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Reflection

What is Reflection?
• Reasoning about oneself
• Reasoning about the relation to the

environment
• Forming insights: expectations and memories
• Acting on reflective insights

How can we program reflective applications?
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Appearance

Beyond OO Reflection
In programming, reflection refers to the ability to manipulate runtime structures, such
as classes directly – We want more:

• Reasoning about runtime structures
• Relate runtime structures to application domain
• Formulate models and data based on this relation

• How to connect a program with its application domain?
• How to interpret a program through the lens of it domain?
• How to express and adhere to domain knowledge at runtime?



Semantically Lifted Programs



Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF), reason (OWL) over, and
query (SPARQL) domain knowledge and data. Example: Asset model of a house.
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ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)
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Direct Mapping of Program States

SMOL: Integration of Semantics and Semantic Technologies
Map each program state to a knowledge graph and allow program to operate on the
KG. Implemented in SMOL (smolang.org).

1 class C (Int i) Unit inc(){ this.i = this.i + 1; } end
2 Main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
run:proc1 a prog:process.
run:proc1 prog:runsOn run:obj1.
....

[K. et al., Programming and Debugging with Semantically Lifted States, ESWC’21]
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Semantic Reflection: Reasoning about oneself

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa. ?x :in %

street}");
5 this.inspectAll(l);
6 end
7 end

Villa EquivalentTo: rooms o length some xsd:int [>= 3]
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Semantic Reflection: Reasoning about oneself – GeoSimulator

Case study of using SMOL for a geological simulator
• SMOL simulators describes the effects of the process
• SMOL state is interpreted through ontology
• Geological ontology describes under which conditions a geological process starts

[Qu, K., and Giese, A Geological Case Study on Semantically Triggered Processes, ESWC’23]



Semantic Reflection: Reasoning about oneself – GeoSimulator

Modeling of a geological shale structure in SMOL
1 class ShaleUnit extends GeoUnit
2 (Double temperature,
3 Boolean hasKerogenSource,
4 Int maturedUnits)
5 models
6 "a GeoReservoirOntology_sedimentary_geological_object;
7 location_of [a domain:amount_of_organic_matter];
8 GeoCoreOntology_constituted_by [a domain:shale];
9 has_quality [domain:datavalue %temperature; a domain:temperature

].";
10 end



Semantic Reflection: Reasoning about oneself – GeoSimulator

Resulting (part of the) knowledge graph

run:obj1 smol:models domain:obj1.
domain:obj1 a GeoReservoirOntology_sedimentary_geological_object;

location_of [a domain:amount_of_organic_matter];
GeoCoreOntology_constituted_by [a domain:shale];
has_quality [domain:datavalue "10.0"^^xsd:Double; a domain:temperature].



Semantic Reflection: Reasoning about oneself – GeoSimulator

Simulation driver
1 List<ShaleUnit> fs =
2 member(domain:models some (obo:participates_in some domain:

oil_window_maturation_trigger));
3 while fs != null do
4 fs.content.mature(); fs = fs.next;
5 end

For Mandal-Ekofisk field, simulation gives similar results as original study (2mya steps)
SMOL Cornford’94 Time Difference

Start M. 52ma ∼50ma ∼2mya
End M. 14ma ∼23ma ∼9mya

Crit. Moment 28ma ∼30ma ∼2mya



Semantic Reflection:
Structurally Self-Adaptive Digital
Twins



Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
• Export asset model of physical system as KG
• Export program state with simulators as KG
• Formulate constraints over combined KG

Possible Constraints
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure
as the asset?”
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Semantic Reflection: Structurally Self-Adaptive Digital Twins – SMOL/FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units (FMUs). Can also
serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(FMO[out Double val] sys,
3 FMO[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Knowledge Structures over Simulation Units, K. and Johnsen. [ANNSIM’22]
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SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
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Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { ?ctrl a prog:Controller.
?ctrl prog:left ?room.
?ctrl prog:right ?room }



Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL
Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { ?o1 prog:id ?id1. ?h1 ast:id ?id1.
?o2 prog:id ?id2. ?h2 ast:id ?id2.
?h1 htLeftOf ?h2.
?c a prog:Controller.
?c prog:left ?o1. ?c prog:right ?o2.}



Semantic Reflection: Structurally Self-Adaptive Digital Twins

Semantic Reflection
One can use the knowledge graph within the program to detect structural drift: For-
mulate query to retrieve all mismatching parts

1 ....
2 List<Repairs> repairs =
3 construct("SELECT ?room ?wallLeft ?wallRight WHERE
4 {?x ast:id ?room.
5 ?x ast:right [ast:id ?wallRight].
6 ?x ast:left [ast:id ?wallLeft].
7 FILTER NOT EXISTS {?y a prog:Room; prog:id ?room.}}");

[K. et al., Digital Twin Reconfiguration Using Asset Models, ISoLA’22]



Semantic Reflection:
Software Engineering Aspects



Software Engineering Semantic Reflection

Static Guarantees
How can we ensure that semantic reflection does not cause runtime errors?

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa}");
5 this.inspectAll(l);
6 end
7 end

Type checking reflection reduces to query containment, if the ontology K is known.

Villa ⊑K Building

[K. and Kostylev, Type Checking Semantically Lifted Programs via Query Containment under Entailment Regimes, DL’21]



Software Engineering Semantic Reflection

Connecting Class Models
How can we connect OWL and OO class models?

• Generate program classes from ontology
• Generate program classes for RDF structures
• Generate program classes for queries

Bridging the Gap
• Use retrieval queries as interface between class models
• Do not connect concepts, define data retrieval
• Annotate query to class, not execution point
• Implemented for Java, extended with Liskov Principle for subtyping



Example: Bike and Wheels

1 class Wheel (Int wheelId, Int year) end
2 class Bike (Int bId, Int year, Wheel front, Wheel back) end

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?id;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.

[K., Norstein and Giese, Never mind the semantic gap, ESWC’22]
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Example: Bike and Wheels

1 List<Result> res = query(Q); Result r = res[0];
2 Wheel w1 = new Wheel(r.get("wheelId1"), r.get("year1"));
3 Wheel w2 = new Wheel(r.get("wheelId2"), r.get("year2"));
4 Bike b = new Bike(r.get("id"), r.get("year"), w1, w2);
5 print(b.front.id);

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?id;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.



Example: Bike and Wheels

Challenges
• Data access is not type safe
• Query is disconnected from class
• Query is non-modular: class structure is ignored, no reuse

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?id;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.



Links — Detailed Explanation

1 class Wheel anchor ?w (Int wheelId, Int year) end
2 retrieve SELECT ?wheelId ?year { ?w :wheelId ?wheelId; :prod ?year. }
3
4 class Bike anchor ?b (Int bId; Int year;
5 link(?b :front ?front) Wheel front;
6 link(?b :back ?back) Wheel back;
7 ) end retrieve SELECT ?id ?year { ?b :bId ?bId; :prod ?year. }

Wheel

Wheel

Bike

Q = SELECT * WHERE
?b :bId ?bId;

:prod ?year;
:back ?back;
:front ?front.

?back :wheelId ?wheelId1;
:prod ?year1.

?front :wheelId ?wheelId2;
:prod ?year2.



Evaluation

Slegge
• Slegge is a query corpus for exploration in energy industry.
• Remodeling of 8 queries in extended SMOL using 27 classes.
• Found one bug due to copy-paste



Software Engineering Semantic Reflection

Ontologies for Programs
Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.
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[Haubner, Inspecting Java Program States with Semantic Web Technologies, MSc’22]
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scale up
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Lifting Software Architectures

Beyond Programs
• Lifting larger

programs does not
scale up

• Instead: Software
architecture to lift
only components

[Gil, K., Talasila, Larsen, An Architecture for Coupled Digital Twins with Semantic Lifting, u.S.]



Lifting Software Architectures

Beyond Programs
• Lifting larger

programs does not
scale up

• Instead: Software
architecture to lift
only components
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Semantic Experiment Management

Reasoning for Reuse
• Lifting larger programs does not scale up
• We may not be interested in the program, but computation results
• Lifting is used to detect whether reuse of computations is possible

Combining Case-Based Reasoning and Deduction

1 3 42

Yes Yes Yes Yes

No No No No

[Cederbladh et al., Symbolic Reasoning for Early Decision-Making in Model-Based Systems Engineering, MBSE@Models’23]
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Digital Twin Lab

Digital Twin Lab
• Working with realistic software stack
• Evaluation of proposed architectures
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Verification of Domain Contracts

Towards Axiomatic Domain Semantics
So far, we have discussed how to program and use knowledge graphs.
How to check whether we do it right

On-going work: A hoare logic for semantically lifted programs{
depth ≥ 2000

}
depth + = 1000;

{
MaturationTrigger(unit)

}

Outlook
• Ontology alignment for process and asset ontologies
• Optimization and correctness
• Long-term: Software Engineering for Symbolic AI and Reflection
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