering Semantic Reflection

Connecting Class Models
How can we connect OWL and OO class models?

• Generate program classes from ontology
• Generate program classes for RDF structures
• Generate program classes for queries

Bridging the Gap
• Use retrieval queries as interface between class models
• Do not connect concepts, define data retrieval
• Annotate query to class, not execution point
• Implemented for Java, extended with Liskov Principle for subtyping

Example: Bike and Wheels

1 class Wheel (Int wheelId, Int year) end
2 class Bike (Int bId, Int year, Wheel front, Wheel back) end

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?id;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.

[K., Norstein and Giese, Never mind the semantic gap, ESWC’22]

Example: Bike and Wheels

1 class Wheel (Int wheelId, Int year) end
2 class Bike (Int bId, Int year, Wheel front, Wheel back) end

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?id;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.

[K., Norstein and Giese, Never mind the semantic gap, ESWC’22]

Example: Bike and Wheels

1 List<Result> res = query(Q); Result r = res[0];
2 Wheel w1 = new Wheel(r.get("wheelId1"), r.get("year1"));
3 Wheel w2 = new Wheel(r.get("wheelId2"), r.get("year2"));
4 Bike b = new Bike(r.get("id"), r.get("year"), w1, w2);
5 print(b.front.id);

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?id;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.

Example: Bike and Wheels

Challenges
• Data access is not type safe
• Query is disconnected from class
• Query is non-modular: class structure is ignored, no reuse

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?id;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.

Links — Detailed Explanation

1 class Wheel anchor ?w (Int wheelId, Int year) end
2 retrieve SELECT ?wheelId ?year { ?w :wheelId ?wheelId; :prod ?year. }
3
4 class Bike anchor ?b (Int bId; Int year;
5 link(?b :front ?front) Wheel front;
6 link(?b :back ?back) Wheel back;
7) end retrieve SELECT ?id ?year { ?b :bId ?bId; :prod ?year. }

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?bId;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.

Evaluation

Slegge
• Slegge is a query corpus for exploration in energy industry.
• Remodeling of 8 queries in extended SMOL using 27 classes.
• Found one bug due to copy-paste

Software Engineering Semantic Reflection

Ontologies for Programs
Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.

Software Engineering Semantic Reflection

Ontologies for Programs
Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.

REPL

User

Semantic Debugger
sjdb

Answering Engine

Inverse RDF Node Mapping

Mapping State
to

DL Axioms
JVM

(Paused) Program

External Knowledge
Formalization
(OWL/RDF)

Semantic Queries

(DL Inference Tasks,
SPARQL, SHACL)

Knowledge Base

Java Program
and Breakpoints

Program State

Program
State RDF

Graph

RDF
Nodes

Java Objects

RDF Nodes

J

D

I

1

2

3

4

5

6

7

[Haubner, Inspecting Java Program States with Semantic Web Technologies, MSc’22]

Software Engineering Semantic Reflection

Ontologies for Programs
Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.

Software Engineering Semantic Reflection

Ontologies for Programs
Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.

Semantically Lifted Systems

Lifting Software Architectures

Beyond Programs
• Lifting larger

programs does not
scale up

• Instead: Software
architecture to lift
only components

Lifting Software Architectures

Beyond Programs
• Lifting larger

programs does not
scale up

• Instead: Software
architecture to lift
only components

[Gil, K., Talasila, Larsen, An Architecture for Coupled Digital Twins with Semantic Lifting, u.S.]

Lifting Software Architectures

Beyond Programs
• Lifting larger

programs does not
scale up

• Instead: Software
architecture to lift
only components

Kuka lbr iiwa 7
FMU

UR5e FMU

Kuka lbr iiwa 7

UR5e

DT Service Layer

DTManager

Flex-cell DT
System

Controller RabbitMQ FMU

DT Platform Layer

Flex-cell
system
config

(Maestro)

Endpoint

Flex-cell System

DT Kuka
lbr iiwa 7

DT UR5e
Controller

PT UR5e

PT Kuka
lbr iiwa 7

Flex-cell Simulation

Config
Kuka lbr

iiwa 7

Config
UR5e

availableTwins [*]availableTwinSystems [*]

endpoint [1] twin config [1]

schema [1..*]

system config [1]

Coupled
Behavior

Kuka lbr
iiwa 7

Schema

UR5e
Schema

av
ai

la
bl

eT
w

in
s

[*
]

Semantic Lifting
ServicesOther Services

Semantic Experiment Management

Reasoning for Reuse
• Lifting larger programs does not scale up
• We may not be interested in the program, but computation results
• Lifting is used to detect whether reuse of computations is possible

Combining Case-Based Reasoning and Deduction

1 3 42

Yes Yes Yes Yes

No No No No

[Cederbladh et al., Symbolic Reasoning for Early Decision-Making in Model-Based Systems Engineering, MBSE@Models’23]

Semantic Experiment Management

Reasoning for Reuse
• Lifting larger programs does not scale up
• We may not be interested in the program, but computation results
• Lifting is used to detect whether reuse of computations is possible

Combining Case-Based Reasoning and Deduction

1 3 42

Yes Yes Yes Yes

No No No No

[Cederbladh et al., Symbolic Reasoning for Early Decision-Making in Model-Based Systems Engineering, MBSE@Models’23]

Conclusion

Digital Twin Lab

Digital Twin Lab
• Working with realistic software stack
• Evaluation of proposed architectures

Verification of Domain Contracts

Towards Axiomatic Domain Semantics
So far, we have discussed how to program and use knowledge graphs.

How to check whether we do it right

Verification of Domain Contracts

Towards Axiomatic Domain Semantics
So far, we have discussed how to program and use knowledge graphs.
How to check whether we do it right

On-going work: A hoare logic for semantically lifted programs{
pre

}
s

{
post

}

Verification of Domain Contracts

Towards Axiomatic Domain Semantics
So far, we have discussed how to program and use knowledge graphs.
How to check whether we do it right

On-going work: A hoare logic for semantically lifted programs{
depth ≥ 2000

}
depth + = 1000;

{
MaturationTrigger(unit)

}

Verification of Domain Contracts

Towards Axiomatic Domain Semantics
So far, we have discussed how to program and use knowledge graphs.
How to check whether we do it right

On-going work: A hoare logic for semantically lifted programs{
depth ≥ 2000

}
depth + = 1000;

{
MaturationTrigger(unit)

}

Outlook
• Ontology alignment for process and asset ontologies
• Optimization and correctness
• Long-term: Software Engineering for Symbolic AI and Reflection

Conclusion

app app

Thank you for your attention

Conclusion

app app

Thank you for your attention

	Semantically Lifted Programs
	Semantic Reflection: Structurally Self-Adaptive Digital Twins
	Semantic Reflection: Software Engineering Aspects
	Semantically Lifted Systems
	Conclusion

