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Digital Twin

A digital twin system connects a physical asset with its own (sim-
ulation) models using data streams and commands.

• How to access structure of DT?
• How to express twinning?
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Knowledge Graphs and Asset Models

Asset Model
An asset model is an organized, digital description of the compo-
sition and properties of a physical asset.

For example, an inventory enriched with spatial information, de-
sign plans, . . . Several projects specific to digital twins, e.g., the
Asset Administration Shell of the Industry 4.0.

Our Asset Model
A knowledge graph describing the structure of the physical twin.

Using Semantic Technologies for Uniform Data Access and
integration of domain knowledge.
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Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge
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Checking the Twinning Property

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Possible Constraints
• Constraint on asset model

“Is the asset model consistent?”
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure as the asset?”
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Knowledge Representation with Ontologies

Ontologies are logically formalized domain knowledge

• Intelligence for autonomous systems,
e.g., for robotics

• Data access for domain experts
e.g., in the energy industry

• Reasoning for expert systems
e.g., in the biomedical field

• Data integration
e.g., as industrial standards

Surrounding theories and tools are Semantic Technologies
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Semantic Technologies

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: hasChild some (hasChild some Person)
subClassOf GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }
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Semantically Lifted Programs and
Digital Twins



Semantically Lifted States

A semantically lifted program can interpret its own program state
as a knowledge graph and reflect on itself through it.

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]
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Example

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

A representation of (a) the full AST and (b) the full runtime state.
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SMOL

Semantic Micro Object Language
Implementation of semantical lifting in an interpreted language.
Type system and REPL for debugging available. (try it at
www.smolang.org)

Given the lifted state, we can use it for multiple operations.

• Access it to retrieve objects without traversing pointers.
• Enrich it with an ontology, perform logical reasoning and

retrieve objects using a query using the vocabulary of the
domain.

• Combine it with another knowledge graph and access external
data based on information from the current program state.
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Semantic Programming

1 class Platform(List<Server> serverList) ... end
2 class Server(List<Task> taskList) ... end
3 class Scheduler(List<Platform> platformList)
4 Unit reschedule()
5 List<Platform> l
6 := access("SELECT ?x WHERE {?x a :Overloaded}");
7 this.adaptPlatforms(l);
8 end
9 end

:Overloaded
owl:equivalentClass [

owl:onProperty (:tasks, :length);
owl:minValue 3;

].
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Example

Back to digital twins
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Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.
htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)
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SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units
(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(Cont[out Double val] sys,
3 Cont[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Knowledge Structures over Simulation Units, Kamburjan and Johnsen. [ANNSIM’22]
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Constraints on Digital Twins



Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twins.
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Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { ?ctrl a prog:Controller.
?ctrl prog:left ?room.
?ctrl prog:right ?room }
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Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { ?o1 prog:id ?id1. ?h1 ast:id ?id1.
?o2 prog:id ?id2. ?h2 ast:id ?id2.
?h1 htLeftOf ?h2.
?c a prog:Controller.
?c prog:left ?o1. ?c prog:right ?o2.}
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Repairing your Twin

Semantic Reflection
One can use the knowledge graph within the program to detect
structural drift: Formulate query to retrieve all mismatching parts

1 ....
2 List<Repairs> repairs =
3 construct("SELECT ?room ?wallLeft ?wallRight WHERE
4 {?x ast:id ?room.
5 ?x ast:right [ast:id ?wallRight].
6 ?x ast:left [ast:id ?wallLeft].
7 FILTER NOT EXISTS {?y a prog:Room; prog:id ?room.}}");

Repair function must restore structure.
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Demo

Repair



Conclusion



Conclusion

Digital Twins and Asset Models
• Knowledge graph for uniformity
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Today 17:00 XbyC track: Digital Thread and Monitoring

conf conf'

conf''

Thank you for your attention

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 13 / 13



Conclusion

Digital Twins and Asset Models
• Knowledge graph for uniformity
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Today 17:00 XbyC track: Digital Thread and Monitoring

conf conf'

conf''

Thank you for your attention

Kamburjan et al. — Digital Twin Reconfiguration Using Asset Models 13 / 13



Conclusion

Digital Twins and Asset Models
• Knowledge graph for uniformity
• Combining knowledge representation and programming
• Fully formal setting for digital twins
• Today 17:00 XbyC track: Digital Thread and Monitoring

conf conf'

conf''

Thank you for your attentionKamburjan et al. — Digital Twin Reconfiguration Using Asset Models 13 / 13


	Semantically Lifted Programs and Digital Twins
	Constraints on Digital Twins
	Conclusion

