
Digital Twin Reconfiguration Using Asset Models

Eduard Kamburjan
Vidar Norstein Klungre
Rudolf Schlatte
S. Lizeth Tapia Tarifa
David Cameron
Einar Broch Johnsen

University of Oslo
26.10.2022, ISoLA 2022

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

• How to access structure of DT?
• How to express twinning?

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 1 / 13

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

PT

• How to access structure of DT?
• How to express twinning?

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 1 / 13

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

DTPT

• How to access structure of DT?
• How to express twinning?

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 1 / 13

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

Sensor Data

DTPT

• How to access structure of DT?
• How to express twinning?

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 1 / 13

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

Sensor Data

Commands

DTPT

• How to access structure of DT?
• How to express twinning?

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 1 / 13

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

DTPT

Commands

Sensor Data

• How to access structure of DT?
• How to express twinning?

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 1 / 13

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

DTPT

Commands

Sensor Data

• How to access structure of DT?
• How to express twinning?

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 1 / 13

Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

DTPT

Commands

Sensor Data

• How to access structure of DT?
• How to express twinning?

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 1 / 13

Knowledge Graphs and Asset Models

Asset Model
An asset model is an organized, digital description of the compo-
sition and properties of a physical asset.

For example, an inventory enriched with spatial information, de-
sign plans, . . . Several projects specific to digital twins, e.g., the
Asset Administration Shell of the Industry 4.0.

Our Asset Model
A knowledge graph describing the structure of the physical twin.

Using Semantic Technologies for Uniform Data Access and
integration of domain knowledge.

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 2 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Possible Constraints
• Constraint on asset model

“Is the asset model consistent?”
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure as the asset?”

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 3 / 13

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 4 / 13

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 4 / 13

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 4 / 13

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 4 / 13

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 4 / 13

Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 4 / 13

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 5 / 13

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 5 / 13

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 5 / 13

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 5 / 13

Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 5 / 13

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Peter MariaPaul
hasChild

Person Person

a a a

Person

hasChild

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 5 / 13

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Peter MariaPaul
hasChild

Person Person

a a a

Person

hasChild

GrandParent

a

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 5 / 13

Semantically Lifted Programs and
Digital Twins

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 6 / 13

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 6 / 13

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 6 / 13

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 6 / 13

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 6 / 13

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 6 / 13

Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 6 / 13

Example

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

A representation of (a) the full AST and (b) the full runtime state.

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 7 / 13

Example

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

A representation of (a) the full AST and (b) the full runtime state.

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 7 / 13

Example

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

A representation of (a) the full AST and (b) the full runtime state.

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 7 / 13

SMOL

Semantic Micro Object Language
Implementation of semantical lifting in an interpreted language.
Type system and REPL for debugging available. (try it at
www.smolang.org)

Given the lifted state, we can use it for multiple operations.

• Access it to retrieve objects without traversing pointers.
• Enrich it with an ontology, perform logical reasoning and

retrieve objects using a query using the vocabulary of the
domain.

• Combine it with another knowledge graph and access external
data based on information from the current program state.

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 8 / 13

Semantic Programming

1 class Platform(List<Server> serverList) ... end
2 class Server(List<Task> taskList) ... end
3 class Scheduler(List<Platform> platformList)
4 Unit reschedule()
5 List<Platform> l
6 := access("SELECT ?x WHERE {?x a :Overloaded}");
7 this.adaptPlatforms(l);
8 end
9 end

:Overloaded
owl:equivalentClass [

owl:onProperty (:tasks, :length);
owl:minValue 3;

].

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 9 / 13

Semantic Programming

1 class Platform(List<Server> serverList) ... end
2 class Server(List<Task> taskList) ... end
3 class Scheduler(List<Platform> platformList)
4 Unit reschedule()
5 List<Platform> l
6 := access("SELECT ?x WHERE {?x a :Overloaded}");
7 this.adaptPlatforms(l);
8 end
9 end

:Overloaded
owl:equivalentClass [

owl:onProperty (:tasks, :length);
owl:minValue 3;

].
Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 9 / 13

Example

Back to digital twins

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.
htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 10 / 13

Example

Back to digital twins

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 10 / 13

Example

Back to digital twins

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.
htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 10 / 13

SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units
(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(Cont[out Double val] sys,
3 Cont[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Knowledge Structures over Simulation Units, Kamburjan and Johnsen. [ANNSIM’22]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 10 / 13

SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units
(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(Cont[out Double val] sys,
3 Cont[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Knowledge Structures over Simulation Units, Kamburjan and Johnsen. [ANNSIM’22]

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 10 / 13

Constraints on Digital Twins

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twins.

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 11 / 13

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

1 class Room(Cont[...] f,
2 Wall inner, Wall outer, Controller ctrl,
3 Int id) end
4 class Controller(Cont[...] f,
5 Room left, Room right, Int id) end
6 class InnerWall(Cont[...] f, Room left, Room right) end

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 11 / 13

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

1 class Room(Cont[...] f,
2 Wall inner, Wall outer, Controller ctrl,
3 Int id) end
4 class Controller(Cont[...] f,
5 Room left, Room right, Int id) end
6 class InnerWall(Cont[...] f, Room left, Room right) end

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 11 / 13

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { ?ctrl a prog:Controller.
?ctrl prog:left ?room.
?ctrl prog:right ?room }

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 11 / 13

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { ?o1 prog:id ?id1. ?h1 ast:id ?id1.
?o2 prog:id ?id2. ?h2 ast:id ?id2.
?h1 htLeftOf ?h2.
?c a prog:Controller.
?c prog:left ?o1. ?c prog:right ?o2.}

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 11 / 13

Repairing your Twin

Semantic Reflection
One can use the knowledge graph within the program to detect
structural drift: Formulate query to retrieve all mismatching parts

1
2 List<Repairs> repairs =
3 construct("SELECT ?room ?wallLeft ?wallRight WHERE
4 {?x ast:id ?room.
5 ?x ast:right [ast:id ?wallRight].
6 ?x ast:left [ast:id ?wallLeft].
7 FILTER NOT EXISTS {?y a prog:Room; prog:id ?room.}}");

Repair function must restore structure.

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 12 / 13

Demo

Repair

Conclusion

Conclusion

Digital Twins and Asset Models
• Knowledge graph for uniformity
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Today 17:00 XbyC track: Digital Thread and Monitoring

conf conf'

conf''

Thank you for your attention

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 13 / 13

Conclusion

Digital Twins and Asset Models
• Knowledge graph for uniformity
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Today 17:00 XbyC track: Digital Thread and Monitoring

conf conf'

conf''

Thank you for your attention

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 13 / 13

Conclusion

Digital Twins and Asset Models
• Knowledge graph for uniformity
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Today 17:00 XbyC track: Digital Thread and Monitoring

conf conf'

conf''

Thank you for your attentionKamburjan et al. — Digital Twin Reconfiguration Using Asset Models 13 / 13

	Semantically Lifted Programs and Digital Twins
	Constraints on Digital Twins
	Conclusion

