
Knowledge Structures over Simulation Units

Eduard Kamburjan
Einar Broch Johnsen

University of Oslo
ANNSIM 2022

Introduction

Do you know what your digital twin is twinning?

• Common data representation
• Data view on both twins
• Twinning as data property

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 1 / 15

Introduction

Do you know what your digital twin is twinning?

DTPT

Commands

Sensor Data

• Common data representation
• Data view on both twins
• Twinning as data property

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 1 / 15

Introduction

Do you know what your digital twin is twinning?

DTPT

Commands

Sensor Data

• Common data representation
• Data view on both twins
• Twinning as data property

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 1 / 15

Introduction

Do you know what your digital twin is twinning?

DTPT

Commands

Sensor Data

• Common data representation
• Data view on both twins
• Twinning as data property

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 1 / 15

Introduction

Do you know what your digital twin is twinning?

DTPT

Commands

Sensor Data

• Common data representation
• Data view on both twins
• Twinning as data property

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 1 / 15

Knowledge Structures

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: GrandParent subClassOf
hasChild some (hasChild some Person)

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 2 / 15

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: GrandParent subClassOf
hasChild some (hasChild some Person)

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 2 / 15

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: GrandParent subClassOf
hasChild some (hasChild some Person)

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 2 / 15

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: GrandParent subClassOf
hasChild some (hasChild some Person)

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 2 / 15

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Peter a Person. Paul a Person. Maria a Person.
Peter hasChild Paul. Paul hasChild Maria.

OWL: GrandParent subClassOf
hasChild some (hasChild some Person)

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 2 / 15

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Peter MariaPaul
hasChild

Person Person

a a a

Person

hasChild

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 2 / 15

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason
over, and (c) query domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Peter MariaPaul
hasChild

Person Person

a a a

Person

hasChild

GrandParent

a

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 2 / 15

Contributions

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 3 / 15

Contributions

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 3 / 15

Contributions

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 3 / 15

Contributions

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 3 / 15

Contributions

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 3 / 15

Contributions

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Possible Constraints
• Constraint on asset model

“Is the asset model consistent?”
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure as the asset?”

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 3 / 15

Knowledge Graphs and Asset Models

Asset Model
An asset model is an organized, digital description of the compo-
sition and properties of a physical asset.

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 4 / 15

Knowledge Graphs and Asset Models

Asset Model
An asset model is an organized, digital description of the compo-
sition and properties of a physical asset.

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 4 / 15

Knowledge Graphs and Asset Models

Asset Model
An asset model is an organized, digital description of the compo-
sition and properties of a physical asset.

Our Asset Model
A knowledge graph describing the structure of the physical twin.

ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 4 / 15

Knowledge Graphs and Programs

Programs as Knowledge Graphs

Additionally to the data of the asset/physical twin, we can inter-
pret the program state as data of the digital twin.

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 5 / 15

Knowledge Graphs and Programs

Programs as Knowledge Graphs

Additionally to the data of the asset/physical twin, we can inter-
pret the program state as data of the digital twin.

app app'

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 5 / 15

Knowledge Graphs and Programs

Programs as Knowledge Graphs

Additionally to the data of the asset/physical twin, we can inter-
pret the program state as data of the digital twin.

app app'

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 5 / 15

Knowledge Graphs and Programs

Programs as Knowledge Graphs

Additionally to the data of the asset/physical twin, we can inter-
pret the program state as data of the digital twin.

app app'
' '

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 5 / 15

Knowledge Graphs and Programs

Programs as Knowledge Graphs

Additionally to the data of the asset/physical twin, we can inter-
pret the program state as data of the digital twin.

app app'
' '

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 5 / 15

Knowledge Graphs and Programs

Programs as Knowledge Graphs

Additionally to the data of the asset/physical twin, we can inter-
pret the program state as data of the digital twin.

app app'
' '

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 5 / 15

Knowledge Graphs and Programs

Programs as Knowledge Graphs

Additionally to the data of the asset/physical twin, we can inter-
pret the program state as data of the digital twin.

app app'
' '

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 5 / 15

Direct Mapping of Program States

SMOL: Integration of Programs and Knowledge
Map each program state to a knowledge graph and allow program
to operate on the KG. Implemented in SMOL (smolang.org).

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 6 / 15

Direct Mapping of Program States

SMOL: Integration of Programs and Knowledge
Map each program state to a knowledge graph and allow program
to operate on the KG. Implemented in SMOL (smolang.org).

1 class C (Int i) Unit inc() this.i = this.i + 1; end end
2 main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
....

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 6 / 15

Simulation Units

FMI

Functional Mock-Up Interface (FMI)

Standard for exchange of black-box (co-)simulation units, called
function mock-up units (FMUs).

• Directly exportable from simulation frameworks
• Wrapper around existing simulators
• Can also serve as interface to sensors and actuators.

Model Description

The FMI defines a set of functions on an FMU (e.g., advance time
via doStep) and a format for the interface of the FMU.

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 7 / 15

FMI

Functional Mock-Up Interface (FMI)

Standard for exchange of black-box (co-)simulation units, called
function mock-up units (FMUs).

• Directly exportable from simulation frameworks
• Wrapper around existing simulators
• Can also serve as interface to sensors and actuators.

Model Description

The FMI defines a set of functions on an FMU (e.g., advance time
via doStep) and a format for the interface of the FMU.

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 7 / 15

Model Description

<fmiModelDescription fmiVersion="2.0" modelName="Example" ...>
<CoSimulation needsExecutionTool="true" .../>
<ModelVariables>

<ScalarVariable name="p" variability="continuous"
causality ="parameter">

<Real start="0.0"/>
</ScalarVariable>
<ScalarVariable name="input" variability="continuous"

causality ="input">
<Real start="0.0"/>

</ScalarVariable>
<ScalarVariable name="val" variability ="continuous"

causality ="output" initial ="calculated">
<Real/>

</ModelVariables>
<ModelStructure> ... </ModelStructure>

</fmiModelDescription>

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 8 / 15

SMOL and FMI

Functional Mock-Up Objects (FMOs)

Tight integration of simulation units using FMI into programs.

1 //setup
2 Cont[out Double val] shadow =
3 simulate("Sim.fmu", input=sys.val, p=1.0);
4 Cont[out Double val] sys = simulate("Realsys.fmu");
5 Monitor m = new Monitor(sys,shadow); m.run(1.0);

Integration
• Type of FMO directly checked against model description
• Variables become fields, functions become methods
• Causality reflected in type

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 9 / 15

SMOL and FMI

Functional Mock-Up Objects (FMOs)

Tight integration of simulation units using FMI into programs.

1 //setup
2 Cont[out Double val] shadow =
3 simulate("Sim.fmu", input=sys.val, p=1.0);
4 Cont[out Double val] sys = simulate("Realsys.fmu");
5 Monitor m = new Monitor(sys,shadow); m.run(1.0);

Integration
• Type of FMO directly checked against model description
• Variables become fields, functions become methods
• Causality reflected in type

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 9 / 15

SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units
(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(Cont[out Double val] sys,
3 Cont[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Is this twinning something? Is this setup correctly?

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 9 / 15

SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units
(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor(Cont[out Double val] sys,
3 Cont[out Double val] shadow)
4 Unit run(Double threshold)
5 while shadow != null do
6 sys.doStep(1.0); shadow.doStep(1.0);
7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Is this twinning something? Is this setup correctly?

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 9 / 15

Constraints on Digital Twins

SMOL and FMI

SMOL with FMOs
FMOs are objects, so they are part of the knowledge graph.

1 class Monitor(Cont[out Double val] sys,
2 Cont[out Double val] shadow)

run:monitor prog:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 10 / 15

SMOL and FMI

SMOL with FMOs
FMOs are objects, so they are part of the knowledge graph.

1 class Monitor(Cont[out Double val] sys,
2 Cont[out Double val] shadow)

run:monitor prog:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 10 / 15

Semantically Lifting the Digital Twin

SHACL
Define structural requirements as graph constraints in SHACL.

Example
Every monitor has a shadow FMU in its shadow field.

x:ShadowShape a sh:NodeShape;
sh:targetClass prog:Monitor ;

sh:property [
sh:path (prog:shadow smol:hasName);
sh:hasValue "Shadow" ;].

SHACL ignores reasoning, pure data constraints.

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 11 / 15

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twins.

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 12 / 15

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

1 class Room(Cont[...] f,
2 Wall inner, Wall outer, Controller ctrl,
3 Int id) end
4 class Controller(Cont[...] f,
5 Room left, Room right, Int id) end
6 class InnerWall(Cont[...] f, Room left, Room right) end

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 12 / 15

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

1 class Room(Cont[...] f,
2 Wall inner, Wall outer, Controller ctrl,
3 Int id) end
4 class Controller(Cont[...] f,
5 Room left, Room right, Int id) end
6 class InnerWall(Cont[...] f, Room left, Room right) end

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 12 / 15

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { ?ctrl a prog:Controller.
?ctrl prog:left ?room.
?ctrl prog:right ?room }

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 12 / 15

Semantically Lifting the Digital Twin

SPARQL
Define structural requirements as queries in SPARQL on combined
knowledge graph, to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { ?o1 prog:id ?id1. ?h1 ast:id ?id1.
?o2 prog:id ?id2. ?h2 ast:id ?id2.
?h1 htLeftOf ?h2.
?c a prog:Controller.
?c prog:left ?o1. ?c prog:right ?o2.}

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 12 / 15

Outlook: Repairing your Twin

Semantic Reflection
One can use the knowledge graph within the program to detect
structural drift: Formulate query to retrieve all mismatching parts

1
2 List<Repairs> repairs =
3 construct("SELECT ?room ?wallLeft ?wallRight WHERE
4 {?x ast:id ?room.
5 ?x ast:right [ast:id ?wallRight].
6 ?x ast:left [ast:id ?wallLeft].
7 FILTER NOT EXISTS {?y a prog:Room; prog:id ?room.}}");

Repair function must restore structure.

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 13 / 15

Conclusion

Contributions

Combining the Knowledge
• Export asset model of physical system as knowledge graph
• Export program state with simulators as knowledge graph
• Formulate constraints over combined knowledge

Possible Constraints
• Constraint on asset model

“Is the asset model consistent?”
• Constraint on program

“Is this a sensible simulation structure?”
• Constraints on twinning

“Does the program have the same structure as the asset?”

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 14 / 15

Conclusion

Making sure your digital twin is twinning something.

Presented
• Semantic lifting of FMOs
• Using ontological information to formulate twinning

On-Going and Future Work
• Reconfiguring DT based on changes in asset model
• Adding ontological information to FMI model description

Thank you for your attention

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 15 / 15

Conclusion

Making sure your digital twin is twinning something.

Presented
• Semantic lifting of FMOs
• Using ontological information to formulate twinning

On-Going and Future Work
• Reconfiguring DT based on changes in asset model
• Adding ontological information to FMI model description

Thank you for your attention

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 15 / 15

Conclusion

Making sure your digital twin is twinning something.

Presented
• Semantic lifting of FMOs
• Using ontological information to formulate twinning

On-Going and Future Work
• Reconfiguring DT based on changes in asset model
• Adding ontological information to FMI model description

Thank you for your attention

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 15 / 15

Conclusion

Making sure your digital twin is twinning something.

Presented
• Semantic lifting of FMOs
• Using ontological information to formulate twinning

On-Going and Future Work
• Reconfiguring DT based on changes in asset model
• Adding ontological information to FMI model description

Thank you for your attention

Kamburjan and Johnsen — Knowledge Structures over Simulation Units 15 / 15

	Knowledge Structures
	Simulation Units
	Constraints on Digital Twins
	Conclusion

