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ABSTRACT
A Software Product Line (SPL) is a family of similar programs (called

variants) generated from a common artifact base. AMulti SPL (MPL)

is a set of interdependent SPLs (i.e., such that an SPL’s variant can

depend on variants from other SPLs). MPLs are challenging tomodel

and implement efficiently, especially when different variants of the

same SPL must coexist and interoperate. We address this challenge

by introducing variability modules (VMs), a new language construct.

A VM represents both a module and an SPL of standard (variability-

free), possibly interdependent modules. Generating a variant of

a VM triggers the generation of all variants required to fulfill its

dependencies. Then, a set of interdependent VMs represents anMPL

that can be compiled into a set of standard modules. We illustrate

VMs by an example from an industrial modeling scenario, formalize

them in a core calculus, provide an implementation for the Java-like

modeling language ABS, and evaluate VMs by case studies.
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1 INTRODUCTION
Modeling variability aspects of complex softwre systems poses

challenges currently not adequately met by standard approaches

to software product line engineering (SPLE) [6, 26]. A first model-

ing challenge is the situation when more than one product line is

involved and these product lines depend on each other. Such sets

of related and interdependent product lines are known as a multi

product line (MPL) [16]. A second modeling challenge, orthogonal

to MPLs, is the situation when different product variants from the
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same product line need to co-exist in the same context and must be

interoperable [8].

In Sect. 2 we exemplify these two challenges in the context of

an industrial case study from the literature [19, 21], performed for

Deutsche Bahn Netz AG, where: (i) several interdependent product

lines for networks, signals, switches, etc., occur; and (ii) for exam-

ple, mechanic and electric rail switches are different variants of the

same product line, and some train stations include both. Overall,

MPLs give rise to the quest for mechanisms for hiding implementa-

tion details, reducing dependencies, controlling access to elements,

etc. [16].

We take the standard concept of a module, used to structure large

software systems since the 1970s, as a baseline. Software modules

are supported in many programming and modeling languages, in-

cluding ABS, Ada, Haskell, Java, Scala, to name just a few. Because

modules are intended to facilitate interoperability and encapsula-

tion, no further ad hoc concepts are needed for this purpose. We

merely add variability to modules, rendering each module a prod-

uct line of standard, variability-free modules. We call the resulting

language concept variability module (VM).

The main advantage of VMs is their conceptual simplicity: as

a straightforward extension of standard software modules, they

are intuitive to use for anyone familiar with modules and with

software product lines. Each VM is both, a module and a product

line of modules. This reduction of concepts not only drastically

simplifies syntax, but reduces the cognitive burden on the modeler.

We substantiate this claim: in Sect. 2 we illustrate the railways

MPL case study in terms of VMs without the need to introduce any

formal concepts. Nevertheless, there are a number of fundamental

design decisions to take in the VM design. These are motivated and

discussed in Sect. 3.

We formulate the VM concept as an extension of the standard

concept of module for Java-like (i.e., object-oriented, class-based

and strongly typed) languages. To support variability, VMs employ

delta-oriented programming (DOP) [1, Sect. 6.6.1], [28]. Specifically,

we contribute (i) a theoretical foundation of VMs, including formal

syntax and semantics, in terms of a core calculus; and (ii) an imple-

mentation of VMs as an extension of the ABS language [15, 18].

We choose ABS because it features native implementations of

DOP and it was successfully used in industrial case studies for

variability modeling [21, 24, 37]. We stress that VMs can be added
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on top of any Java-like language. For instance, a proof-of-concept

realization of VM for the Java programming language, based on

architectural patterns, is (informally) described in [34]. That paper

demonstrates the usefulness of the VM concept, but lacks several

VM features introduced here, as well as a formal foundation.

The formal underpinnings of VMs are covered in Sects. 4–7. In

Sect. 4 we declare the VM syntax and spell out consistency require-

ments. Sect. 5 formalizes a statically checkable property of VMs:

the principle of encapsulated variability, which ensures that any

dependency among VMs can be reduced to dependencies among

standard variability-free modules. In Sect. 6 we define variant gen-

eration in terms of a “flattening” semantics: the variants requested

from an SPL represented by a VM, together with necessary vari-

ants of other VMs it depends upon, are generated by translating

each VM into a set of variability-free, standard modules (one per

variant). This results in a variability-free program with suitably

disambiguated identifiers and is sufficient to define the semantics

of VMs precisely, to compile and to run them. In Sect. 7 we prove

soundness of flattening.

Sect. 8 describes how the VM concept is integrated into the

existing ABS tool chain. As long as one has control over the parser

and abstract syntax tree, it is relatively straightforward to realize the

flattening algorithm of Sect. 6 within any compiler tool chain. We

evaluate VMs by means of case studies. Related work is discussed

in Sect. 9, we conclude in Sect. 10 by outlining ongoing work.

2 INTRODUCING VARIABILITY MODULES
We illustrate VMs with an example based on an industrial case

study from railway engineering [21].

Our scenario contains sig- Signal

Aspect

Light Form

Dir Switch

Electric Mechanic

Figure 1: Features of Signals
and Switches.

nals, switches, interlocking sys-

tems, that use multiple vari-

ants of signals and switches,

and a railway station that uses

multiple variants of interlock-

ing systems. Fig. 1 shows the

featuremodels for switches and

signals.
1
A signal is either a light signal, using bulbs and colors to

indicate the signal aspect or a form signal that uses mechanically

moved shapes. All variants of signal have the interface to the inter-

locking system and basic functionality, such as aspect change, in

common (e.g., signals have always the aspects “Halt” and “Go”). If

multiple outgoing tracks are possible, a signal may also indicate the

direction the train is going—so there are 4 signal variants. Variabil-

ity shows, for example, in the presence of an additional class Bulb in

the light signals variant and in the fact that method setToHalt (which

changes the shown aspect to “Halt”) is different for form signals

and light signals (the latter communicate with their Bulb instances).

Signals are modeled by the VM Signals in Fig. 2. It starts with

the keyword module, followed by the module name, by the list of ex-

ported module elements, and by the feature list constrained with a

propositional formula describing the products. The module header

1
Feature models [1] specify software variants in terms of features. A feature is a name

representing some functionality, a set of features is called a configuration, and each

variant is identified by a valid configuration (called a product, for short). Equivalent

representations of feature models have been proposed in the literature, like feature

diagrams (Fig. 1) and propositional formulas (lines with keyword features in Figs. 2–3).

// MODULE HEADER
module Signals; export LSig , CSig , ISig;
features Light , Form , Dir with Light <-> !Form;
configuration KSig = {Dir};
product LSig = {Light};
// CORE PART
unique interface ISig { Bool eqAspect(ISig); Unit setToHalt (); }
class CSig implements ISig { }
// DELTA PART
delta LDelta; adds class CBulb { };

modifies class CSig {
Unit addBulb () { new CBulb ();} };

delta FDelta; modifies class CSig { };
delta DDelta; adds interface IDir { };

adds class CDir implements IDir{ };
modifies class CSig { adds IDir getDirection () { } };

delta LDelta when Light;
delta FDelta when Form;
delta DDelta when Dir;

Figure 2: An SPL of signals as a VM.

// MODULE HEADER
module Switches; export ITrack , CTrack , CSwitch , ISwitch;
features Electric , Mechanic with Electric <-> !Mechanic;
// CORE PART
unique interface ISwitch { }
class CSwitch implements ISwitch { }
unique interface ITrack { ISwitch appendSwitch (); }
class CTrack implements ITrack {

ISwitch appendSwitch () { ISwitch sw = new CSwitch (); return sw;}
}
// DELTA PART
delta EDelta; modifies class CSwitch { };
delta MDelta; modifies class CSwitch {

adds Bool isMechanic () { return True; }};
delta EDelta when Electric; delta MDelta when Mechanic;

Figure 3: An SPL of tracks and switches as a VM.

is terminated by a list of configuration definitions (here just one)

and by a list of product definitions (here just one), where each

definition gives a name to a set of features. Next are declarations of

interface ISig and of class CSig that implements ISig. By default, class

and interface definitions can be modified/removed by deltas to ob-

tain different product variants, however, class/interface definitions

annotated by the keyword unique must be the same in all product

variants. They enable interoperability between different product

variants of the same VM. Class and interface declarations are fol-

lowed by the deltas that describe the implementation of different

variants and their application conditions. Classes and interfaces

added by deltas can be modified or removed again by other deltas.

The delta LDelta, triggered by feature Light, adds a class Bulb and

modifies the class CSig to reference the class Bulb. Deltas FDelta and

DDelta implement features Form and Dir, respectively.
Switches and tracks are modeled by the VM in Fig. 3. It is struc-

turally similar to Signals. A switch is either electric (controlled from

the interlocking system) or mechanic (controlled locally by a lever).

Class CTrack contains a reference to class CSwitch, which is not declared

unique. So, even though class CTrack is not modified/removed by any

delta, its declaration cannot be annotated with unique.

Interlocking systems are modeled by the VM in Fig. 4. An in-

terlocking system manages switches and signals that lie on tracks,

it imports all the exported elements (feature names are implic-

itly exported/imported) of the VMs Signals and Switches. The VM

InterlockingSys has four variants, modeled by two optional features.

Line 6 contains a product definition that gives name PSwitch to a prod-

uct of the VM Switch. It is called an open product definition, because

it depends on the selected product of the VM InterlockingSys itself: if

2



1 // MODULE HEADER
2 module InterlockingSys;
3 export *;
4 import * from Signals; import * from Switches;
5 features Modern , DirOut with True;
6 product PSwitch for Switches =
7 { Modern => {Electric}, !Modern => {Mechanic} }
8 product PSignal for Signals =
9 { DirOut && Modern => {Light ,Dir}, Modern => {Light},
10 DirOut && !Modern => {Form ,Dir}, !Modern => {Form} }
11 // CORE PART
12 unique interface IILS { }
13 class CILS {
14 Bool testSig () {
15 ISwitch swNormal = new CSwitch () with {Electric };
16 ITrack track = new CTrack () with {Mechanic };
17 ISwitch swNew = track.appendSwitch ();
18 ISig sigNormal = new CSig() with LSig;
19 ISig sigShunt = new CSig() with {Form};
20 return sigNormal.eqAspect(sigShunt );
21 }
22 ISwitch createSwitch () { return new CSwitch () with PSwitch; }
23 ISignal createOutSignal () { return new CSignal () with PSignal; }
24 ISignal createInSignal () {
25 return new CSignal () with PSignal - {Dir}; }
26 }

Figure 4: An SPL of interlocking systems as a VM.

feature Modern is selected PSwitch specifies an electric switch, other-

wise it specifies a mechanic switch (product clauses are evaluated

in order until a valid one is found). Line 8 contains an open product

definition for the VM Signal. It is worth observing that open prod-

uct definitions enable implementing different variants of the VM

InterlockingSys even without using deltas. Method testSig of class CILS

instantiates classes from two different product variants of Switches

and from two different product variants of Signals. All references to

non-unique imported classes/interfaces specify a product, by using a

with clause. In a with clause, the product can be specified by explicitly

listing its features, by using one of the defined product names, or

(more generally) by a set-theoretic expression. For example, track

is taken from product {Mechanic} of module Switches, while sigNormal

uses the product name LSig imported from Signals. In line 17 a switch

is added to a track element: since track contains a reference to an

instance of the mechanic variant of class CTrack, appendSwitch() will

add a mechanic switch. All signal variants of the VM Signals share

the same definition of the unique ISig interface, thus making it ac-

cessible to anyone that imports it from Signals. On the other hand,

the CBulb class is only used inside the VM Signals. Different product

variants are fully interoperable, as witnessed by the expression in

line 20.

A VM that does not contain a feature model (and, therefore,

no configuration definitions, no open product definitions and no

deltas) is called a variability-free module (VFM). All classes of a

VFM are considered unique (there is no need to write the unique

keyword). Each program must have exactly one main module: a

VFM containing an implicit class providing an initialization method

declared by the keyword init. The whole railway station is modeled

by a main module, given in Fig. 5, together with the VM Signals in

Fig. 2, the VM Switches in Fig. 3, and the VM InterlockingSys in Fig. 4. It

represents a MPL—we call it the railway station MPL.

3 DESIGN DECISIONS
Belowwe briefly illustrate the rationale behind themajor VMdesign

decisions.

module RailwayStation;
import * from InterlockingSys;
init {

IILS ils1 = new CILS() with { DirOut };
IILS ils2 = new CILS() with { Modern };

}

Figure 5: Railway station as a main module.

Unique Annotation. As explained above, unique class/interface

declarations in a VM M are shared by all variants of M. Without

the unique keyword, unique class/interface declarations should be

inferred (cf. Def. 7.1, Thm. 7.1 below), thus creating the danger

of unintended changes of the set of unique classes/interfaces in a

program. Obviously, a tool that points out all class/interface decla-

rations that could be annotated unique would be useful.

Principle of Encapsulated Variability (PEV). The PEV pre-

scribes that each VM can depend on other VMs only by using classes

or interfaces that are either unique or that belong to a specific variant.
If a VM program adheres to the PEV, then flattening (defined in

Sect. 6)—which removes variability and generates those variants

required by the dependencies—can resolve all dependencies among

VMs to dependencies among VFM.

The main reasons for adopting the PEV are simplicity and us-
ability: it suffices to work with a standard module concept (no need

for composition or disambiguation operators as, for example, [22])

and it is easy for the modeler to find out to which implementation

any object reference in a VM refers to.

Local Feature Model. Each VM has its own feature model dis-

joint from those of other VMs: each feature name is local to the VM
where it is declared, and there is no global name space for features.

Adding a global feature model connecting the local feature models

might be useful (e.g., to declare a constraint that certain variants

must not co-exist in the same application), but creates overhead.

Implicit Export/Import Flattening. Each VM M must declare

the union of the exports/imports of all its variants. Then the flatten-

ing generates the export/import clauses of each variant by dropping

export clauses for classes/interfaces not present in that variant, and

by creating the import clauses for the required variants of the VMs

mentioned in the import clauses of M. This design choice avoids

the need to define delta operations on export/import clauses in the

language that then would be supplied by the modeler.
2
Altogether,

it reduces the cognitive burden to understand VM code and the

effort to write it.

Family-based checking. VM are designed to permit family-

based analysis [36]. The implementation of VM as part of the ABS

compiler tool chain (Sect. 8) checks PEV before flattening. Moreover,

we are currently implementing a family-based analysis (described

in a technical report [10]) to check—before flattening—whether a

program Prg is delta-application sound (thus ensuring, according to

Thm. 7.4, that flattening will succeed), whether the generated VFM

will be well-typed, and, more generally, whether the variants of the

VMs in Prg as a whole (including those not generated by flattening

Prg) would form a well-typed VFM.

2
To extend VMs with delta operations on export clauses is straightforward. It would

allow sometimes to shorten export clauses. On the other hand, since implicit flattening

drops all unused imports, deltas on import clauses provide no advantage.

3



Prg ::= Mdl Program

Mdl ::= MdlH MdlC MdlD (Variability) Module

MdlH ::= module M; [[[ export tC; ]]]
import tC from M; [[[ features F with Φ; KD ]]] PD Module Header

tC ::= tN tN ||| * Trade Clause

tN ::= C ||| I ||| K ||| P Traded names

KD ::= configuration K = KE Configuration Declaration

KE ::= K ||| P ||| { F } ||| KE+ KE ||| KE ∗ KE ||| KE− KE Configuration Expression

PD ::= product P [[[ for M ]]] = KE Closed Product Declaration

||| product P [[[ for M ]]] = { PC ,PC } Open Product Declaration

PC ::= Φ => KE Pattern Clause

MdlC ::= Defn [[[ init { S } ]]] Module Core Part

Defn ::= [[[ unique ]]] ID ||| [[[ unique ]]] CD Interface/Class Definition

ID ::= interface I [[[ extends IR IR ]]] { MH } Interface Definition

IR ::= I [[[ with KE ]]] ||| M.I [[[ with KE ]]] Interface Reference

MH ::= T m ( T x ) Method Header

T ::= IR ||| Unit ||| Int ||| . . . Type

CD ::= class C [[[ implements IR IR ]]] { FD MD } Class Definition

FD ::= T f; Field Definition

MD ::= MH { S return E;} Method Definition

S ::= [[[ T ]]] v = E; ||| E.f = E; ||| . . . Statement

E ::= x ||| E.f ||| E.m( E ) ||| new CR() [[[ with KE ]]] ||| . . . Expression

CR ::= C ||| M.C Class Reference

MdlD ::= Dlt CK Module Delta Part

Dlt ::= delta D; CO IO Delta

CO ::= adds CD ||| removes class C

||| modifies class C [[[ adds IR IR ]]] [[[ removes IR IR ]]] { AO } Class Operation

AO ::= adds AD ||| removes HD ||| modifies MD Attribute Operation

AD ::= FD ||| MD Attribute Declaration

HD ::= FD ||| MH Header Declaration

IO ::= adds ID ||| removes interface I

||| modifies interface I [[[ adds IR IR ]]] [[[ removes IR IR ]]] { SO } Interface Operation

SO ::= adds MH ||| removes MH Signature Operation

CK ::= DAC DAO Configuration Knowledge

DAC ::= delta D when Φ; Delta Activation Condition

DAO ::= D D < D D < D D ; Delta Application Order

Figure 6: ABS-VM abridged syntax.

4 SYNTAX OF ABS VARIABILITY MODULES
The abridged syntax of ABS with VMs (ABS-VM, for short) is given

in Fig. 6. It defines the OO fragment of ABS [15, 18], extended with

VM concepts. A program is a sequence of VMs—as usual, 𝑋 denotes

a possibly empty finite sequence of elements 𝑋 . A VM consists

of a header (MdlH), a core part (MdlC), and a delta part (MdlD). A VM

header comprises the keyword module followed by the name of the

VM, by some (possibly none) import and export clauses (listing the

class/interface/configuration/product names, respectively, that are

exported or imported by the VM), by the optional definition of a

feature model (where F are the features and Φ is a propositional

formula over features), by a list of configuration definitions and by

a list of product definitions. A configuration expression KE is a set-

theoretic expression over sets of features (+, ∗ and − denote union,

intersection and difference, respectively). A product definition PD

is closed if it is of the form product P [[[ for M ]]] = KE, otherwise it is

open. The clauses in an open product definition are examined in

sequence until the first valid clause is found. The right-hand sides

of configuration definitions do not contain product names, and the

right-hand sides of closed product definitions do not contain open

product names. Recursive configuration/product definitions are

forbidden.

Both the module core part and the module delta part may be

empty. A module core part comprises a sequence of class and in-

terface definitions Defn. As an extension to ABS syntax, each of

these definitions may be prefixed by the keyword unique. Each use

of a class, interface or product name imported from another mod-

ule may be prefixed by the name of the module—the name of the

module must be used if there are ambiguities (for example, when

an interface with name I is imported from two different modules).

Moreover, each use of a non-unique class or interface imported

from another module must be followed by a with-clause, specifying

(by means of a configuration expression) the variant of the VM it

is taken from. From now on, we consider only ABS-VM programs

containing one main module (as in the final paragraph of Sect. 2)

such that any other VM does not contain the keyword init. Observe

that a VFM (as defined in the final paragraph of Sect. 2) without a

product definition (a VFM may contain closed product definitions)

and no occurrences of the with keyword is a variability-free ABS
module.

The module delta part comprises a sequence of delta definitions

Dlt followed by configuration knowledge CK. Each delta specifies a

number of changes to the module core part. A delta comprises the

keyword delta followed by the name of the delta, by a sequence of

class operations CO and by a sequence of interface operations IO.

An interface operation can add or remove an interface definition, or

modify it by adding/removing names to the list of the extended inter-

faces or by adding/removing method headers. A class operation can

add or remove a class definition, or modify it by adding/removing

names to the list of the implemented interfaces, by adding/remov-

ing fields or by adding/removing/modifying methods. Modifying a

method means to replace its body with a new body. The new body

may call the reserved method name original, which during delta

application is bound to the previous implementation of the method.

Configuration knowledge CK provides a mapping from products

to variants by describing the connection between deltas and fea-

tures: it specifies an activation condition Φ (a propositional formula

over features) for each delta D by means of a DAC clause; and it speci-

fies an application ordering between deltas by means of a sequence

of DAO clauses. Each DAO clause specifies a partial order over the set of

deltas in terms of a total order on disjoint subsets of delta names—a

DAO clause allows developers to express (as a partial order) depen-

dencies between the deltas (which are usually semantic “requires”

relations [3]). The overall delta application order is the union of

these partial orders—the compiler checks that the resulting relation

𝑅 represents a specification that is consistent (i.e., 𝑅 is a partial

order) and unambiguous (i.e., all the total delta application orders

that respect 𝑅 generate the same variant for each product). Tech-

niques for checking that 𝑅 is unambiguous are described in the

literature [3, 23].

The following definition of normal form formalizes a minimum

consistency requirement on ABS-VM programs.

Definition 4.1 (ABS-VM Normal Form). An ABS-VM program Prg

is in normal form if all its VMs M satisfy the following conditions:

(1) All class references CR and interface references IR occurring in

M are qualified, that is of the form M'.N for some module name

4



M' and class/interface name N, and if M'≠M then M contains the

import clause import N from M'.

(2) If M contains a clause import tC from M' then M'≠M and all traded

names in tC occur in the export clause of M'. No open product

names are exported.

(3) Let M contain a definition

(a) configuration K = KE. Then: (i) all feature names occurring in

KE are features of M and all configuration names occurring

in KE have been already defined in M; and (ii) no product

name occurs in KE.

(b) product P = KE then: (i) condition (3a).(i) above holds; (ii) all

product names occurring in KE have been already defined

in M and are closed; and (iii) KE denotes a product of M.

(c) product P for M'= KE. Then: (i) M ≠ M'; (ii) all feature names oc-

curring in KE are features of M' and all configuration/prod-

uct names occurring in KE are imported from M'; and (iii) KE

denotes a product of M'.

(d) product P for M'= {Φ1=> KE1,...,Φ𝑛=> KE𝑛} (𝑛 ≥ 1). Then: (i) M ≠

M'; (ii) for all 1 ≤ 𝑗 ≤ 𝑛, all configuration/product names

occurring in KE𝑗 are imported from M'; (iii) for all 1 ≤ 𝑗 ≤ 𝑛,

all feature names occurring in Φ𝑗 are features of M, all fea-

ture names occurring in KE𝑗 are features of M', at least one

product of M satisfies (∧
1≤𝑖< 𝑗 ¬Φ𝑖 ) ∧ Φ𝑗 , and KE𝑗 denotes a

product of M'; and (iv) all products of M satisfy
∨

1≤𝑖≤𝑛 Φ𝑖 .

(e) product P = {Φ1=> KE1,...,Φ𝑛=> KE𝑛} (𝑛 ≥ 1). Then: (i) for all
1 ≤ 𝑗 ≤ 𝑛, all configuration/product names occurring

in KE𝑗 have been already defined in M; (ii) the condition

obtained from condition (3d).(iii) above by replacing M' by

M holds; and (iii) condition (3d).(iv) above holds.

(4) If M contains an occurrence of new M'.C()with KE or M'.I with KE,

then: (i) all feature names occurring in KE are features of M';

(ii) if M'=M then all configuration/product names occurring in

KE are defined in M; (iii) if M'≠M then all configuration/product

names occurring in KE are either imported from M' or defined

in M by a declaration of the form product P for M' = · · ·; and (iv) KE
denotes a product of M'.

Checking whether a program can be transformed into normal

form (and, if so, doing it) is straightforward—for each VM M: condi-

tions (1), (3a), (3b), (3e) and (when M'=M) condition (4) can be ensured

by inspecting only M; condition (2) and (when M'≠M) condition(4) can

be ensured by inspecting only M and the header of the modules M'

mentioned in the import clause of M. Conditions (3b).(iii), (3c).(iii),

(3d).(iii), (3d).(iv) and (4).(iv) can be checked with a SAT solver. Pro-

grams that cannot be transformed into normal form are rejected by

the compiler.

5 ENCAPSULATED VARIABILITY
In this section we formalize the principle of encapsulated variability.

We only consider programs in normal form (Def. 4.1). To formalize

and to implement automated checking of PEV adherence we intro-

duce the notion of dependency and the functions CORE, UNIQUE,
and BASE.

Definition 5.1 (Dependency). A VM M' depends on a VM M if M'

contains an occurrence of M.N where N is a class/interface name. An

occurrence of M.I with KE or new M.C() with KE is called with-dependency
(on M.I or M.C, respectively), while an occurrence of M.I or new M.C(...)

(i.e. not followed by a with) is called with-free-dependency (on M.I

or M.C, respectively). An occurrence of M.I with KE or M.C() with KE is

called with-open-dependency if KE contains an occurrence of an open

product name P, it is called with-closed-dependency else.

Definition 5.2 (Functions CORE, UNIQUE, BASE). Given a pro-

gram Prg; for all VMs M of Prg: CORE(Prg, M) is the set of qualified

names M.N of all interfaces/classes N whose definition occurs in

the core part of M; UNIQUE(Prg, M) ⊆ CORE(Prg, M) contains those
class/interface names whose declaration is annotated with unique;

BASE(Prg, M) ⊆ CORE(Prg, M) contains those class/interface names

that are modified, removed or added by some delta of M.

Now we can formalize the PEV as follows:

Definition 5.3 (Principle of Encapsulated Variability (PEV)). A
program Prg (in normal form) adheres to PEV, if for all VMs M of Prg:

(1) UNIQUE(Prg, M) ∩ BASE(Prg, M) = ∅.
(2) For all M.N ∈ UNIQUE(Prg, M) the definition Defn of N (in the

core part MdlC of M) does not contain with-open-dependencies

and, for all with-free-dependencies on M.N' occurring in Defn, it

holds that M.N' ∈ UNIQUE(Prg, M).
(3) For all with-free-dependencies on M'.N occurring in M: if M' ≠ M

then M'.N ∈ UNIQUE(Prg, M').
To check whether a program adheres to the PEV is straightfor-

ward. Programs that do not adhere to the PEV are rejected by the

compiler. According to the PEV, VMs can support two types of

interaction among variants:

Variant interoperability. Different variants of the same VM can co-

exist and cooperate via unique classes/interfaces. For instance, in

the interlocking system MPL of Sect. 2, all interfaces are unique
and all classes are not unique (which is a common pattern). Then,

in line 20 of Fig. 4, an instance of class CSig in the variant of VM

Signal for product {Light} receives an invocation of method eqAspect

that (accepts an argument of type Signal as formal parameter and)

takes as parameter an instance of CSig in the variant of Signal for

product {Form}.

Variant interdependence. The code of a variant of a VM M1 can de-

pend on the code of a variant of a VM M2 (and possibly vice

versa). I.e., the code of M1 refers to unique classes/interfaces of M2
(via with-free-dependencies) or to classes/interfaces of a specific

variant of M2 (via with-dependencies). A special case of variant

interdependence is when M1 = M2, i.e., M1 has a with-dependency

on a class/interface of M1 itself. Then in the flattened program

a variant of M1 will contain an occurrence of a class/interface

name that is declared in a different variant of M1.

6 SEMANTICS OF VARIABILITY MODULES
In this section, we assume (without loss of generality): (i) the con-

sidered program Prg is in normal form and adheres to the PEV;

(ii) all configuration definitions KD and closed product definitions

PD have been resolved in Prg, i.e. all occurrences of their names are

removed from export/import clauses of Prg, and all their remaining

occurrences in Prg were replaced with their value (a set of features).

In Sect. 6.1 we introduce auxiliary functions for the extraction

of relevant information from ABS-VM programs. Then, in Sect. 6.2

we give rewrite rules for transforming an ABS-VM program into a

variability-free ABS program.
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6.1 Auxiliary Functions
Definition 6.1 (Lookup Functions). Given a VM M of Prg we define

the sets:

• mdlUnique(Prg, M) for the interface/class definitions Defn in

the Module Core Part MdlC of M annotated with unique, and

mdlNotUnique(Prg, M) for the remaining interface/class defi-

nitions.

• mdlInit(Prg, M) for the init block of M, if it exists, or the empty

sequence otherwise; also mdlInit(Prg) for the name M of the

VM such that mdlInit(Prg, M) is not the empty sequence.

• mdlDelta(Prg, M, 𝜋) where 𝜋 is a product of M, for any ordered

sequence Dlt containing exactly those deltas of M that are

activated by 𝜋 , respecting the order among deltas specified

in the configuration knowledge of M.

Themeaning of with-free-dependencies or open with-dependencies

𝛿 occurring in a VM M is relative to the product 𝜋 of M being con-

sidered. We say a dependency 𝛿 is ground to mean that it is either

with-free or the configuration expression KE in its with-clause is a set

of features 𝜋 = {F1,. . .,F𝑛} (𝑛 ≥ 0). The following definition intro-

duces notations for extracting the meaning of ground dependencies

occurring in the core part of a given VM of a given program.

Definition 6.2 (Ground Dependency Meaning). Given a program

Prg, a VM M of Prg, a ground dependency 𝛿 on M'.N occurring in M, let

𝑥𝑐 be either the symbol ⊥ or a product 𝜋 of M. We define:

⇓ (Prg, M, 𝛿, 𝑥𝑐) =
(M',⊥) when M'.N ∈ UNIQUE(Prg, M')
(M', 𝑥𝑐) when M' = M, 𝛿 is with-free and M'.N ∉ UNIQUE(Prg, M)
(M', 𝜋) when 𝛿 is M'.N with 𝜋 and M'.N ∉ UNIQUE(Prg, M')

Let all the dependencies occurring in the core part MdlC of M be ground.

Then ⇓ (Prg, M, MdlC, 𝑥𝑐) = {⇓ (Prg, M, 𝛿, 𝑥𝑐) | 𝛿 is a dependency in MdlC}.

Flattening a program Prg may require to generate more than one

variant for each of its VMs. The flattening process generates new

names for the generated variability-free ABS modules implement-

ing the required variants, and translates the dependencies occurring

in Prg to suitable dependencies using the generated names. The fol-

lowing definition introduces notations for the names of the gener-

ated modules and the translation of with- and with-free-dependencies

into the corresponding dependencies among non-variable ABS

modules.

Definition 6.3 (NewModule Name, Dependency Translation). Given
a program Prg, a VM M of Prg, let 𝑥𝑐 be either ⊥ or a product 𝜋 of M.

We denote by ⇑ (M, 𝑥𝑐) the name of the module that implements the

unique part of the variants of M if 𝑥𝑐 = ⊥, or the name of the module

that implements the non-unique part of the variant of M for product

𝜋 . Moreover, given a ground dependency 𝛿 on M'.N, we define:

⇑ (Prg, M, 𝛿, 𝑥𝑐) =
⇑(M',⊥).N when M'.N ∈ UNIQUE(Prg, M')
⇑(M', 𝑥𝑐).N when M' = M, 𝛿 is with-free and M'.N ∉ UNIQUE(Prg, M)
⇑(M', 𝜋).N when 𝛿 is M'.N with 𝜋 and M'.N ∉ UNIQUE(Prg, M')

Let all the dependencies occurring in the core part MdlC of M be

ground. Then we define ⇑ (Prg, M, MdlC, 𝑥𝑐) as the VM core MdlC' ob-

tained from MdlC by replacing each dependency 𝛿 occurring in it

with ⇑ (Prg, M, 𝛿, 𝑥𝑐).

6.2 Flattening
The following definition formalizes the application of an ordered

sequence of deltas Dlt (the deltas activated by a product 𝜋 of a VM

M) to a sequence Defn of interface/class definitions (the non-unique

class/interface definitions in the module core part MdlC of M).

Definition 6.4 (Delta Application). Given a sequence of declara-

tions Defn and an ordered sequence of deltas Dlt, we denote with

the relation ( Dlt, Defn) →∗
Defn' that Defn' is the outcome of the

procedure described in App. A.

For all VMs M of Prg, if the products 𝜋 of M are given, then the

right-hand side of each open product definition product P = · · · or
product P for M' = · · · in M can be evaluated to a product. This induces

a mapping 𝜎 = genP(Prg, M, 𝜋) from open product names to prod-

ucts. Given a sequence of interface/class definitions Defn and such a

mapping 𝜎 , for at least the open product names occurring in Defn to

products, denote with 𝜎 (Defn) the definitions obtained from Defn by

replacing each occurrence of an open product name P with 𝜎 (P).

Definition 6.5 (Grounding with-clauses). Given a Module Core

Part MdlC that does not contain occurrences of product names, we

write MdlC {∗
MdlC' to mean that the module core part MdlC' has been

obtained from MdlC by replacing the right-hand side of each with-

clause (which is a set-theoretic expression over sets of features) by

the corresponding set of features (which, since the overall program

is assumed in normal-form, is a product).

We are ready to define the rules that flatten a VM:

Definition 6.6 (Flattening a VM). Let M be the name of a VM of

Prg, let 𝑥𝑐 be either the symbol ⊥ or a product 𝜋 of M. The following

rules define a judgment of the form M
Prg,𝑥𝑐−−−−−→ 𝐷, Mdl where: Mdl is the

code of a variability-free ABS module named ⇑ (M, 𝑥𝑐), which, for
the case 𝑥𝑐 = ⊥ implements the unique part of the variants of M, for

the case 𝑥𝑐 = 𝜋 implements the non-unique part of the variant of M

for product 𝜋 . Moreover, 𝐷 is a set that identifies the variability-free

ABS modules that ⇑ (M, 𝑥𝑐) depends upon.

mdlUnique(Prg, M) = Defn Defn mdlInit(Prg, M) {∗ MdlC
⇓ (Prg, M, MdlC,⊥) = 𝐷 = {(M𝑖 , 𝑥𝑐𝑖 ) | 𝑖 ∈ 𝐼 }

M
Prg,⊥
−−−−−→ 𝐷, module ⇑(M,⊥); export *; import * from ⇑(M𝑖 , 𝑥𝑐𝑖 ) ⇑ (Prg, M, MdlC,⊥)

mdlNotUnique(Prg, M) = Defn mdlDelta(Prg, M, 𝜋 ) = Dlt
( Dlt, Defn) →∗ Defn' 𝜎 = genP(Prg, M, 𝜋 )

𝜎 ( Defn') {∗ Defn'' ⇓ (Prg, M, Defn'',⊥) = 𝐷 = {(M𝑖 , 𝑥𝑐𝑖 ) | 𝑖 ∈ 𝐼 }

M
Prg,𝜋
−−−−−→ 𝐷, module ⇑(M,𝜋); export *; import * from ⇑(M𝑖 , 𝑥𝑐𝑖 ) ⇑ (Prg, M, Defn'', 𝜋 )

The first rule generates a module implementing the unique part

of the variants of a given VM M. To do so, it extracts the unique

part Defn of the VM , its optional init block, and the dependencies 𝐷

occurring in these parts. The rule returns the set of dependencies

𝐷 (which identifies variability-free ABS modules that need to be

generated) and a new variability-free ABS module named ⇑(M,⊥)

that: (i) exports everything; (ii) imports from all variability-free

ABS modules identified in 𝐷 ; and (iii) contains the unique class-

es/interfaces of the original VM, where all syntactic dependencies

have been translated according to ⇑.
The second rule generates a variability-free ABS module imple-

menting the non-unique part of the variant of the VM M for the

product 𝜋 . It is similar to the first rule, except for two elements:
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(i) the optional init block is not considered (it cannot be present);

(ii) the extracted (non-unique classes/interfaces) part of the VM is

modified by applying the activated deltas as described in Def. 6.4

before being integrated in the resulting module. The next definition

gives the rewrite rules for flattening a whole ABS-VM program.

Definition 6.7 (Flattening an ABS-VM program). Let Y denote the
empty program, representing the initial partial result of flatten-

ing an ABS-VM program Prg. The rules define a judgment of the

form Prg',𝐴1,𝐷1

Prg−−→Prg'',𝐴2,𝐷2, where: Prg' (either Y or a variability-

free ABS program) is a partial result of the flattening of Prg; the set

𝐴1 identifies the already generated variability-free ABS modules;

the set 𝐷1 identifies the variability-free ABS modules that must be

generated to fulfill the dependencies in Prg'; the variability-free ABS

program Prg'' is obtained by adding to Prg' the code of one of the

variability-free ABS modules identified by 𝐷1; the sets 𝐴2 and 𝐷2 are

obtained by suitably updating 𝐴1 and 𝐷1, respectively. Let

Prg−−→∗
be

the transitive closure of

Prg−−→. The flattening of ABS-VM program Prg

is the variability-free ABS program Prg' such that Y,∅,∅
Prg−−→∗Prg',𝐴,∅

holds.

mdlInit(Prg) = M M
Prg,⊥
−−−−−→ 𝐷, Mdl 𝐴 = {(M,⊥) }

Y, ∅, ∅
Prg
−−−→ Mdl, 𝐴, (𝐷 \𝐴)

Prg' ≠ Y (M, 𝑥𝑐) ∈ 𝐷1 M
Prg,𝑥𝑐
−−−−−−→ 𝐷, Mdl 𝐴2 = 𝐴1 ∪ {(M, 𝑥𝑐) } 𝐷2 = (𝐷1 ∪𝐷) \𝐴2

Prg', 𝐴1, 𝐷1

Prg
−−−→ Prg' Mdl, 𝐴2, 𝐷2

The sets 𝐴 and 𝐷 above refer to dependencies in the original

program Prg. The first rule starts with the empty ABS program and

dependency sets, adds the ABS module implementing the (unique

part of the) main module of Prg and updates the dependency sets.

The second rule extends Prg' by adding the ABS module required by

one of the dangling dependency in 𝐷1, and replaces the dependency

sets 𝐴1 and 𝐷1 by their updated versions 𝐴2 and 𝐷2.

7 PROPERTIES OF VARIABILITY MODULES
The following definition and theorem show that one can automati-

cally infer the maximal set of class/interface declarations that can

soundly be annotated with unique.

Definition 7.1 (Function MaxUNIQUE). For every program Prg,

for all VM M of Prg, let 𝑆M = CORE(Prg, M) \ BASE(Prg, M) and define

𝐹M : (2𝑆M , ⊆) → (2𝑆M , ⊆) to be the non-increasing monotone func-

tion such that: 𝐹M (𝑋 ) is the subset of 𝑋 obtained by removing

simultaneosly all classes/interfaces M.N such that the definition

of N in the core part of M contains a with-free-dependency on a

class/interface M.N' ∉ 𝑋 or contains a with-open-dependency. Then

MaxUNIQUE(Prg,M) is the set computed by iterating 𝐹M (𝑋 ) on 𝑆M un-
til a fixpoint is reached, i.e., the set𝑈 = 𝐹𝑛M (𝑆M) such that𝑈 = 𝐹M (𝑈 )
for some 𝑛 ≥ 0.

Observe that MaxUNIQUE(Prg, M) is computed locally on the VM

M and always terminates (since 𝐹M is non-increasing monotone and

𝑆M is finite). Unfortunately, a program Prg' such that, for all VM

M of Prg', UNIQUE(Prg',M) = MaxUNIQUE(Prg',M) may not adhere to

the PEV, because of item (3) in Def. 5.3. However, by the following

theorem, if such a Prg' does not adhere to the PEV, then any program
obtained from Prg' by adding or removing unique annotations does

not adhere to the PEV.

Theorem 7.2 (Maximal set of uniqe annotations enforc-

ing the PEV). For all programs Prg adhering to the PEV: (i) for all
VM of Prg M, UNIQUE(Prg,M) ⊆ MaxUNIQUE(Prg,M); (ii) the program
Prg' obtained by adding unique annotations to Prg until, for all VM M,
UNIQUE(Prg',M) = MaxUNIQUE(Prg',M), adheres to PEV.

Proof. ByDef. 7.1 𝐹M is a set-theoretic inclusion-preservingmap

and the powerset 2
𝑆M

is a complete lattice. By the Knaster-Tarski

theorem [27] there exist smallest and greatest fixpoints of 𝐹M. More-

over, the PEV (Def. 5.3.(2)) requires that UNIQUE(Prg, M) is a fixpoint
of 𝐹M. Now item (i) holds, becauseMaxUNIQUE(Prg, M) is the greatest
fixpoint of 𝐹M—the proof is as follows: let𝐺 be the greatest fixpoint

of 𝐹M; clearly 𝐺 ⊆ 𝑆M and (since 𝐹M is non-increasing monotone)

𝐺 = 𝐹𝑛M (𝐺) ⊆ 𝐹𝑛M (𝑆M) for all 𝑛 ∈ N; but MaxUNIQUE(Prg, M) is the
fixpoint obtained by iterating 𝐹M on 𝑆M. Item (ii) holds, because Prg'

satisfies Def. 5.3—in particular: item (1) holds by definition of 𝑆M
and non-increasing monotonicity of 𝐹M; item (2) is satisfied by any

fixpoint of 𝐹M; since Prg satisfies item (3), so does Prg'. □

Definition 7.3 (Soundness of Delta-application). Let M be a VM of

Prg. Then M is delta-application sound in Prg, if for all 𝑥𝑐 ∈ {⊥} ∪ {𝜋 |
𝜋 is a product of M} there exists a VM Core MdlC and a set 𝐷 such

that M
Prg,𝑥𝑐−−−−−→𝐷, MdlC holds. Prg is delta-application sound, if all VMs M

in Prg are delta-application sound.

Recall that programs are considered equal modulo permutation

of class/interface definitions, field/method definitions, etc.

Theorem 7.4 (Flattening Soundness). If program Prg in normal

form adheres to the PEV and is delta-application sound, then Y,∅,∅
Prg−−→∗

Prg',𝐴,∅ for some variability-free ABS program Prg'.

Proof. First we note that the rules in Def. 6.7 can be applied only

a finite number of times, because the set of possible dependencies

in Prg is finite (bounded by the set of variants per module). Thus

termination is ensured.

The fact that Prg is in normal form guarantees: (i) all VM depen-

dencies are defined in Prg; (ii) all configuration expressions KE in

syntactic dependencies are valid products of the corresponding VM.

These two facts ensure that all dependencies in Prg correspond to

an actual dependency (M, 𝑥𝑐) where M is declared in Prg and 𝑥𝑐 is

either⊥ or a product of M. In particular, if we consider any rewriting

sequence Y,∅,∅
Prg−−→

∗
Prg',𝐴,𝐷, all pairs (M, 𝑥𝑐) in 𝐴,𝐷 are such that 𝑥𝑐

is either ⊥ or a product of M. □

8 IMPLEMENTATION AND EVALUATION
8.1 Integration into the ABS Tool Chain
We implemented the VM concept as part of the ABS compiler

tool chain (with exception of open product definitions). The im-

plementation is available at https://github.com/Edkamb/abstools/

tree/variable_mod. The readme in the repository describes how to

access the case studies.

To integrate VMs into the ABS compiler tool chain, only the

frontend (parser and preprocessor) needed to be changed. This is,

because flattening (Sect. 6.2) produces variability-free ABS code,

keeping ABS code generation and semantic analysis (type checking)

as is. The ABS parser’s grammar is extended with the constructs

described in Sect. 4. As expected, ABS’s existing delta application
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mechanism (including calls to original(...)) could be fully reused. The

implementation also includes: (i) the normal form check (Def. 4.1),

with error reporting in case it is violated (not yet fully implemented);

(ii) the PEV check (Sect. 5) with error reporting in case PEV is vio-

lated; (iii) the flattening mechanism described in Sect. 6.2; (iv) ad-

justment of the feature model (needed, because VMs use a simpler

feature modeling language than ABS’s `𝑇𝑉𝐿 [5]).

8.2 Case Studies
ABS-VM was used in four case studies—the source code of the

studies is available at the URL given above.

The first case study models from scratch a portal to compare

insurance services [25]. It contains a product line model with three

VMs in nearly 700 lines of code with eight features.
3
It uses VMs to

model different insurance offers. Their interoperability is required

so that users can compare them in the portal.

The remaining three case studies either refactor or extend exist-

ing ABS models using the VM concept. Each of them illustrates a

different use of VMs to support interoperable variants:

VMs vs. external tool chain. The AISCO system uses an exter-

nal ad-hoc mechanism in Java to mimic variable modules in ABS.

In Sec. 8.2.1 we compare the original system with our reimple-

mentation with VMs.

VMs vs. exploiting traits. The FormbaR model relied on specific

patterns to handle interoperability through the class model and

traits. We show in Sec. 8.2.2 how the relevant parts of FormbaR
are remodeled with VMs.

VMs vs. standard ABS SPLs. Using an ABS model of weak mem-

ory (Sec. 8.2.3), we show that without VMs, one would need to

manually duplicate several modules.

8.2.1 AISCO. AISCO (Adaptive Information System for Charity

Organizations) [35] is a modular web portal that supports the busi-

ness processes (information, reporting, spending, expenditure) of

charity organizations. It consists of an SPL implemented in ABS

and its variability reflects the differing legal and operational re-

quirements of the organizations. The code is in production at

https://aisco.splelive.id/.

The requirements stipulate co-existence of multiple ABS variants,

for example, different formats for financial reports. As this is not

supported in current SPL approaches including ABS, an ad-hoc Java

framework on top of ABS handled interoperability at runtime. For

the case study, the main aspects of AISCO were re-implemented in

ABS-VM in 160 lines of code, one VM with four features and five

different deltas for financial reporting. All variants can interoperate

within one and the same program generated from the ABS-VM

code, instead of relying on an external, non-generic framework that

is deeply interwined with the ABS model.

8.2.2 FormbaR. This is a re-modeling of the industrial FormbaR
case study [21] (the basis of Sect. 2). VMs are useful to model in-

frastructure elements, such as signals coming in different variants

that must coexist and interoperate within the same infrastructure

model. The FormbaR model uses one class per infrastructure el-

ement, but this relies on the fact that in this case classes are a

3
The model contains four further features for the legacy SPL mechanism of ABS, kept

for backwards compatibility.

sufficient unit for variability. The domain is modelled as a tree-like

type structure – additional constraints are imposed only implicitly.

The part of the model that involves interoperable variability has

been re-implemented using VMs.

The partial refactoring showed that by introducing a VM with

five features (Main, Pre, Speed, Signal, PoV) and seven deltas, the total

number of lines for the five remodeled kinds of signal
4
is reduced

from 241 to 180 (-25%). Excluding the lines of code needed only for

variability modeling (configuration knowledge and delta headers),

the remodeled part has 163 lines (-33%). The original model [21]

uses traits
5
to reduce code duplication in the implementation of the

different kinds of signals. The ABS-VM reformulation of the model

does not need to use traits. The reformulated model is: (i) shorter

(in terms of length of code), because in the original model there is

a separate class for each kind of signal; and (ii) more comprehensi-

ble: the feature model captures constraints in the model that were

implicit before (for example, that two traits should not be used by

the same class) and it declaratively connects code variability to the

domain model.

8.2.3 Weak Memory Models. This case study is the VM extension

of an ABS model of weak memory [20]. In sequentially consistent

memory models all read- and write-accesses of some code are pro-

cessed in the order they are issued. Weakly consistent (for short:

weak) memory models allow partial or complete re-ordering of

accesses to increase efficiency. The ABS weak memory model for-

malizes different relaxation strategies and device models, so as to

allow to simulate and analyze their effects. An weak memory model

in the case study is a class that manages a list of memory accesses.

Variability includes different types of reordering (read before write,

etc.). We extended the existing ABS model to two devices with

two memory systems each: any of the four memory models can be

different.

The ABS-VM model contains one module for memory models

and one for devices (i.e., pairs of memory models). For comparison,

we implemented this with product lines based on standard DOP. As

we potentially need four different memory models, this required

to copy the memory model module including all deltas four times.

Furthermore, the device module had to be copied twice. Essentially,

we must perform manually part of the VM flattening until we can

rely standard operations on the modules.

The ABS-VM version has 485 LoC, of which 440 LoC are the

two variable modules. The standard ABS version has 1322 LoC

(+272%), of which 620 LoC are concerned with deltas and variability

and 582 are the core product of the modules for memory models

and devices. We refrained from reducing code duplication through

traits to illustrate that product line systems without native support

of interoperable variants can only replicate this behavior through

massive code duplication.

If amodule has 𝑝 products, then inABS-VMonly 𝑝 configurations

are declared, for any number of used variants. Another observation

is that to connect 𝑛 variants, one needs to declare 𝑝𝑛 products: one

4Main signals, presignals, speed limiters, pre-speed limiters and points of visibility [21].

5
Traits [14] are sets of methods that can be added to a class. The ABS-VM imple-

mentation supports traits. Since traits are orthogonal to the notion of VM we have

not included them in the fragment of ABS-VM formalized in this paper. We refer to

Damiani et al. [7] for a presentation of the notion of traits supported by ABS.
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for each combination. Hence, in addition to the additional delta

declarations, this blows up the feature model unreasonably.

9 RELATEDWORK
On Programming Constructs for MPLs and Variant Interoperability.
Schröter et al. [31] advocate the use of suitable interfaces to sup-

port compositional analysis of MPLs, consisting of feature-oriented
programming (FOP)6 SPLs of Java programs, during different stages

of the development process. Damiani et al. [13] informally out-

lined an extension of DOP to implement MPLs of Java programs by

proposing linguistic constructs for defining an MPL as an SPL that

imports other SPLs. In their proposal the feature model and artifact

base of the importing SPL is entwined with the feature models and

artifact bases of the imported SPLs. Therefore, in contrast to VMs,

the proposal does not support encapsulation at SPL level. More

recently, Damiani et al. [11, 12] formalized an extension of DOP

to implement MPLs in terms of a core calculus, where products

are written in an imperative version of Featherweight Java [17].

The idea was to lift to the SPL level the use of dependent feature

models to capture MPLs, as advocated by Schröter et al. [30, 32].

Like the earlier paper [13], the proposed SPL construct [12] models

dependencies among different SPLs at the feature model level: to

use two (or more) SPLs together, one must compose their feature

models. In contrast, VMs do not require feature model composition.

The proposals mentioned above do not support variant interop-

erabilty [9]. Setyautami et al. [33] addressed variant interoperability

at the level of of static UML class diagrams. In this paper we consider

executable Java-like code.

Variant interoperability in terms of ABS code is addressed in

our previous work [9], where we considered a set of product lines,

each comprising a set of modules. However, in that proposal, en-

capsulation is not realized by mechanisms at the module level (as

in VMs): unique declarations are supported (unsatisfactorily) by

common modules (which is not fine-grained enough), and the con-

cepts of modularity (through modules) and variability (through

product lines) are interwined. In contrast, the VM concept pro-

posed in this paper unifies modules and product lines by adding the
capability to model variability directly to modules: each module is

a product line, each product line is a module. This drastically sim-

plifies the language, yet allows more far-reaching reuse of the DOP

mechanism natively supported by ABS. Furthermore, VMs ease

the cognitive burden of variability modeling, extending a common

module framework, instead of adding another layer on top.

On Variability-aware Module Systems. Kästner et al. [22] propose
a variability-aware module system (that we call VAMS in the fol-

lowing) for procedural languages. Like in our proposal, each VAMS

module is an SPL. However, there are important conceptual differ-

ences, which we outline in the following:

(i) VAMS does not encapsulate variability (cf. Sect. 5). Namely,

modules import function declarations without specifying the

modules from which they should be imported. In order to gen-

erate a variant, VAMS requires the user to write a composition

6
FOP [1, Sect. 6.1], [2] can be characterized as the restriction of DOP, where there is a

one-to-one mapping between deltas and features (each delta is activated if and only if

the corresponding feature is selected), the application order is total, and there are no

class/interface/field/method removal operations [29].

expression, which lists all the modules to be composed and

resolves dependencies and ambiguities (e.g., when a module

imports a function that is defined in two different modules)

by specifying how functions are renamed or hidden (and how

features are renamed, selected or deselected). So, VAMS is

not concerned with explicit dependencies between modules,

which are crucial to usability and central to the PEV intro-

duced in this work. By exploiting PEV, VMs achieve simplicity

and usability: configuring a single VM M triggers automatic

generation of all required variants of M and other VMs.

(ii) The design of VAMS does not target variant interoperability

(Kästner et al. [22] do not mention this issue). Making two vari-

ants of the same module to co-exist, requires to create copy of

the module and to rename (possibly by exploiting the module

composition language provided by VAMS) all its features and

all its exported functions. Instead, providing usable support to

variant interoperability is a central design goal of VM.

(iii) VAMS variability is achieved explicitly by using an annota-

tive approach: code elements (import/export declarations and

function declarations) are annotated with presence conditions

(propositional formulas over features). In VM variability is

achieved explicitly by DOP for class/interface declarations and

implicitly for export/import declarations.

(iv) VAMS is formalized by building on a calculus in the spirit

of Cardelli’s module system formalization [4] for procedural

programming languages, where a module consists of a set of

imported typed function declarations and a list of typed func-

tion definitions, and is implemented as a module system for

C code. Therefore, VAMS is tailored for procedural language,

where the interface of each module describes names and types

of imported and exported functions, and there is a global func-

tion namespace. Moreover, even though each module has its

own feature model, there is a global feature namespace. In con-

trast, VMs target Java-like languages, are based on the module

system of ABS [15, 18] (a fairly standard module system close

to Java and Haskell) and are implemented as an extension

of the ABS module system. Each VM has a local namespace

(which reduces overhead), also features are local to VMs.

On Variability Modules in Java. The paper [34] suggests that VM can

be implemented on top of any Java-like language with modest effort.

The solution
7
presented there takes a different approach from the

present account: it dispenses with explicit language constructs to

model variability, but uses only standard Java constructs. This is

achieved with an architectural pattern: delta application is achieved

with decorators, the name space is managed with abstract factories,

and each product is a module declaration in itself. The sole reliance

on standard Java constructs comes with some limitations: unique

class/interface declarations are not directly supported (but can be

achieved by suitable final annotations). In consequence, the PEV

is not enforced. Open product declarations are not supported. Un-

soundness of a product might only be detected at runtime, because

reflection is used for module name resolution instead of flattening.

Therefore, [34] does not feature a formal semantics of VM and

family-based checking.

7
The VM concept presented in [34] is based on the research reported here, but was

published earlier due to the uncertainties inherent to peer-reviewed publication.
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10 CONCLUSION AND FUTUREWORK
This work presents variability modules, a novel approach to imple-

ment MPLs consisting of DOP SPLs of Java-like programs, where

different, possibly interdependent, variants of the same SPL can

coexist and interoperate. The PEV allows to encapsulate variability

mechanisms by standard modules.

We are currently extending the implementation (cf. Sect. 8.1)

to support: (i) open product definitions; and (ii) a family-based

analysis (described in a technical report [10]) that, given an ABS-

VM program Prg, checks—without actually generating any variant—

whether all variants of the VMs in Prg can be generated and, as a

whole, form a well-typed variability-free ABS program (implying

that Prg can be flattened and is well-typed).

In future work we would like to validate the extended tool chain

by further developing the use cases (cf. Sect. 8.2) and by considering

novel use cases.

A DELTA APPLICATION RULES
In this appendix we present the rules describing the application of

an ordered sequence of deltas Dlt to to a sequence of interface/class

definitions Defn (see Definition 6.4).

The rules fall into the following categories:

Rules for a Sequence of Deltas The rules in Fig. 7 describe how

to apply each of the deltas in a sequence. D:Empty removes

the delta if no operations are left to execute. Rules D:Inter

and D:Class extracts the first interface/class operation from the

delta and applies it to the list of definition. D:End concludes

the application process when the sequence of the deltas to be

applied is empty.

Rules for a Delta The rules in Fig. 8 how to apply the actions

specified by a delta to a whole class or interface definition. Rule

D:AddsI adds an interface by adding its definition to the list of

definitions. Rule D:RemsI removes an interface by looking up

its definition using the name from the delta modifier. The rules

for classes, D:AddsC and D:RemsC are analogous. Rules D:ModI

and D:ModC modify an interface, or class, by applying the rules

for interface modifiers (or class modifiers).

Rules for Extends/Implements Clauses The rules in Fig. 9mod-

ify the extends clauses of interfaces and implements clauses of classes.

by removing (D:EM:Rems) or adding (D:EM:Adds) it. RuleD:EM:Empty

is applied if all modification of the clause have been applied.

Rules for Interfaces The rules in Fig. 10 modify interfaces. Rule

D:I:Empty is applicablewhen no furthermodification is requested

on the given interface, so that the result is the interface itself.

Rule D:I:Adds adds the specified method header to the interface

(provided that no header with this name is already present in

the interface). Rule D:I:Rems removes an existing method header

from the interface.

Rules for Classes The rules for class modification in Fig. 11 are

very similar to the ones for interfaces, with two exceptions: first,

manipulation of method headers is replaced by manipulation of

fields (rules D:C:AddsF and D:C:RemsF) and methods implemen-

tations (rules D:C:AddsM and D:C:RemsM). Second, methods

may be modified using rule D:C:Mods. This rule replace the

method implementatation, but keeps the old implementation

with a fresh name. If the new implementation contains an original

statement, then this statement is replaced by a call to the old

implementation.

D:Empty

(delta D; Dlt, Defn)→ ( Dlt, Defn)

D:Class

(delta D; CO CO IO Dlt, Defn)→ (delta D; CO IO Dlt, ((D;CO) • Defn)

D:Inter

(delta D; IO IO Dlt, Defn)→ (delta D; IO Dlt, (D;IO) • Defn)

D:End

(Y , Defn)→ Defn

Figure 7: Rules for a Sequence of Deltas

D:AddsI

nameOf(ID) ∉ nameOf( Defn)
(D;adds ID) • Defn→ ID Defn

D:RemsI

nameOf(ID) = I

(D;removes I) • (ID Defn)→ Defn

D:ModsI

(D;modifies interface I EM { SO }) • (interface I extends IR { MH } Defn)
→ (interface I extends (EM • IR) { SO • MH } Defn)

D:AddsC

nameOf(CD) ∉ nameOf( Defn)
(D;adds CD) • Defn→ CD Defn

D:RemsC

nameOf(CD) = C

(D;removes C) • (CD Defn)→ Defn

D:ModsC

(D;modifies class C EM { AO }) • (class C implements IR { FD MD } Defn)
→ (class C implements (EM • IR) { (D;AO) • ( FD MD) } Defn)

Figure 8: Rules for a Delta

D:EM:Empty

Y • IR→ IR
D:EM:Adds

(adds IR’ EM) • IR→ EM • ( IR IR’)

D:EM:Rems

(removes IR EM) • ( IR IR’)→ EM • IR’

Figure 9: Rules for Extends/Implements Clauses

D:I:Empty

Y • MH→ MH

D:I:Adds

nameOf(MH) ∉ nameOf( MH)
(adds MH SO) • MH→ SO • (MH MH)

D:I:Rems

(removes MH SO) • (MH MH)→ SO • MH

Figure 10: Rules for Interfaces

D:C:Empty

Y • ( FD MD)→ FD MD

D:C:AddsF

nameOf(FD) ∉ nameOf( FD)
(D;adds FD AO) • ( FD MD)→ (D; AO) • (FD FD MD)

D:C:AddsM

nameOf(MD) ∉ nameOf( MD)
(D;adds MD AO ) • ( FD MD)→ (D; AO • ( FD MD MD)

D:C:RemsF

(removes FD AO ) • (FD FD MD)→ (D; AO ) • ( FD MD)

D:C:RemsM

(D;removes MH AO ) • ( FD MH { S return E;} MD)→ (D;) AO ) • ( FD MD)

D:C:Mods

nameOf(MH) = nameOf(MH') =𝑚 S'' = S [D_𝑚/original ]
E''=E[D_𝑚/original ] MH''=MH'[D_𝑚/𝑚 ]

(D;modifies MH { S return E;} AO ) • ( FD MH'{ S' return E';} MD)
→ (D; AO ) • ( FD MH { S'' return E'';} MH''{ S' return E';} MD)

Figure 11: Rules for Classes
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