
Semantically Lifted Programming

Eduard Kamburjan

University of Oslo
TCS Seminar, 16.09.23

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan — Semantically Lifted Programming 1 / 18

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan — Semantically Lifted Programming 1 / 18

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan — Semantically Lifted Programming 1 / 18

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan — Semantically Lifted Programming 1 / 18

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan — Semantically Lifted Programming 1 / 18

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan — Semantically Lifted Programming 1 / 18

... and Programs

How to use ontologies in programming?
• Make domain knowledge available to the programmer
• Reduce redundancy between program and other artifacts
• Simplify communication with users/domain experts

How to program applications around ontologies?
• Using multiple Semantic Web technologies can be tricky
• Programmer must be aware of logical and formal pitfalls
• Correct interplay must be ensures manually

This Talk
• First results, challenges, on-going research
• Use ontologies in programming to enable Digital Twins.

Kamburjan — Semantically Lifted Programming 2 / 18

... and Programs

How to use ontologies in programming?
• Make domain knowledge available to the programmer
• Reduce redundancy between program and other artifacts
• Simplify communication with users/domain experts

How to program applications around ontologies?
• Using multiple Semantic Web technologies can be tricky
• Programmer must be aware of logical and formal pitfalls
• Correct interplay must be ensures manually

This Talk
• First results, challenges, on-going research
• Use ontologies in programming to enable Digital Twins.

Kamburjan — Semantically Lifted Programming 2 / 18

... and Programs

How to use ontologies in programming?
• Make domain knowledge available to the programmer
• Reduce redundancy between program and other artifacts
• Simplify communication with users/domain experts

How to program applications around ontologies?
• Using multiple Semantic Web technologies can be tricky
• Programmer must be aware of logical and formal pitfalls
• Correct interplay must be ensures manually

This Talk
• First results, challenges, on-going research
• Use ontologies in programming to enable Digital Twins.

Kamburjan — Semantically Lifted Programming 2 / 18

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan — Semantically Lifted Programming 3 / 18

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan — Semantically Lifted Programming 3 / 18

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan — Semantically Lifted Programming 3 / 18

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan — Semantically Lifted Programming 3 / 18

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan — Semantically Lifted Programming 3 / 18

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Peter MariaPaul
hasChild

Person Person

a a a

Person

hasChild

Kamburjan — Semantically Lifted Programming 3 / 18

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Peter MariaPaul
hasChild

Person Person

a a a

Person

hasChild

GrandParent

a

Kamburjan — Semantically Lifted Programming 3 / 18

Semantically Lifted Programs and
Digital Twins

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan — Semantically Lifted Programming 4 / 18

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan — Semantically Lifted Programming 4 / 18

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan — Semantically Lifted Programming 4 / 18

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan — Semantically Lifted Programming 4 / 18

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan — Semantically Lifted Programming 4 / 18

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan — Semantically Lifted Programming 4 / 18

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan — Semantically Lifted Programming 4 / 18

Example

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

A representation of (a) the full AST and (b) the full runtime state.

Kamburjan — Semantically Lifted Programming 5 / 18

Example

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

A representation of (a) the full AST and (b) the full runtime state.

Kamburjan — Semantically Lifted Programming 5 / 18

Example

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

A representation of (a) the full AST and (b) the full runtime state.

Kamburjan — Semantically Lifted Programming 5 / 18

SMOL

Given the lifted state, we can use it for multiple operations.

• Access it to retrieve objects without traversing pointers.
• Enrich it with an ontology, perform logical reasoning and

retrieve objects using a query using the vocabulary of the
domain.

• Combine it with another knowledge graph and access external
data based on information from the current program state.

Kamburjan — Semantically Lifted Programming 6 / 18

Semantic Programming

1 class Platform(List<Server> serverList) ... end
2 class Server(List<Task> taskList) ... end
3 class Scheduler(List<Platform> platformList)
4 Unit reschedule()
5 List<Platform> l
6 := access("SELECT ?x WHERE {?x a :Overloaded}");
7 this.adaptPlatforms(l);
8 end
9 end

:Overloaded
owl:equivalentClass [

owl:onProperty (:tasks, :length);
owl:minValue 3;

].

Kamburjan — Semantically Lifted Programming 7 / 18

Semantic Programming

1 class Platform(List<Server> serverList) ... end
2 class Server(List<Task> taskList) ... end
3 class Scheduler(List<Platform> platformList)
4 Unit reschedule()
5 List<Platform> l
6 := access("SELECT ?x WHERE {?x a :Overloaded}");
7 this.adaptPlatforms(l);
8 end
9 end

:Overloaded
owl:equivalentClass [

owl:onProperty (:tasks, :length);
owl:minValue 3;

].
Kamburjan — Semantically Lifted Programming 7 / 18

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

• Common data representation
• Data view on both twins: Twinning as a data property

Kamburjan — Semantically Lifted Programming 8 / 18

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

PT

• Common data representation
• Data view on both twins: Twinning as a data property

Kamburjan — Semantically Lifted Programming 8 / 18

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

DTPT

• Common data representation
• Data view on both twins: Twinning as a data property

Kamburjan — Semantically Lifted Programming 8 / 18

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

Sensor Data

DTPT

• Common data representation
• Data view on both twins: Twinning as a data property

Kamburjan — Semantically Lifted Programming 8 / 18

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

Sensor Data

Commands

DTPT

• Common data representation
• Data view on both twins: Twinning as a data property

Kamburjan — Semantically Lifted Programming 8 / 18

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

DTPT

Commands

Sensor Data

• Common data representation
• Data view on both twins: Twinning as a data property

Kamburjan — Semantically Lifted Programming 8 / 18

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

DTPT

Commands

Sensor Data

• Common data representation
• Data view on both twins: Twinning as a data property

Kamburjan — Semantically Lifted Programming 8 / 18

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

DTPT

Commands

Sensor Data

• Common data representation
• Data view on both twins: Twinning as a data property

Kamburjan — Semantically Lifted Programming 8 / 18

Knowledge Graphs and Asset Models

Asset Model
An asset model is an organized, digital description of the compo-
sition and properties of a physical asset.

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan — Semantically Lifted Programming 9 / 18

Knowledge Graphs and Asset Models

Asset Model
An asset model is an organized, digital description of the compo-
sition and properties of a physical asset.

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan — Semantically Lifted Programming 9 / 18

Knowledge Graphs and Asset Models

Asset Model
An asset model is an organized, digital description of the compo-
sition and properties of a physical asset.

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan — Semantically Lifted Programming 9 / 18

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan — Semantically Lifted Programming 10 / 18

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan — Semantically Lifted Programming 10 / 18

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan — Semantically Lifted Programming 10 / 18

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan — Semantically Lifted Programming 10 / 18

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan — Semantically Lifted Programming 10 / 18

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Possible Constraints
• Constraint on asset model

“Is the asset model consistent?”
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure as the asset?”

Kamburjan — Semantically Lifted Programming 10 / 18

SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units
(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(Cont[out Double val] sys,
3 Cont[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Kamburjan — Semantically Lifted Programming 10 / 18

SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units
(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(Cont[out Double val] sys,
3 Cont[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Kamburjan — Semantically Lifted Programming 10 / 18

Constraints on Digital Twins

SMOL and FMI

SMOL with FMOs
FMOs are objects, so they are part of the knowledge graph.

1 class Monitor(Cont[out Double val] sys,
2 Cont[out Double val] shadow)

run:monitor run:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l

Knowledge Structures over Simulation Units, Kamburjan and Johnsen. [ANNSIM’22]

Kamburjan — Semantically Lifted Programming 11 / 18

SMOL and FMI

SMOL with FMOs
FMOs are objects, so they are part of the knowledge graph.

1 class Monitor(Cont[out Double val] sys,
2 Cont[out Double val] shadow)

run:monitor run:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l

Knowledge Structures over Simulation Units, Kamburjan and Johnsen. [ANNSIM’22]

Kamburjan — Semantically Lifted Programming 11 / 18

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twins.

Kamburjan — Semantically Lifted Programming 12 / 18

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

1 class Room(Cont[...] f,
2 Wall inner, Wall outer, Controller ctrl,
3 Int id) end
4 class Controller(Cont[...] f,
5 Room left, Room right, Int id) end
6 class InnerWall(Cont[...] f, Room left, Room right) end

Kamburjan — Semantically Lifted Programming 12 / 18

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

1 class Room(Cont[...] f,
2 Wall inner, Wall outer, Controller ctrl,
3 Int id) end
4 class Controller(Cont[...] f,
5 Room left, Room right, Int id) end
6 class InnerWall(Cont[...] f, Room left, Room right) end

Kamburjan — Semantically Lifted Programming 12 / 18

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { ?ctrl a prog:Controller.
?ctrl prog:left ?room.
?ctrl prog:right ?room }

Kamburjan — Semantically Lifted Programming 12 / 18

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { ?o1 prog:id ?id1. ?h1 ast:id ?id1.
?o2 prog:id ?id2. ?h2 ast:id ?id2.
?h1 htLeftOf ?h2.
?c a prog:Controller.
?c prog:left ?o1. ?c prog:right ?o2.}

Kamburjan — Semantically Lifted Programming 12 / 18

On-Going Work: Repairing your Twin

Semantic Reflection
One can use the knowledge graph within the program to detect
structural drift: Formulate query to retrieve all mismatching parts

1
2 List<Repairs> repairs =
3 construct("SELECT ?room ?wallLeft ?wallRight WHERE
4 {?x ast:id ?room.
5 ?x ast:right [ast:id ?wallRight].
6 ?x ast:left [ast:id ?wallLeft].
7 FILTER NOT EXISTS {?y a prog:Room; prog:id ?room.}}");

Repair function must restore structure.
Digital Twin Reconfiguration Using Asset Models, Kamburjan et al. [ISoLA’22]

Kamburjan — Semantically Lifted Programming 13 / 18

Program Analysis and Optimization

Challenges

Optimization and Static Analysis of SMOL
• Every program optimization is unsound for SMOL, because

the whole AST can be accessed through semantic reflection.
• Similarly, Garbage Collection is not possible, because every

objects can be accessed even if no pointers to it exist.
• Static Analysis requires to analyze possible results of queries

Tools from Description Logic
First results that two notions from Description Logics can help
with garbage collection and typing: ontology modules and query
subsumption.

Kamburjan — Semantically Lifted Programming 14 / 18

Ontology Modules

We must have a notion of encapsulation for knowledge graphs!

Ontology Module

Given a KB K and a signature Σ, the module MΣ
K of K w.r.t. Σ

is a sub-KB that gives the same answers w.r.t. Σ.
• MΣ

K ⊆ K
• ∀q. (sig(q)⊆Σ) → ans

(
K, q

)
=ans

(
MΣ

K, q
)

• Modules may expand signature sig(MΣ
K) ⊇ Σ

• Multiple notions of modules available
• Beware: ontology modules are extracted

Kamburjan — Semantically Lifted Programming 15 / 18

Ontology Modules

We must have a notion of encapsulation for knowledge graphs!

Ontology Module

Given a KB K and a signature Σ, the module MΣ
K of K w.r.t. Σ

is a sub-KB that gives the same answers w.r.t. Σ.
• MΣ

K ⊆ K
• ∀q. (sig(q)⊆Σ) → ans

(
K, q

)
=ans

(
MΣ

K, q
)

• Modules may expand signature sig(MΣ
K) ⊇ Σ

• Multiple notions of modules available
• Beware: ontology modules are extracted

Kamburjan — Semantically Lifted Programming 15 / 18

Ontology Modules

We must have a notion of encapsulation for knowledge graphs!

Ontology Module

Given a KB K and a signature Σ, the module MΣ
K of K w.r.t. Σ

is a sub-KB that gives the same answers w.r.t. Σ.
• MΣ

K ⊆ K
• ∀q. (sig(q)⊆Σ) → ans

(
K, q

)
=ans

(
MΣ

K, q
)

• Modules may expand signature sig(MΣ
K) ⊇ Σ

• Multiple notions of modules available
• Beware: ontology modules are extracted

Kamburjan — Semantically Lifted Programming 15 / 18

Ontology Modules: Example

K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List, α3 = Task ⊑ Object,

Platform(a), List(b), Task(c), servers(a, b)}

Σ = {Busy}
MΣ

K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List

,

Platform(a), List(b), servers(a, b)}
Application

• Use Msig(Q)
K to approximate dependencies of access(Q).

• E.g., garbage collection: remove object if it is in no module.

Optimizing Semantically Lifted Programs through Ontology Modularity, Kamburjan and Chen [NWPT’21]

Kamburjan — Semantically Lifted Programming 16 / 18

Ontology Modules: Example

K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List, α3 = Task ⊑ Object,

Platform(a), List(b), Task(c), servers(a, b)}
Σ = {Busy}

MΣ
K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List

,

Platform(a), List(b), servers(a, b)}
Application

• Use Msig(Q)
K to approximate dependencies of access(Q).

• E.g., garbage collection: remove object if it is in no module.

Optimizing Semantically Lifted Programs through Ontology Modularity, Kamburjan and Chen [NWPT’21]

Kamburjan — Semantically Lifted Programming 16 / 18

Ontology Modules: Example

K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List, α3 = Task ⊑ Object,

Platform(a), List(b), Task(c), servers(a, b)}
Σ = {Busy}

MΣ
K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List,

Platform(a), List(b), servers(a, b)}
Application

• Use Msig(Q)
K to approximate dependencies of access(Q).

• E.g., garbage collection: remove object if it is in no module.

Optimizing Semantically Lifted Programs through Ontology Modularity, Kamburjan and Chen [NWPT’21]

Kamburjan — Semantically Lifted Programming 16 / 18

Ontology Modules: Example

K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List, α3 = Task ⊑ Object,

Platform(a), List(b), Task(c), servers(a, b)}
Σ = {Busy}

MΣ
K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List,

Platform(a), List(b), servers(a, b)}

Application

• Use Msig(Q)
K to approximate dependencies of access(Q).

• E.g., garbage collection: remove object if it is in no module.

Optimizing Semantically Lifted Programs through Ontology Modularity, Kamburjan and Chen [NWPT’21]

Kamburjan — Semantically Lifted Programming 16 / 18

Ontology Modules: Example

K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List, α3 = Task ⊑ Object,

Platform(a), List(b), Task(c), servers(a, b)}
Σ = {Busy}

MΣ
K = {α1 = Busy ⊑ Platform ⊓ NonEmpty,

α2 = NonEmpty ⊑ ∃servers.List,

Platform(a), List(b), servers(a, b)}
Application

• Use Msig(Q)
K to approximate dependencies of access(Q).

• E.g., garbage collection: remove object if it is in no module.
Optimizing Semantically Lifted Programs through Ontology Modularity, Kamburjan and Chen [NWPT’21]

Kamburjan — Semantically Lifted Programming 16 / 18

Type System

Challenge
Does List<C> l := access(...); indeed return a list of C objects?
KGs are untyped, deriving concepts requires reasoning....

Query Containment under Entailment Regimes

A query Q is contained in Q′ under some entailment regime for
KG K, (Q ⊆K

er Q′) if all answers to Q are also answers to Q′.

Γ ⊢ l : List<C>
SELECT ?x {P} ⊆K

er SELECT ?x {?x a prog : C}
(acc-type)

Γ ⊢K
er l:=access("SELECT ?x {P}")

Where K does not contain the lifted state, but only the ontology.
Type Checking Semantically Lifted Programs via Query Containment under Entailment Regimes, Kamburjan and Kostylev [DL’21]

Kamburjan — Semantically Lifted Programming 17 / 18

Type System

Challenge
Does List<C> l := access(...); indeed return a list of C objects?
KGs are untyped, deriving concepts requires reasoning....

Query Containment under Entailment Regimes

A query Q is contained in Q′ under some entailment regime for
KG K, (Q ⊆K

er Q′) if all answers to Q are also answers to Q′.

Γ ⊢ l : List<C>
SELECT ?x {P} ⊆K

er SELECT ?x {?x a prog : C}
(acc-type)

Γ ⊢K
er l:=access("SELECT ?x {P}")

Where K does not contain the lifted state, but only the ontology.
Type Checking Semantically Lifted Programs via Query Containment under Entailment Regimes, Kamburjan and Kostylev [DL’21]

Kamburjan — Semantically Lifted Programming 17 / 18

Type System

Challenge
Does List<C> l := access(...); indeed return a list of C objects?
KGs are untyped, deriving concepts requires reasoning....

Query Containment under Entailment Regimes

A query Q is contained in Q′ under some entailment regime for
KG K, (Q ⊆K

er Q′) if all answers to Q are also answers to Q′.

Γ ⊢ l : List<C>
SELECT ?x {P} ⊆K

er SELECT ?x {?x a prog : C}
(acc-type)

Γ ⊢K
er l:=access("SELECT ?x {P}")

Where K does not contain the lifted state, but only the ontology.
Type Checking Semantically Lifted Programs via Query Containment under Entailment Regimes, Kamburjan and Kostylev [DL’21]

Kamburjan — Semantically Lifted Programming 17 / 18

Conclusion

Conclusion

Semantically Lifted Programs and Semantic Reflection
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Future work: static analysis, concurrency

conf conf'

conf''

Thank you for your attention

Kamburjan — Semantically Lifted Programming 18 / 18

Conclusion

Semantically Lifted Programs and Semantic Reflection
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Future work: static analysis, concurrency

conf conf'

conf''

Thank you for your attention

Kamburjan — Semantically Lifted Programming 18 / 18

Conclusion

Semantically Lifted Programs and Semantic Reflection
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Future work: static analysis, concurrency

conf conf'

conf''

Thank you for your attention
Kamburjan — Semantically Lifted Programming 18 / 18

	Semantically Lifted Programs and Digital Twins
	Constraints on Digital Twins
	Program Analysis and Optimization
	Conclusion

