
An Architecture for Coupled Digital Twins

with Semantic Lifting

Santiago Gil 1†, Eduard Kamburjan 2†, Prasad Talasila 1,
Peter Gorm Larsen 1

1Department of Electrical and Computer Engineering,
Aarhus University, Aarhus, Denmark.

2Department of Informatics, University of Oslo, Oslo, Norway.

Contributing authors: sgil@ece.au.dk; eduard@ifi.uio.no;
prasad.talasila@ece.au.dk; pgl@ece.au.dk;

†These authors contributed equally to this work.

Abstract

To enable the reuse of Digital Twins, in the form of simulation units or other
forms of behavioral models, of single physical components, one must be able to
connect and couple them. Current platform and architectures consider mostly
monolithic digital twins and offer little support for coupling and checking the
consistency of the coupling. The coupling must be internally consistent —
satisfy constraints related to their co-simulation — and externally consistent
— mirror the structure of the composed physical system. In this paper, we
propose an extension to a behavior-extended Digital Twin architecture for indi-
vidual Digital Twins to include co-simulation scenarios for coupled systems
lifted from configuration files, which can be implemented along with a Digital-
Twin-as-a-Service platform to make assets reusable in time. To monitor and
query these connections, we introduce a semantic lifting service, which inter-
prets the coupled Digital Twins as Knowledge Graphs and enables the use
of queries to express internal and external consistency constraints. Two rep-
resentative case studies for systems with coupled behavior are used for the
demonstration of this approach and show that it indeed enables reusability of
components and services between different Digital Twins.

Keywords: Digital Twin, Knowledge graph, Behavioral model, Co-simulation

1

https://orcid.org/0000-0002-1789-531X
https://orcid.org/0000-0002-0996-2543
https://orcid.org/0000-0002-8973-2640
https://orcid.org/0000-0002-4589-1500

1 Introduction

Digital Twins (DTs) are a paradigm that connects physical systems with their
digital model in a closed loop to enable monitoring and other analyses throughout
the complete life cycle of a system. To accommodate the need for their simple and
efficient integration into workflows, DT platforms provide the foundation to easily
connect the Physical Twin (PT) with its DT, which often contains a simulation
aspect [1].

Existing DT platforms are designed to reduce some of the implementation
effort related to connectivity and deployment [2], but these focus primarily on
the structural data representation and not much on the behavioral aspects of the
DTs [3], i.e., coupled behavior on existing DT platforms cannot be covered either.
Extending from DT platforms, there are also Digital-Twins-as-a-Service (DTaaS)
platforms [4, 5].

So far, such DTaaS platforms focus on single systems, providing means to
connect simulators to live data streams and actuators. However, systems are
interconnected with each other and are changing during their lifetime, which
requires (a) connecting their DTs, and (b) managing these connections. Consider
a system with several distillation columns, connected in a row. As their behavior is
interconnected, their simulations must be as well. These connections must be cor-
rect in two ways: First, they must have the right simulation structure with respect
to connected simulators. Second, they must have the right semantic structure and
configuration with respect to domain and PT.

Without a compositional approach, the whole system must be twinned by a
single simulator. The inner structure of both the simulator and system is lost,
which makes the reuse harder (in the case of the simulators) and loss of informa-
tion about internal structure (in the case of the system). This internal structure is
however important to analyze single components in isolation. Nevertheless, the
fine composition of behavioral models is a complex task because even if the com-
ponents and models are logically and correctly composed, some of the dynamic
and programmatic aspects are difficult to cover in a functional way [6, 7].

We, thus, face two challenges: (1) How to extend the implementation for com-
posed DTs with behavioral models when managing coupled behaviors and (2) how
to give actionable semantics to such structures and their configuration.

We pose the following research questions to investigate, and subsequently,
assess our contribution.

RQ 1 How can a software architecture enable the functional implementation of
composed DTs with coupled behavior while enhancing reusability?
RQ 2 How can the structure of a composed DTs in a software architecture be
queried and reasoned over at runtime?
RQ 3 How to further boost the reusability of the architectural approach in more
heterogeneous software environments?

2

In this paper, we propose an architecture for a co-simulation-enabled behavior-
extended DT platform that overcomes these challenges and enables hierarchical
and coupled DTs. To do so, we take the architecture proposed in [8] to integrate
behavioral models as an extension to existing DT platforms as the starting point,
and then, propose additional classes and interfaces to cover DT Systems, which
are an abstract composition of connected individual DTs. Additionally, to manage
the increased complexity of the structure there is a semantic lifting [9] service,
that maps the structure of the platform, including the managed twins, into a
Knowledge Graph (KG), and enables other services to use this KG to configure
the structure, detect errors in connections, and load and store configurations.

We evaluate the approach on a multi-case study setting with two case stud-
ies: (1) a system of three connected water tanks for illustration, and (2) a
manufacturing cell where two industrial robotic arms cooperate for assembly
processes.

Structure

The remainder of this paper is structured as follows: Section 2 presents the back-
ground and research context of this study and the case studies used in this work.
Section 3 elaborates on the proposal of this work. Section 4 illustrates the instan-
tiation of the proposed architecture on the case studies. The approach is then
evaluated in Section 5. Section 6 discusses the main outcomes and limitations of
the study. Finally, Section 7 provides the concluding remarks and directions for
future work.

2 Background

2.1 State-of-the-Art

2.1.1 Digital Twin

DTs were proposed as a virtual representation of a physical asset, usually called
the PT, with enabled bi-directional communication [10]. DTs are also implemen-
tations of a Cyber-Physical Systems (CPSs), where there is an integration of
cyber components (i.e., the DTs themselves) and physical components (i.e., the
PTs) [11]. There are several definitions for DTs in the literature [12]. The clas-
sification proposed by Kritzinger et al. [10] distinguishes a DT, which enables
bi-directional communication with its PT, in comparison to its downgraded ver-
sions, the Digital Shadow (DS) and the Digital Model (DM); the former enables
uni-directional communication from PT to DT but not vice versa and the latter
has no communication capabilities at all. However, this classification of DTs in
comparison to DSs and DMs is vague in relation to minimal services and models
a DT should contain since it does not elaborate on a DT in terms of its busi-
ness goals or logic. Regarding this aspect, DTs may require different types of
models, including data models (i.e., geometry, structure, information, etc.) and

3

behavioral models (i.e., system dynamics, physics, state-machines, etc.) [13, 14]
to achieve different services that provide a benefit [15], including optimization,
self-reconfiguration, and what-if simulation [16, 17]. Further elaborating on this,
behavioral models are especially relevant when the DTs are intended to include
simulations and experimental versions of the PTs [18], and so these can be used
for virtual commissioning too [19].

Basic implementations of DTs that satisfy Kritzinger’s definition of a DT
include the representation of digital assets, which map properties of physical
assets, such as attributes and operations, in a hierarchical style. Such represen-
tations can be achieved by using, for example, Asset Administration Shell (AAS),
which recently turned into the IEC 63278-1 Standard [20]. These representations
can commonly be used by existing DT platforms, such as Azure Digital Twins,
Eclipse Ditto, Eclipse BaSyx, and AWS IoT Greengrass [2]. However, simulations
and semantic analysis are not necessarily included in such existing platforms
and model-based representations, which may limit the usage of the DT services
or increase the difficulty of implementation when simulations or semantic anal-
ysis are required. Other simulation-driven frameworks, such as the INTO-CPS
Co-simulation framework [21], can be used for implementing DTs while com-
plementing the simulation requirements [22]; on the downside, co-simulation
frameworks do not follow model-based mechanisms, which limits the rapid ini-
tialization and versatile implementation of DTs that can easily be integrated
with other external systems. As an attempt to overcome the current challenges,
our previous work [8] proposed an architectural framework to bridge the gap
between existing DT platforms and integrated simulation for individual decou-
pled DTs by defining endpoints connected to physical assets or simulation engines
that can be initialized from configuration files and twin schemas, including AAS
representations, following model-based engineering practices.

DTs can also be engineered and operated by reusing existing software com-
ponents and models. Reusing DT components and models may avoid the new
development of a DT for its corresponding PT from scratch [16, 23]. Other imple-
mentations for DT deployment have used a model-based design approach to
increase the reusability of DT components from a high-level perspective [24].
The reusable components can, for instance, be hosted in a DTaaS platform [4],
where along with other tools and services, DTs have a different lifecycle and
can be used for different purposes with less design and implementation effort.
Our previous work on a DTaaS platform [5] is a complementary approach across
different design patterns for developing DTs. The DTaaS platform provides an
infrastructure to host and maintain DTs and their assets with a particular asset
configuration definition. Within the platform, it is possible to convey existing DT
platforms and multiple engines to run simulations of the DTs, and integrate them
with third-party services. The DTs in such a DTaaS platform are defined by (i) DT
assets, namely, Data, Models, Functions, and Tools; (ii) the DT configuration(s),
including the reference to services, external integrations, endpoints, and so on;

4

and (iii) six lifecycle phases, namely, create, execute, save, analyze, evolve, and
terminate, which determine the lifecycle of DTs.

2.1.2 Composition of Digital Twins

Composition enables the representation of entities as hierarchies of meaningful
components, which provides a richer context and constraints to the composed
system [25]. Composition is highly relevant in software engineering, where its has
been effective for system implementation and reusability [26]. Due to the cyber-
physical nature of DTs, composition is also relevant to enable the effective reuse
of DT components [16].

The composition of DTs is another way of reusing the components of available
smaller DTs into larger DTs that have different scopes [16]. The composition DTs
can be used to represent complex systems by splitting them into sub-components,
which are usually split by spatial or contextual reference [27]. The concept of
composition of DTs has been presented in several studies [16, 27–29], and in
other formats as composition by microservice architectures [30], aggregation of
DTs [31], systems-of-systems of DTs [6], and hierarchical DTs [32].

Nevertheless, composing DTs poses a challenge when the systems are 1) het-
erogeneous, 2) highly coupled, and 3) highly dynamic [6, 7]. Even though some
previous studies have proposed the composition of DTs through relationships like
isComposedOf [33, 34], they do not cover the composition for dynamic or highly
coupled systems with programmatic features.

2.1.3 Co-simulation

Simulation has been used since the 20th century to analyze what-if questions
about existing or conceptual systems, with the ability to run cost-effective
experiments in a risk-free scenario [35, 36].

A newer approach for simulation, and a key enabling technology for imple-
menting DTs, is co-simulation [37]. The standard we use for co-simulation allows
the global simulation of a coupled and complex system through the composition
of heterogeneous simulators, that is, co-simulation upon the Functional Mock-
up Interface (FMI) standard[38]. Therefore, we use Functional Mock-up Units
(FMUs) for model exchange and co-simulation. Co-simulation is particularly use-
ful when the DTs are to include their behavioral models and these are coupled
to other components. In addition to this, co-simulation addresses the challenge
for interoperability of models and simulation environments in the realization of
DTs [6].

Co-simulation is also related to the concept of hardware-in-the-loop sim-
ulation [37, 39], where it is possible to integrate simulators with hardware
components. This feature for co-simulation, though, requires to integrate hybrid
timing mechanisms to combine discrete events and continuous dynamics [40].

There are available tools for implementing co-simulation, such as the inte-
grated tool chain for Cyber-Physical Systems, the INTO-CPS application, which

5

was introduced by Larsen et al. [21] as a tool suite for model-based design and
implementation of co-simulation experiments. The INTO-CPS application uses
Maestro as the co-simulation engine, introduced by Thule et al. [41], which
orchestrates the co-simulation setups of heterogeneous simulators that compose
cyber-physical systems.

Some studies that use co-simulation for DTs include Havard et al. [42], who
proposed an architecture for co-simulation and communication between DT and
virtual reality software, with a case study of a robotic arm; and Fitzgerald et
al. [43], who implemented multi-modeling and co-simulation for the design of
cyber-physical systems and their further integration with DTs capable of perform-
ing online and offline decision-making, with a case study of a line-following robot.
The latter study uses the INTO-CPS application as the co-simulation orchestration
environment.

2.1.4 Semantics and Digital Twins

Semantic lifting [9] has been introduced for general programs, including geolog-
ical simulators [44], and applied by Kamburjan and Johnsen [45] to lift programs
containing co-simulation units, which is in effect lifting arbitrary co-simulation
master algorithms. This was then subsequently used to self-adapt to structural
defects in the twinning relation in DTs [46]. However, due to the generality of
lifting the whole program, the lifted state of a platform is not in terms of plat-
form concepts, but in terms of the implementation language. Thus, an additional
modeling step is required to analyze those systems in terms of an architecture.

The semantic interpretation of a software enables several operations, the most
important being that we can define and check consistency of the DT structure in
a uniform way, based on a formalization of consistency on a semantic level of a
KG. This has proven useful for programs [45, 46] that monolithically model and
control a PT. Consistency can be either internal, i.e., expressing that the connec-
tions between DTs possess some property, e.g., no loops, or external. External
consistency expresses that the structure coupling the simulation units is consis-
tent with the structure of the simulated PTs and adheres to domain constraints,
e.g., that a water tank cannot be directly connected to an oil tank. This way, we
can address behavioral aspects of consistency. Both domain constraints and phys-
ical connections can be expressed in ontologies and KGs, which can be connected
to the lifted structure.

During the execution of a semantically lifted program, its states are lifted to
different KGs: not only do concrete properties (such as data values stored in vari-
ables) change, but so does the structure of the state itself. Whenever an object
is created or references are change, the lifted state drastically changes. In the
architectural setting of this work, the structure is less dynamic, as all compo-
nents are known a priori. However, their properties still change, and the concrete
identity or number of components may change as well.

6

Paredis and Vangheluwe [47] aim to coordinate multiple DTs for the same
physical system, by providing a virtual KG that describes their purposes and
description. However, their approach is not concerned with coupling behavior or
lifting computational structures.

2.1.5 Cognitive Digital Twins

Cognitive DTs (CDTs) put forward the idea to use an ontology to enable enhanced
decision-making based by integrating data using a top-level ontology and using
it to provide a uniform and semantic view on the system. This is very much in
line with our proposal, as CDTs aim to use semantics, among others, for “ [...]
identifying the dynamics of virtual model evolution, promoting the understanding
of interrelationships between virtual model [...]” [48–50]. The proposed original
framework [48] however is too abstract to guide the design of concrete archi-
tectures. While it does consider the interrelations between simulation models,
it does not provide any support for their coupling. Recently, Li et al. [51] pro-
pose the integrated view to configure co-simulation scenarios. They do not use
this to detect domain-specific or structural errors but semantically interpret the
co-simulation scenario to express knowledge about co-simulation itself.

Other definitions of CDTs are more concrete in what functionalities the use of
KGs enable, but focus on different aspects: Abburu et al. [52] consider CDTs as
system that use KGs to adapt to unforseen situations, while Ali et al. [53] use KGs
to establish a network to enable reasoning capabilities. For further, less related,
definitions we refer to Zheng et al. [54].

2.1.6 Research Gap

Although the architectural approach in [8] intends to overcome the shortcom-
ings regarding the integration of behavioral models (simulation) in existing DT
platforms, the heterogeneous composition DTs with behavioral models still poses
a major challenge in the DT field [6, 7]. More precisely, such an architectural
approach is limited to function with individual DTs, i.e., DTs cannot have internal
coupling with other fellow DTs, constraining the approach to realize hierarchi-
cal DTs. Although hierarchical composition of DTs has been touched in several
papers [6, 7, 16, 27–29, 31, 32], these mostly cover the conceptual/modeling
aspect of composition, which still limits its implementation. Moreover, although
the DTaaS platform seems suitable to address this challenge since it is a platform
to host multiple DTs, it behaves as a high-level hub-like platform to orchestrate
tools, models, data, and configurations to the end of creating DTs rather than a
specialized solution to realize DT systems with coupled behavior itself.

KGs and ontologies have been proposed to enhance DTs, an idea sometimes
referred to as CDTs, but are rarely concerned with analyzing coupled behavior,
and are often too abstract to guide architecture design. Approaches based on
some form of semantic lifting have been demonstrated to have potential for this
task, but are so far limited to analyze the structure in terms of the programming

7

language, which is disconnected from the software architecture. Furthermore,
current approaches to semantic lifting based on the programming language face
scalability issues, as by default the whole software state is part of the KG [44].

Hence, in this paper, we take inspiration of the conceptual modeling approach
for DTs with composition enabled proposed in [7] to propose an extension to the
architectural approach in [8] for supporting the realization of hierarchical DTs,
i.e., DT systems with coupled behavior. This approach also takes inspiration of the
structure given by the ontological model in [7], to provide an improvement to the
ontology that enables the attachment of DT services based on semantic reasoning
and querying. Additionally, for the sake of conveying the engineering effort in
the DT engineering process, the DTaaS platform proposed by Talasila et al. [5]
is also considered to showcase how the architectural approach can be integrated
into such an environment to create DT applications with enhanced reusability. In
terms of semantic lifting, we extend it in this paper to the generation of a KG of a
DT architecture, not just a single program. This gives the generated KG the right
abstraction level to reason about coupled behavior of components and reduce its
size.

2.2 Introduction to Case Studies

For the evaluation of this approach, we use case study research. More precisely,
we use a multi-case study research setting [55] aiming at finding the theoretical
generalization of the methods by architectural similarity [56].

The two case studies, coming from two different domains, provide a sufficient
base to theoretically validate the generalizability of the method proposed here.
The case studies are introduced by complexity. The first case study is a simulation-
only system and represented by a single DT class. The second case study counts
with PT and simulation, and is represented by four DT classes.

In the following, we describe two DT systems as our case studies.

2.2.1 Three-Tank System

This simple case study allows us to represent a system that is composed of three
individual components that are highly coupled because and output of the first tank
(o1) is connected to the input of the second tank (i2), and the output of the second
tank (o2) is connected to the input of the third tank (i3), as shown in Figure 1.
In a static composition of the Three-Tank system, the virtual representation of
the system can be trivial; however, the dynamic composition of the behaviors of
the individual tanks complicates the virtual representation of the actual coupled
system.

The scenario is mainly for demonstration purposes and, thus, it only counts
with the simulation part. It, however, still allows us to collect computation metrics
that do not require actually physical system, and investigate new features enabled
by the architecture.

8

Tank 1 Tank 2 Tank 3Water Input

o1 i2 o2 i3 o3

i1

Fig. 1: Graphical representation of the Three-Tank System mock-up.

2.2.2 A Coupled DT of a Manufacturing Cell: The Flex-cell

We use the flex-cell case study [57], which is a manufacturing cell composed of
two industrial robotic arms, namely, the Kuka lbr iiwa 7 and the Universal Robots
UR5e, to evaluate the approach in terms of coupled behavior due to synchronized
motions. Figure 2 shows the physical setup of the Flex-cell case study. The case
study is representative of a composed, dynamic, and complex system where both
robotic arms are intended to cooperate, yet current DTs struggle to handle their
behavioral coupling [7].

Fig. 2: Flex-cell case study: A manufacturing cell composed of the robotic arms
Kuka lbr iiwa 7 (left) and UR5e (right) and grippers OnRobot RG6 (left) and 2FG7
(right).

9

The robotic arms can be modeled in several ways, including robot kinematics
and dynamics techniques, which are important when simulating the robots [58].
The robot dynamics can be particularly difficult to model and compute due to the
robotic arms being 7-axis and 6-axis robots respectively. There are some tools,
such as the AURT Toolbox [59], which can be used to provide the dynamic models
of the robots based on data recorded.

Our scope is limited to the positioning of the robots with respect to the flex-cell
plate space; therefore, the kinematic models are sufficient to satisfy the require-
ments in this case. We make use of the Robotics Toolbox for Python [60] to include
the forward and inverse kinematics, and trajectory generation. The models are
complemented with specific transformations for the Flex-cell plate space, i.e.,
there is a discrete cartesian space mapping the 16 × 24 holes separated by 5mm
each to the (X,Y) axis. The Z axis is also discretized using a separation of 5mm
for the positioning. The models for the robots are then stored in FMUs using the
UniFMU tool [61], enabling the interfacing of the models with the FMI interface.

3 Materials and Methods

In this section, we are facing two challenges: (1) How to implement DTs with cou-
pled behavior, such that these connections are easy to configure and access and
(2) how to use semantic structures over these connections to utilize uniform mon-
itoring of structure. Hence, we introduce the solution in two steps. First, taking
the DT Manager architecture proposed in [8], hereafter called Twin Manager,
we extend it to structure behaviorally coupled DTs in Section 3.1. Second, we
describe how the structure of the architecture can be lifted to a KG, and describe
the usage of reusable services for monitoring in Section 3.2.

Beyond analysis and monitoring, the very same semantic representation can
also be used for loading and storing configurations. This creates a uniform rep-
resentation for the configuration and monitoring of coupled and behaviorally
interconnected DTs.

Terminology

Digital Twin, Digital Shadow, and Digital Model. Taken from the categoriza-
tion of Kritzinger et al. [10]. A Digital Twin is a digital representation of a
real-world entity with automatic bi-directional data flow. A Digital Shadow only
has data flow from from its real-world entity to the model. A Digital Model has no
automatic data flow capabilities.
Physical Twin. A physical object that is being featured by a Digital Twin.
Twin (Abstraction). An abstraction used along with the Twin Manager to repre-
sent the state and interface of either a Digital Twin or a Physical Twin.
Twin System. An abstraction for systems that aggregate twin composites.
Physical Twin System. An abstraction that represents a composition of Physical
Twins.

10

Digital Twin System. An abstraction that represents a composition of Digital
Twins.
Digital Twin-enabled System. A delimitation of the joint system where Physical
Twins and Digital Twins are engineered (twined) together [62].
Digital Twin Platform. Refers to the software operating environment where the
abstractions for Digital Twin-enabled Systems are twined and synchronized.
Digital Twin Service. Refers to the perceived benefits, usages, or use cases [15,
17] a Digital Twin-enabled System provides.
Endpoint. Refers to the software interfaces between the twin abstractions and
their corresponding data sources.
Defect Query. Refers to a query that encodes consistency conditions on a sys-
tem. It returns a set of violations of these conditions. The violations are referred
to as defects.

3.1 Architecture for coupled DT systems

3.1.1 Concepts and Foundations

The architecture for coupled DT systems is conceptualized from the Twin Man-
ager approach proposed in [8]. The Twin Manager provides an interface to easily
read from and write to PTs and simulation by providing the abstraction Twin and
the interface Endpoint. The Twin Manager administrates indistinctly PTs and DTs
as Twins, providing the same methods to access either the physical or simulation
endpoints through specializations of the interface Endpoint, as shown in Figure 3.

The Twin Manager architecture is defined by three main layers, namely, the
DT Platform Layer, where the Twins are created, managed, executed, and stored;
the Endpoint Layer where the connections to PTs and simulations are carried out;
and the DT Service Layer, where the case-independent DT services are defined
to be executed on demand. Ideally, any DT service could be attached to the Twin
Manager to provide a particular benefit for the DT-enabled system in effect. The
instantiation of the architecture for a particular case study requires Twin schema
files, which define the data model of the twin classes, and twin configuration files,
which contain the endpoint information for each twin. These files facilitate the
quick setup of the applications using the models and structured data provided.

The key components of the architecture are 1) the TwinManager class, which
is the unique interface for the user and services to access the twins and their
attributes and operations, and 2) the Endpoint interface, which is an interface
that is used for multiple specializations for different data sources, such as for
example, the FMI interface.

However, as discussed in Section 2.1.6, this architecture only supports individ-
ual simulations, and thus, it does not have the capabilities to deploy hierarchical
DTs that have coupled behavior.

We want to incorporate the capability to realize twin systems that are com-
posed of multiple twin composites, i.e., hierarchical twins, as shown in Figure 4.

11

Endpoint Layer

DT Service Layer

Twin

DT Platform Layer

Endpoint
InterfacePhysical Twin Simulation

Services

DT-enabled System

Twin

config file

Twin
schema

Twin
Manager

ImplementsImplements

Manages
(One or more)

Use

Uses

Has

Fig. 3: Architectural abstraction for realization of twins in [8].

Here, the PT system is a composition of smaller PTs which have some kind of inter-
nal coupling. The simulation needs to represent the PT composition by smaller
simulation composites and replicate the same coupling existing in the PT system.
However, homogeneity in models and simulators is not guaranteed, which means,
these may be heterogeneous and not necessarily interoperable, which is a current
challenge in composition of DTs [6].

Endpoint Layer

Behavioral Model
n

Behavioral Model
2

Smaller Physical
Twin n

Smaller Physical
Twin 2

DT Service Layer

Twin

Smaller Physical
Twin 1

Behavioral Model
1

DT Platform Layer

Endpoint
Interface

Physical Twin
System

Simulation

Twin
schema

file n
Twin

schema
file 2

Twin
schema

file 1

Twin Schema
Services

DT-enabled System

Twin Configuration

Twin
config file

n
Twin

config file
2

Twin
config file

1

Twin Manager

Use

Compose Compose

Has

Uses

Implements Implements

Manages
(One or more)

Fig. 4: Architectural abstraction for realization of (hierarchical) twin systems.
The blocks in blue refer to additions due to having several twin composites and
the arrows in blue refer to the internal coupling among them.

12

3.1.2 Proposed Extensions

We stick to the same layers and components of the base architecture for this
extension, i.e., we keep the same architectural structure and patterns, where
the TwinManager and Twin classes follow a Façade pattern and the Endpoint
interface follows a Factory pattern [63]. We then propose new concepts to cover
DT-enabled systems with coupled behavior. First, a new class, the TwinSystem
class, which represents the composition of DTs and provides the interfaces to
administrate the attributes and operations of the internal twins and the composed
system. Since we keep the model-based approach, the TwinSystem is proposed
along with a new configuration file, the Twin System Configuration file, which
defines how are inputs and outputs bound in the twin system. This class, behaving
similar to the Twin class, also follows a Façade pattern targeting the twin system
endpoint with the methods get/setAttributeValue and executeOperation at
the system level.

The TwinManager class is also extended with the new interfaces to man-
age the TwinSystem class, i.e., a new creation method createTwinSystem and
the interfaces for the get/setAttributeValue and executeOperation at the
system level. These methods are named get/setSystemAttributeValue and
executeOperationOnSystem unlike it is done for individual twins.

Moreover, since there is no specific endpoint for interfacing twin systems,
we propose a new abstraction to do so. Such an abstraction consists of splitting
the base Endpoint interface into two children interfaces, the IndividualEndpoint
and the AggregateEndpoint interfaces. The former works similarly to how the
Endpoint interface was defined initially in [8], and therefore, connects individual
endpoints, referring to individual decoupled twins. The latter focuses on enabling
the interface to systems of systems, i.e., twin systems that are composed of mul-
tiple twin composites. The AggregateEndpoint interface enables specializations
to access a PT system and its components from a hierarchical view and a DT
system as a co-simulation setting with a particular co-simulation engine. Further
elaborating on this interface, a co-simulation setting can be attached to the Twin
Manager, representing the behavioral components of the DT system. Although the
focus of this co-simulation endpoint is on representing the coupling in the virtual
side, i.e., on the DT side, it can also be used to represent hybrid cyber-physical
PT systems in hardware-in-the-loop co-simulation settings. However, this feature
is out of the scope of this work, and thus, it is uniquely used to represent the DT
system. The PT system, on the other hand, does not yet count with a particular
specialization of the AggregateEndpoint interface since the coupled behavior is
assumed to be present intrinsically in the system.

The specialization for the DT system part takes inspiration from the FMI
standard as the mechanism to integrate heterogeneous behavioral models in a
coupled co-simulation setting [37]. We choose the second version of the Maestro
co-simulation engine [41], part of the INTO-CPS co-simulation framework [21],

13

as the open-source co-simulation interface to create the co-simulation-enabled
endpoint specialization, named MaestroEndpoint.

The MaestroEndpoint specialization requires a file defining the simulation
conditions and parameters and the connections between the different FMUs in
the system. This file is represented by the Twin System Configuration file. This
file can be set up on JSON, which is then interpreted by the Maestro engine as a
mabl specification.

The MaestroEndpoint, initialized with a twin system configuration file, uses
Maestro as a slave, enabling the execution of a co-simulation for a certain amount
of time or stepped co-simulations (via doStep calls), which returns the simulation
values for the multiple components in the system. This endpoint specialization,
along with the Twin Manager, provides a bridge between the output files of the
co-simulation and the programmatic features of the system, making the data
accessible through the Twin Manager’s getter and setter methods. Additionally,
it is also possible to input values to and read from the co-simulation using the
RabbitMQ FMU (RMQ FMU) [64]. The RMQ FMU provides a channel where a
controller can send commands, and thus, these are forwarded to both the PT and
DT simultaneously. Similarly, the co-simulation outputs are logged to the RMQ
FMU channel, and thus, the Twin Manager can read the events and synchronize
the DT with the PT.

Figure 5 illustrates the prototypical implementation for the architectural
extension for twin systems with coupled behavior using a class diagram.

3.1.3 Configurations

In order to set up the DT-enabled system, three types of files are needed as fol-
lows: the Twin Schema files, the Twin Configuration files, and the Twin System
Configuration files.

First, the Twin Schema files contain the data models of the twin in effect in
the DT-enabled system. One schema is required per asset class. This schema file
can be provided, for instance, using AAS representations. For example, in the
Three-Tank System case study, only one schema is required since the three objects
belong to the same class and there are no significant differences between the
objects. On the other hand, in the Flex-cell case study, two schemas are required
since the two robotic arms present belong to different classes.

Second, the Twin Configuration files contain the endpoint-specific information
the twins need to get access to their corresponding endpoints, such as for exam-
ple, IP addresses, topics, path to source files, credentials, etc. One configuration
file is required per twin in the DT-enabled system.

Third and last, the Twin System Configuration file provides the structure of
the internal coupling of the twin system so Maestro can interpret it. One Twin
System Configuration file is required per twin system featuring a DT system in
the DT-enabled system. This file is not needed for twin systems featuring PT

14

Endpoint

Model

 Map<string,Operation> operations
 Map<string,Attribute> attributes

<<class>>
Twin

 Map<string,Twin> twins

<<class>>
TwinSystem

TwinManagerDTServices

0..*<<abstract>>
DTService

X
service

1 1

1

1

1

1

1 1

twinManager

schema

config
config

twins

twins twinSystems

config config

<<class>>
MQTTEndpoint

<<class>>
RabbitMQEndpoint

<<class>>
FMIEndpoint

<<class>>
MaestroEndpoint

<<interface>>
AggregateEndpoint

<<class>>
TwinSystemConfig

<<class>>
TwinManager

<<class>>
TwinSchema

<<interface>>
Endpoint

<<interface>>
IndividualEndpoint

<<class>>
TwinConfig

1

0..* 0..*

X X

1
X

X

1..*

1

1

X
1

X

IndividualEndpoint AggregateEndpoint

Fig. 5: UML class diagram for the architecture for Twin systems with coupled
behavior.

systems. This file includes the fields for FMUs, connections, parameters, logVari-
ables, algorithm, and endtime. The algorithm and endtime fields are specific to
Maestro and refer to the step size and the step type. The FMUs field is where the
FMU models of the smaller simulation composites that compose the larger simu-
lation are defined. This field can also be obtained from the Twin Configuration file
when the individual DTs use a FMIEndpoint specialization. The parameters field
is used to initialize the values of the simulation. And the logVariables field is used
to define which variables are to be logged in the output file. Finally, we propose
two additional fields that are independent of the co-simulation arguments, which
are the aliases and rabbitmq fields. The aliases field is used to map the name of
variables in the co-simulation structure to the one used by the Twin Manager. The
rabbitmq field is used to initialize the connectivity with RabbitMQ when RMQ
FMU is used for the co-simulation setting.

3.2 Reusable DT services for semantic lifting

Semantic lifting is the process of generating a KG from a piece of software using
some predetermined mapping from the software state to the KG. Semantic reflec-
tion is the consequent use of this lifted state from the very same software. The

15

generated KG is expressed in terms of the software state it originates from – in
the case of a lifted program state, this would be variables, memory locations, etc.

For the system presented here, semantic lifting is the generation of a KG in
terms of the architecture. In contrast to language-based lifting, the mapping is
determined by the architecture, not the programming language. Nonetheless, it
is predetermined and must not be designed anew for a new application.

The service is decoupled from the running system and has its own lifecycle.
The lifting service can be reconfigured to adopt to new requirements, such as
new defect queries. A reconfiguration of the DTs themselves does not require
adaptation of the lifting service. Indeed, the structure of couplings itself, can be
expressed using configuration files for the DTs and the DT systems, the latter rep-
resenting extended co-simulation scenarios [37], which enables the configuration
of the connections without using the KG initially.

3.2.1 Semantic Lifting of Architectures

Given an architecture, we need to define the mapping from a state of a piece of
software implementing this architecture to a KG. We do so in two steps. First, we
fix the vocabulary for the software (and basic axioms) using the OWL ontology
language. Second, we define the mapping from a state into graph data using this
vocabulary.

An architecture for our purpose is a set of (a) classes with attributes, that
may refer to other classes, and (b) connections between those classes. Those
connections have some cardinality and can have different kinds, e.g., composed-
of relations, or be explicitly labeled with names. The software implementing the
architecture, in turn, has further classes and connections (realized by class fields)
between them1.

There are two ways to define an ontology for such systems. The first is using
an automatic, general scheme from diagrams in the architecture description lan-
guage to ontologies. The second is a tailor-made ontology with a specific purpose
in mind. In this work, we describe a tailor-made ontology: No general, syn-
tactic transformations between UML and OWL (or other pairs of architecture
description and knowledge representation languages) that covers all features are
available [65]. Thus, we employ a manual transformation.

We describe the ontology and the lifting of a state concretely further below
when describing the lifting service. Instead, we turn our attention to the notion
of consistency, and introduce some notation precisely describe it.

We denote an architecture with A, and any software application implement-
ing it with SA. A software application can be executed from some initial state
σSA
0 , and we denote the sequence of the states during execution with ρSA =

⟨σSA
0 , σSA

1 . . . σSA
i , . . . ⟩. We denote the set of indices {0, . . . , i, . . . } in ρ with Iρ. A KG

is a pair of vertices and labeled edges K = (VK, EE). A lifting for an architecture

1We restrict ourselves to object-oriented programming here

16

A is a map µ from software application state (of a software SA implementing A)
to a KG.

Consistency can be understood in general terms, e.g., that the generated KG
is logically consistent w.r.t. its ontology. Indeed, this property is required for a
semantic lifting map. More specific is the consistency w.r.t. additional constraints,
such as queries that express consistency conditions: such a defect query returns
violations of what is considered consistency in a given system [46]. The advantage
is a more fine-grained control2 over the notion of consistency, and that every
detected defect is retrieved with information where in the system it occurs.

Let n ∈ N. An n-ary defect query q over a KG K returns an answer set Jq,KK ⊆
V n
K , where each answer contains n nodes that together indicate a defect. We say

that a software SA is strongly consistent w.r.t. a set of defect queries Q, if for each
run ρSA = ⟨σSA

0 , . . . σSA
i , . . . ⟩, each lifted state returns an empty set for all defect

queries.
∀i ∈ Iρ. ∀q ∈ Q. Jq, µ(σSA

j)K = ∅
Strong consistency, just as its verification counterpart, strong invariants, is

too restrictive. During adaptation, the system may have intermediate steps where
it inhibits a defect – for example, when fixing a defect requires multiple steps.
For this reason, we use weak consistency, where we only require defect-freedom
at certain places. We say that a software SA is weakly consistent w.r.t. a set of
defect queries Q, and a function W from index sets to a subset of the input set,
if for each run ρSA = ⟨σSA

0 , . . . σSA
i , . . . ⟩, each lifted state returns an empty set for

all defect queries on W (Iρ).

∀i ∈ W (Iρ). ∀q ∈ Q. Jq, µ(σSA
j)K = ∅

In the following we present the services needed to realize dynamic checking
of weak consistency and generating reports using reflection, i.e., the services
operating on µ(σ) are running in the software that is currently in state σ.

3.2.2 Services Supporting Semantic Reflection

The platform layer is supported by a service layer, composed of microservices
that offer reusable services on the Twin Manager. The services enable the reuse
of their functionalities in further contexts. To monitor the consistency of the plat-
form, we use this layer and provide four services, where under consistency we
understand the absence of defects on twins for DTs. A defect is defined as the
result of a defect query and a defect query is a query over the platform layer that
must return an empty set – it expresses the presence of inconsistencies. To enable
this, we provide four different reusable services.

2One can also use additional axioms to express such constraints. Queries have the additional advantage of not
necessarily requiring expensive logical reasoning.

17

Lifting Service. The lifting service lifts the platform layer, as well as the end-
points, to a KG. This KG has a fixed ontology, but the service can also be used to
combine it with external KGs.
Query Service. The query service offers query access to the lifted state, to
retrieve all answers to a SPARQL graph query or an OWL membership query.
Monitor Service. The monitoring service uses the query services to monitor
internal and external consistency using defect queries.
Defect Analysis Service. While the monitoring service uses rather lightweight
queries for monitoring and only reports that an inconsistency has been detected,
the analysis service uses this to retrieve further information about the exact
nature of the defect.

In terms of the above formalization, the lifting service computes µ(σ), the
query service computes Jq, µ(σ)K for a given query q, the monitor service manages
the set of defect queries Q and computes {Jq, µ(σ)K | q ∈ Q}, and the defect
analysis service then builds on that set and asks more details queries to act and
report on the defects.

Lifting Service

The semantic lifting service maps the endpoints and the DTs in the DT platform
layer, into a KG. It is not necessary to lift the static parts and the used configura-
tion files directly, as the aim of the lifting service is to provide a means to reflect
on the instantiated system.

The ontology used in the KG formalizes the structures needed for reflection.
Figure 6 illustrates it in Manchester syntax [66], while Figure 7 shows a visual
overview. The upper part of Figure 6 shows the concepts of the ontology and
their subclass relation. A DTObject is either a SimulationComponent, i.e., an
FMU, or a ContainerComponent, used to structure composed DTs by introduc-
ing hierarchy and encapsulation. In terms of the class diagram in Figure 5, a
SimulationComponent is twin using an FMIEndpoint and a ContainerComponent
is a twin using a MaestroEndpoint, which represents the hierarchy of composed
twins. Furthermore, we have Ports, which can be either InPorts for inputs, or
OutPorts for outputs and Connections between ports. The classes AliasedPort
and AliasingPort are defined via the aliasOf property below. They are modeled
as disjoint, expressing that one cannot alias a port that is already an alias. Aliases
are needed because variable names amd instance names may differ between
simulation models, the PT system interface, and communication channels.

The relations are defined in the lower part of Figure 6. To model that a port is
an alias of another, the aliasOf property is used. Note that contrary to the pre-
sentation in the configuration file, the relation is defined over ports, not strings,
i.e., to generate the lifting, all connections are configured and the content of the
String configuring them is resolved. This property is irreflexive – a port cannot be
an alias for itself. Connections are related to their ports via the connectFrom and
connectTo properties, while the hierarchy induced by ContainerComponents is

18

1 Class: DTObject DisjointUnionOf: ContainerComponent, SimulationComponent
2 Class: Port DisjointUnionOf: InPort, OutPort
3 Class: Connection
4 Class: ContainerComponent SubClassOf: DTObject
5 Class: SimulationComponent SubClassOf: DTObject
6 Class: InPort SubClassOf: Port
7 Class: OutPort SubClassOf: Port
8 Class: AliasedPort EquivalentTo: inverse (aliasOf) some owl:Thing
9 DisjointWith: AliasingPort

10 Class: AliasingPort EquivalentTo: aliasOf some owl:Thing
11 DisjointWith: AliasedPort

12 ObjectProperty: aliasOf
13 Characteristics: Irreflexive
14 Domain: Port
15 Range: Port
16

17 ObjectProperty: connectFrom
18 Characteristics: Functional
19 Domain: Connection
20 Range: OutPort
21

22 ObjectProperty: connectTo
23 Characteristics: Functional
24 Domain: Connection
25 Range: InPort
26

27 ObjectProperty: contains
28 Domain: ContainerComponent
29 Range: DTObject

30 ObjectProperty: hasPort
31 Characteristics: InverseFunctional
32 Domain: DTObject
33 Range: Port
34

35 DataProperty: hasDescriptor
36 Domain: DTObject
37 Range: xsd:string
38

39 DataProperty: hasFile
40 Domain: SimulationComponent
41 Range: xsd:string
42

43 DataProperty: hasName
44 Domain: DTObject or Port
45 Range: xsd:string

Fig. 6: Textual representation of the ontology used for semantic lifting of the
platform layer.

expressed using contains. Any DTObject can have ports related to the hasPort
property. The data properties related components to their name, description or
the name of the file they were loaded from.

For the lifting, the service iterates over all DTs, lifts their endpoints as
SimulationComponents and the DTs themselves as ContainerComponents. Their
connections are modeled using Connections (note that a connection can be
between two ContainerComponent as well), and the remaining properties follow
directly from the structure. The lifting service offers the following operations:

• getModel returns a KG for the current state.
• getModelCombined takes a KG and returns the lifted state combined with the

additional KG.

The latter is necessary to query the relation of the lifted state to external
knowledge, e.g., an asset model describing the PT structure.

19

OutPort

AliasedPort

InPort

string

string

string

∪

DTObject1

DTObject

SimulationComp.

Port1
Port

Connection

AliasingPort

ContainerCo...

aliasOf
(irreflexive)

Subclass of

connectTo
(functional)

hasFile

contains

connectFrom
(functional)

hasName

hasPort
(inverse functional)

hasDescriptor

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Fig. 7: Visual representation of the ontology used for semantic lifting of the
platform layer, created with WebVOWL [67].

Query Service

The Query Service takes as input a query, executes it on the lifted state and
returns the results. We assume that the service supports at least SPARQL queries,
but it can also provide access through other query languages. For example, it
may take reasoning tasks, such as an OWL axiom, and returns whether it can
be derived from the lifted state, or answer DL membership queries, i.e., return
all members described by a DL concept. A simple reasoning task would be the
consistency of the lifted state – if a port is an alias of another alias, then the
KG is inconsistent because of the axiom that AliasingPort and AliasedPort are
disjoint.

Membership and SPARQL queries retrieve individuals within the platform and
can be used to extract specific structures. For example, the SPARQL query in
Listing 1 returns all FMUs whose value is aliased to a port named outFlow by the
containing DT. This removes the need to navigate the internal structure manually
and can be used by external users without knowledge about the exact model
description of the FMU and without manually traversing the platform’s structure.
The example is using the Three-Tank system example introduced in Section 2.2.1.

SELECT ?fmu {
?dtc a ContainerComponent; hasPort ?po1.
?fmu a SimulationComponent; hasPort ?po2.
?po1 aliasOf ?po2; hasName "outFlow".

}

Listing 1: Query for FMUs whose port is aliased to "outFlow".

Building on the query service, we build the tools that we need to ensure con-
sistency using reusable components. It offers a single operation: query takes a
query/reasoning task and returns a result set.

20

Monitor Service

The Monitor Service is used to detect defects in the lifted state. It is config-
ured using a set of SPARQL queries, where each such query corresponds to a
defect and consistency is defined as the absence of any (detected) defect. Internal
defects are detected by queries related to the lifted state alone.

For example, the SPARQL query in Listing 2 returns all input ports of FMUs
that are not connected to any port, and have the name "tank4Outflow". A non-
empty result set may indicate that the connections are not set up correctly.

SELECT ?fmu {
?port a InPort; a AliasingPort; hasName "tank4Outflow".
?fmu hasPort ?port.
FILTER NOT EXISTS { _ connectTo ?port }

}

Listing 2: Query for monitoring disconnected ports of the FMUs.

External defects are detected by queries related to the lifted state in combina-
tion with external KGs. For example, an external KG can be the asset information
model that describes the actual structure of the PT Another examples would be
general knowledge, in form of an ontology, about the relations between DT com-
ponents. For example, the SPARQL query in Listing 3 returns all tanks (modeled
as Tank) whose simulator (modeled as hasSimulator) is not instantiated. This
may indicate that the DT is incomplete [46].

SELECT ?tank {
?tank a Tank; hasSimulator ?path.
FILTER NOT EXISTS { _ hasFile ?path. }

}

Listing 3: Query for defect detection.

The monitor service depends on the query service and offers the following
operations:

• setDefectQueries takes a set of SPARQL and reasoning queries and is used to
configure the service used to detect defects,

• getViolations returns the results of all queries configured before, together
with the id of the query (per result), and

• getViolationsRegular automatically returns the defects every n time units.

The monitoring service, while used for consistency monitoring in our setting,
is reusable for any kind of runtime monitoring based on regular queries.

Defect queries can be generic for all instantiations of the architecture, and can
consequently be reused for all of them. We denote such defect queries as generic.
Consider the generic query Q0a in Fig. 8. It detects the defect that a DTObject
has an InPort that is aliased by an OutPort or vice versa. Query Q0b detects if
two objects have the same name and query Q0c ensures that there are no cycles
in the contains relation, i.e., a ContainerComponent does not contain itself.

21

SELECT ?obj ?port ?alias { #Q0a
?obj hasPort ?port. ?port a Port.
?alias a Port; aliasOf* ?port.
{?port a InputPort. ?alias a OutputPort} UNION
{?port a OutputPort. ?alias a InputPort}

}

SELECT ?obj1 ?obj2 ?name { #Q0b
?obj1 a DTObject; hasDescriptor ?name.
?obj2 a DTObject; hasDescriptor ?name.

}

SELECT ?obj { ?obj contains* ?obj. } #Q0c

Fig. 8: Generic query Q0a for alias defect detection, generic query Q0b for
unique descriptors and generic query Q0c for cycle-free containers.

Defect Analysis Service

The Analysis Service is tasked with a more complex task, building on the
results of the monitoring service: Given a detected defect, it executes a query
to retrieve enough information about the defect for a detailed report about the
circumstances, and possible information needed to repair the defect.

For each SPARQL or OWL concept membership query, the service offers an
operation that takes the result of the query (i.e., a detected defect) and executes
a SPARQL query to retrieve further information. In particular, it will execute a
more complex, and possibly more time-consuming query. For example, consider
the monitoring query from Listing 3. To retrieve the exact information about the
missing tank, one can ask for the next tank further down in the pipeline, as shown
in Listing 4. Note that the connection, modeled with connectedOutFlow, may
involve logical reasoning.

SELECT ?tank ?tank2 {
?tank a Tank; hasSimulator ?path.
?tank connectedOutFlow ?tank2.
?tank2 a Tank; hasSimulator ?path2.
FILTER NOT EXISTS { _ hasFile ?path. }

}

Listing 4: Query for pipeline defect detection.

The relation between a monitor query and the analysis query is encapsu-
lated in a DefectHandler, which contains both queries. The defect analysis
service depends on the monitor and the query services and offers the following
operations:

• addDefectHandler takes a DefectHandler as input and adds it to the internal
list of handlers;

• registerDefectHandlers configures the used monitoring service to use the
monitor queries of the defect handlers of this instance;

22

• getReports gets all consistency violations from the monitor services, executes
the corresponding defect handler analysis query, and returns the set of all
results of the analysis queries; and

• getReportsRegular returns the reports every n time units.

We stress that these services are part of the platform, not the DT itself. Con-
sequently, their configuration with external KGs and defect queries follows a
different life cycle: The services are developed, maintained, and deployed inde-
pendently of the system and can be reused for different instances, while their
configuration can react to both design requirements of the twin, as well as to
more short-term effects, such as additional requirements added while the system
is running.

4 Results

4.1 Instantiation of the Architecture

Following the multi-case study approach of this study, we first showcase the use
of the architecture for the two previously introduced case studies in Section 2.2
to demonstrate its theoretical generalizability.

Three-Tank System

The instantiation of the Three-Tank System is illustrated in Figure 9. The simu-
lation block in Figure 9a, named Three-Tank Simulation, represents the coupled
behavior of a generic Three-Tank PT system with a cascade coupled behavior. This
instantiation, which is represented by a UML object diagram (Figure 9b), intends
to ground the abstraction for the Three-Tank System co-simulation (Figure 9a).
Notice that this example does not count with a PT in the instantiation of the
architecture due to its simulation-only feature. Therefore, the Three-Tank System
example behaves as a DM (or more precisely, as a pre-DT [19]).

We start by defining the three individual tanks as objects of the Twin class.
The individual twins are initialized from the same Twin Schema file since they
all have the same properties and are connected via FMIEndpoint endpoints, i.e.,
each tank can be managed independently using its FMI endpoint.

Subsequently, we proceed with the extension to support the coupled simula-
tion of the DT system. We instantiate an object of the TwinSystem class, with
the name "Three-Tank System". The three twins featuring the independent tanks
are aggregated to the DT system and the system is bound to a MaestroEndpoint
endpoint.

The MaestroEndpoint endpoint requires the Twin System Configuration file
for its initialization; then, we provide such a file, which contains the definition of
the internal FMUs, connections, and algorithm settings. The most relevant field is
the connections field, which represents the coupling of the system. The connec-
tions for this particular DT system are described in Listing 5. This configuration

23

Tank 3
FMU

Tank 2
FMU

Tank 1
FMU

o1 o2i2 i3

 Three-Tank Simulation

(a) Co-simulation block diagram.

Config

Endpoint

Model

<<instance>>
Tank1 DT:Twin

<<instance>>
Tank2 DT:Twin

<<instance>>
Tank3 DT:Twin

<<instance>>
tankSchema:
TwinSchema <<instance>>

Three-Tank System:TwinSystem

<<instance>>
Tank1FMU:

FMIEndpoint

<<instance>>
Tank2FMU:

FMIEndpoint

<<instance>>
Tank3FMU:

FMIEndpoint

<<instance>>
Tank1Config:
TwinConfig

<<instance>>
Tank2Config:
TwinConfig

<<instance>>
Tank3Config:
TwinConfig

<<instance>>
Three-TankSystemConfig:

TwinSystemConfig

<<instance>>
Three-Tank Simulation:

MaestroEndpoint

<<instance>>
Tank1 DT:Twin

<<instance>>
Tank2 DT:Twin

<<instance>>
Tank3 DT:Twin

TwinManager

<<instance>>
twinManager:TwinManager

DT-enabled System

(b) UML object diagram.

Fig. 9: Diagrams to realize the DT-enabled system for the Three-Tank System
case study. The direction of arrows in (b) indicate the use of the pointed instance
by the pointing instance.

means that the output of tank1 goes to the input of tank2, and the output of tank2
goes to the input of tank3. Maestro interprets these connections to perform the
co-simulation, obtaining the simulation results of the coupled system.

1 "connections": {

24

2 "{tank}.tank1.outPort": ["{tank}.tank2.inPort"],
3 "{tank}.tank2.outPort": ["{tank}.tank3.inPort"]
4 },

Listing 5: Connections field for the three-tank DT system configuration with
Maestro.

Flex-cell

The instantiation of the Flex-cell is illustrated in Figure 10. The simulation block
in Figure 10a, named Flex-cell Simulation, represents the hierarchical compo-
sition of the simulation composites with coupled behavior by synchronization
since both robotic arms are intended to work cooperatively and simultaneously.
This instantiation, which is represented by a UML object diagram (Figure 10b),
intends to ground the abstractions of the Flex-cell physical setup and co-
simulation (Figure 10a). Notice that the controllers in Figure 10a, i.e., the
physical controller and RMQ FMU, are considered part of the DT-enabled system,
but they are not represented as twins.

We start by defining the robots as objects of the Twin class. Since we consider
the PTs in this case, there are four objects of the Twin class in total, two for the
simulated robots and two for the real robots. Additionally, as the two robotic arms
are different, we use two different Twin Schema files, one representing the UR5e
robot and the other representing the Kuka lbr iiwa 7 robot. The individual twins
referring to the simulation are initialized using FMIEndpoint endpoints and the
individual twins referring to the PT are initialized using MQTTEndpoint endpoints.

Subsequently, we proceed with instantiating two objects of the TwinSystem
class, one for the Flex-cell PT system and one for the Flex-cell DT system. The
Flex-cell PT system with name "Flexcell PT System" aggregates the two individ-
ual twins featuring the real robots. Similarly, the Flex-cell DT system with name
"Flexcell DT System" aggregates the two individual twins featuring the simu-
lated robots. In this case, we bind the twin system featuring the DT part to a
MaestroEndpoint endpoint. The twin system featuring the PT part simply adds
access to the individual twins from a hierarchical view since the coupled behavior
is already existing in the PT intrinsically.

The MaestroEndpoint endpoint requires the Twin System Configuration file
for its initialization; then, we provide such a file, which contains the definition of
the internal fields. The connections field in this case represents the coupling of
the system, as described in Listing 6. This configuration means that the output of
RMQ FMU for the discretized target positions and motion time goes simultane-
ously to the inputs of UR5e FMU and Kuka lbr iiwa 7 FMU, thus, it replicates the
physical setup in the simulation part. This way, Maestro can execute co-simulation
experiments that represent the cooperative execution of both robots.

Since the co-simulation uses RMQ FMU, Maestro runs an asynchronous co-
simulation based on the inputs from RMQ FMU, which need to be passed at
specific time steps. These inputs are inputted at the same time the physical

25

Kuka lbr iiwa 7
FMU

UR5e FMU
RabbitMQ FMU

UR5e

Kuka lbr
iiwa 7

Controller

Routine
Publisher

Flex-cell System Flex-cell Simulation

(a) Co-simulation block diagram (red, right) mapping the phys-
ical setup (blue, left).

Config

Endpoint

Model

<<instance>>
UR5e PT:Twin

<<instance>>
UR5e DT:Twin

<<instance>>
ur5eSchema:
TwinSchema

<<instance>>
Flex-cell DT System:TwinSystem

<<instance>>
ur5eMQTT:

MQTTEndpoint

<<instance>>
kukaMQTT:

MQTTEndpoint

<<instance>>
ur5eFMU:

FMIEndpoint

<<instance>>
ur5ePTConfig:

TwinConfig

<<instance>>
kukalbriiwa7PTConfig:

TwinConfig

<<instance>>
ur5eDTConfig:

TwinConfig

<<instance>>
FlexcellSystemConfig:

TwinSystemConfig

<<instance>>
Flex-cell Simulation:

MaestroEndpoint

<<instance>>
UR5e PT:Twin

<<instance>>
Kuka lbr iiwa 7

PT:Twin

<<instance>>
UR5e DT:Twin

TwinManager

<<instance>>
twinManager:TwinManager

<<instance>>
Kuka lbr iiwa 7

PT:Twin

<<instance>>
Kuka lbr iiwa 7

DT:Twin

<<instance>>
Flex-cell PT System:TwinSystem

<<instance>>
kukalbriiwa7Schema:

TwinSchema

<<instance>>
kukalbriiwa7FMU:

FMIEndpoint

<<instance>>
kukalbriiwa7PTConfig:

TwinConfig

<<instance>>
Kuka lbr iiwa 7

DT:Twin

DT-enabled System

(b) UML object diagram.

Fig. 10: Diagrams to realize the DT-enabled system for the Flex-cell case study.
The arrows in blue in (b) indicate the PT-related relations. The arrows in red in
(b) indicate DT- and co-simulation-related relations. The direction of arrows in (b)
indicate the use of the pointed instance by the pointing instance.

controller sends the commands to the real robots (illustrated by the Routine

26

Publisher block in Figure 10a), enabling the synchronization, and therefore, com-
parison between DT and PT systems. As a plus, the co-simulation can also be
executed stand-alone, i.e., decoupled from the execution of the real process, so
the results of the co-simulation can be used for virtual commissioning. With this
feature, this example behaves as a DM (or pre-DT) since the PT is decoupled from
the execution.

1 "connections": {
2 "{rabbitmq}.rabbitmq.target_X_ur5e": ["{ur5e}.ur5e.target_X"],
3 "{rabbitmq}.rabbitmq.target_Y_ur5e": ["{ur5e}.ur5e.target_Y"],
4 "{rabbitmq}.rabbitmq.target_Z_ur5e": ["{ur5e}.ur5e.target_Z"],
5 "{rabbitmq}.rabbitmq.motion_time_ur5e": ["{ur5e}.ur5e.motion_time"],
6 "{rabbitmq}.rabbitmq.target_X_kuka": ["{kuka}.kuka.target_X"],
7 "{rabbitmq}.rabbitmq.target_Y_kuka": ["{kuka}.kuka.target_Y"],
8 "{rabbitmq}.rabbitmq.target_Z_kuka": ["{kuka}.kuka.target_Z"],
9 "{rabbitmq}.rabbitmq.motion_time_kuka": ["{kuka}.kuka.motion_time"]

10 },

Listing 6: Connections field for the Flex-cell DT System configuration with
Maestro and RMQ FMU.

Along with the instantiation of the architecture for the Flex-cell case study,
the experiment executes a cooperative motion in the real robots (PT) and co-
simulation (DT) simultaneously to showcase the applicability of the architecture
for systems with coupled behavior due to synchronization.

The experiment consists of moving the robots simultaneously to two differ-
ent discrete position on the Flex-cell working space, namely, the positions (1)
(X,Y, Z) = (6, 16, 1) and (X,Y, Z) = (8, 11, 2), and (2) (X,Y, Z) = (5, 22, 0) and
(X,Y, Z) = (7, 14, 1), for the UR5e and the Kuka lbr iiwa 7 respectively. The second
command is sent 5.0 seconds after the first command is sent.

Figure 11 shows the joint positions over time for the two cooperative execution
in the real robots (below) and simulated robots (above), which is the result of
the experiment. It is possible to see that all real robots and simulated robots
behave accordingly as expected. Notice that there are time offsets for the real
robots compared to the simulated ones due to motion speed and time delays when
running the commands. Additionally, the co-simulation can introduce additional
delays due to (i) using discrete time steps instead of continuous time (especially
evident for larger step sizes) and (ii) processing of messages coming from RMQ
FMU.

4.2 Mapping to the DTaaS Platform Implementation

One of the goals of this architecture is to be sufficiently generalizable to provide
and use reusable components that are shared in a more heterogeneous software
environment that further boosts the reusability to realize DTs with less imple-
mentation effort. To do so, we propose the integration of this approach with the
DTaaS platform proposed by Talasila et al. [5], which is designed to reuse DT ser-
vices and components, as well as tools and infrastructure services, to facilitate
the realization of DTs and the execution of multiple DT instances for different

27

0 2 4 6 8 10
time [s]

3

2

1

0

1

2

ra
di
an
s

Co-sim UR5e joints
{ur5e}.ur5e.actual_q0
{ur5e}.ur5e.actual_q1
{ur5e}.ur5e.actual_q2
{ur5e}.ur5e.actual_q3
{ur5e}.ur5e.actual_q4
{ur5e}.ur5e.actual_q5

0 2 4 6 8 10
time [s]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ra
di
an
s

Co-sim Kuka lbr iiwa 7 joints

{kuka}.kuka.actual_q0
{kuka}.kuka.actual_q1
{kuka}.kuka.actual_q2
{kuka}.kuka.actual_q3
{kuka}.kuka.actual_q4
{kuka}.kuka.actual_q5
{kuka}.kuka.actual_q6

0 2 4 6 8 10
time [s]

3

2

1

0

1

2

ra
di
an
s

Real UR5e joints
actual_q_0
actual_q_1
actual_q_2
actual_q_3
actual_q_4
actual_q_5

0 2 4 6 8 10
time [s]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ra
di
an
s

Real Kuka lbr iiwa 7 joints

actual_q_0
actual_q_1
actual_q_2
actual_q_3
actual_q_4
actual_q_5
actual_q_6

Fig. 11: Plot of the joint positions of the robotic arms running the commands
synchronously with the co-simulation setting. The vertical dashed lines indicate
when the commands are sent (precise for the co-simulation; approximate for the
real robots).

applications. Therefore, we map the components of the architectural approach to
the definitions of the DTaaS platform (see Section 2.1.1), i.e., to Models, Tools,
Data, and Functions, and DT configurations.

In relation to our proposed architecture, the DTaaS platform handles the Twin
Manager as a Tool, the FMUs and twin schemas as Models, and the twin con-
figurations and Twin System Configuration configurations as DT configurations.
Similarly, Maestro and RMQ FMU, which are used by the Twin Manager for the
co-simulation settings, are also available by default in the DTaaS platform, the
former as a Tool and the latter as a Model. Therefore, it is feasible to map the
implementation of the architecture into the DTaaS platform implementation to
further boost the reuse of DT services and components.

Three-Tank System

We map the components defined in Figure 9 to assets of the DTaaS platform. First,
regarding the models, the DTaaS platform stores FMUs as Models; these FMUs
are treated as binary files which are used by co-simulation toolchains. The twin

28

schema file in AAS is stored as Model too. The tank configurations and three-
tank system configuration are stored as DT configuration files. The Twin Manager
is packaged as one Java jar file and handled as a Tool. For the execution of the
example, a script handled on top of the DTaaS brings together the Twin Manager
jar package along with the DT-enabled system, the tank FMUs, twin schema and
twin configuration files to run the three-tank application. The complete case study
is then executed by the DTaaS platform to produce the results of the (pre-DT)
DM, i.e., the co-simulation results, since no PT is used. The example of the DT for
the Three-Tank System on the DTaaS platform is publicly available on GitHub3 .

Flex-cell

We proceed similarly for the Flex-cell case study. We map the components defined
in Figure 10 to assets of the DTaaS platform. First, regarding the models, the
DTaaS platform stores the UR5e FMU and Kuka lbr iiwa 7 FMU as Models; these
FMUs are treated as binary files which are used by co-simulation toolchains. The
twin configurations for the real and simulated robots and Flex-cell DT system
configuration are stored as DT configuration files. In addition, both robots have
their twin schema files as AAS representations as Models.

The Twin Manager jar package, which was used in the DT application of the
Three-Tank System, as well as Maestro and RMQ FMU (these two provided by
default by the DTaaS platform), have been reused for this case study, thus demon-
strating the benefits of this approach in terms of reusability when developing DTs.
The DTaaS helps setting up the example and its dependencies and an execution
script brings together the components and dependencies, including the twin and
twin system configuration files, twin schemas, FMUs, channel credentials, and
co-simulation setting, to run the DT-enabled system. The complete case study is
then executed by the DTaaS platform to produce the results of the DT-enabled
system as (i) a proper DT when the PT is bound to the platform during execution
or (ii) as a (pre-DT) DM when the PT is decoupled from the platform to run sim-
ulation and what-if experiments. The example of the DT for the Flex-cell on the
DTaaS platform is publicly available on GitHub4.

4.3 Applying Semantic Lifting Services

As part of our evaluation experiment we use the defect analysis service to monitor
and report while both case studies are executed. In either case, we set up the
system such that an error is injected after some time and evaluate the reusability
of implementing the detection of this error. The services are fully reusable as they
are not concerned with any specifics of the instantiation of the architecture.

Instead, the configuration happens in the defect queries. There are two sets
of defect queries: the set of generic defect queries, and the set of application-
specific defect queries. In the implementation, a defect SPARQL query and a

3https://github.com/INTO-CPS-Association/DTaaS-examples/tree/main/digital_twins/three-tank
4https://github.com/INTO-CPS-Association/DTaaS-examples/tree/main/digital_twins/flex-cell

29

https://github.com/INTO-CPS-Association/DTaaS-examples/tree/main/digital_twins/three-tank
https://github.com/INTO-CPS-Association/DTaaS-examples/tree/main/digital_twins/flex-cell

function that generates a report specific to a found defect are handled as a unit
(i.e., the services work not on sets of SPARQL queries, but on sets of pairs of a
SPARQL query and a function.)

We run two different queries for each of the two systems. They do not only
reflect on the internal structure, as the simple queries in Section 3, but also use
the asset model that describes the physical system to ensure further consistency
properties. The asset model in our case also specifies the requirements on single
ports of simulators in the DTs, thus realizing a form of runtime monitoring. The
queries used for report generation are given in Figure 12.

• Query Q1a returns all DTs ?x loading the linear model of a tank that are twin-
ning some tank ?asset that flows into another tank ?next. It then removes
all the DTs, for which ?next is correctly connected. Thus, the result of the
query is all those DTs that are not correctly coupled since all correctly coupled
connections are removed.

• Query Q2a returns all DTs ?x of tanks and the current value ?out of their
outflow, which do not satisfy the requirement for their PT. The requirement
expresses that the value must be over a certain threshold ?lim. The value, and
the requirement itself are part of the asset model and connected to twinned
asset ?asset with the domain:specifiedBy property.

Query Q1b for the Flex-cell is similar to Q1a and checks that the ports of the
RabbitMQ on one side, and the UR5 and Kuka lbr iiwa 7 simulators are connected
correctly. There is no explicit asset model, this property is internal to the sys-
tem. Query Q2b is analogous to Q2a but targets the coordinates of the X axis in
the Flex-cell. For the sake of brevity, they are only given in the auxiliary online
material. A generic query, used in both case studies, is given in Figure 8.

The following is the output of a report for two defects found by Q2a. The
string outPortLimit is the internal name of the query. Each report is, in this case,
a single line generated by the parameterized string “simulator $?x has value
$?out >= $?lim !”.
Report on "outPortLimit". The following simulators exhibit defects:

simulator {tank}.tank3 has value 11 >= 10!
simulator {tank}.tank1 has value 12 >= 10!

5 Evaluation

The approach we have described so far enables the realization of hierarchical
DTs, and the value that can be added to these through semantic services. In this
section, we are further assessing the reusability of the approach using the multi-
case study setting used throughout this work.

30

1 SELECT ?x {?x a domain:SimulationComponent; #Q1a
2 domain:hasFile "DTProject/fmus/Linear.fmu";
3 domain:hasName ?id.
4 ?asset domain:twinnedWithName ?id;
5 domain:flowsInto ?next.
6 ?next domain:twinnedWithName ?idNext].
7 FILTER NOT EXISTS {
8 ?y a domain:SimulationComponent; domain:hasName ?id.
9 ?cont a domain:ContainerComponent;

10 domain:contains ?x;
11 domain:contains ?y;
12 domain:hasConnection [
13 domain:connectFrom [domain:aliasOf [domain:hasName "outPort"]];
14 domain:connectTo [domain:aliasOf [domain:hasName "inPort"]]].
15 }
16 }

1 SELECT ?x ?out ?lim {?x a domain:SimulationComponent; #Q2a
2 domain:hasFile "DTProject/fmus/Linear.fmu";
3 domain:hasPort ?p;
4 domain:hasName ?id.
5 ?asset domain:twinnedWithName ?id;
6 domain:specifiedBy [domain:minValue ?lim].
7 ?p a domain:OutPort;
8 domain:hasName "outPort";
9 domain:hasValue ?out.

10 FILTER (?out >= ?lim)
11 }

Fig. 12: Queries Q1a (above) and Q2a (below) for the three-tank system of Ex2.

5.1 Metrics and Settings

In alignment with RQ1 and the IEEE 1517 Standard for systematic reuse [68],
some metrics to evaluate the reusability of the proposed architecture are col-
lected. Although some approaches, such as Ghasemi et al. [69] and Lia and
Colella [70] have proposed strategies to measure reusability using DTs, there are
no standard metrics to collect such data. The former measures the reusability
using the number of methods and the latter measures the principles for findabil-
ity, accessibility, interoperability, and reusability using dictionary-like data, such
as JSON, XML, and RDF files. However, these methods do not fit this approach’s
scope to measure reusability.

Therefore, we use the multi-case study approach with the two case studies
considered in this work to measure the reusability of the Twin Manager compo-
nents for the two case studies. Additionally, we also use the measurement for
reusability of software components proposed by Washizaki et al. [71] to measure
the reusability of the Twin Manager approach as a software component since
it is set up based on black-box components and a unique Façade interface to
users and services. For collecting these metrics, we assume that the configura-
tion files, twin schemas, and black-box models already exist for both case studies,
and these only need to be attached to the instantiation of the architecture. There-
fore, the evaluation considers the components as black boxes that can be reused,

31

replaced, added, or deleted. Such black boxes are based on the instantiation of
the architectures in Figure 9 and Figure 10.

Metrics concerning the use and reuse of the architecture and its
components

To evaluate the architecture and the defect queries separatly, each of the fol-
lowing metrics is used once for the architecture with and once without defect
queries.

Metric 1. Ratio of components that can be reused as-is with light parameteriza-
tion for the instantiation of second case study based on the instantiation of the
first one.
Metric 2. Ratio of components to be replaced for the instantiation of the second
case study based on the instantiation of the first one.
Metric 3. Ratio of components to be added for the instantiation of second case
study based on the instantiation of the first one.
Metric 4. Ratio of components to be deleted for the instantiation of second case
study based on the instantiation of the first one.
Metric 5. Value of the Component Overall Reusability (COR) proposed by
Washizaki et al. [71] for all components .

5.2 Evaluation Results

For collecting Metrics 1 to 4, we use the instantiations of the architecture for
the two case studies. Defect queries are listed separately, but are considered as
configuration files.

The instantiation of the Three-Tank System in the architecture (see Figure 9)
is achieved by using a total of 17 (22 with queries) components, as follows:

Architecture-specific components (9): Twin Manager, Tank 1 DT, Tank 2 DT,
Tank 3 DT, Three-Tank System, FMIEndpoint Tank 1, FMIEndpoint Tank 2,
FMIEndpoint Tank 3, and MaestroEndpoint.
Models (4): Tank schema, FMU Tank 1, FMU Tank 2, and FMU Tank 3.
Configuration files (4): Tank 1 Config, Tank 2 Config, Tank 3 Config, and Three-
Tank System Config.
Defect Queries (5): Q0a,Q0b,Q0c,Q1a,Q2a

Similarly, the instantiation of the Flex-cell in the architecture (see Figure 10)
is achieved by using a total of 22 (27 with queries) components, as follows:

Architecture-specific components (12): Twin Manager, UR5e DT, Kuka lbr
iiwa 7 DT, UR5e PT, Kuka lbr iiwa 7 PT, Flex-cell DT System, Flex-cell PT Sys-
tem, FMIEndpoint UR5e, FMIEndpoint Kuka lbr iiwa 7, MQTTEndpoint UR5e,
MQTTEndpoint Kuka lbr iiwa 7, and MaestroEndpoint.
Models (5): UR5e schema, Kuka lbr iiwa 7 schema, UR5e FMU, Kuka lbr iiwa 7
FMU, and RabbitMQ FMU.

32

Configuration files (5): UR5e PT Config, UR5e DT Config, Kuka lbr iiwa 7 PT
Config, Kuka lbr iiwa 7 DT Config, and Flex-cell System Config.
Defect Queries (5): Q0a,Q0b,Q0c,Q1b,Q2b

In order to instantiate the Flex-cell based on the instantiation of the Three-
Tank System, the models need to be replaced (since we assume models are
already provided), the architecture-specific components can be either reused with
light parameterization or added/deleted. Finally, the configuration files for the
new setup also need to be provided.

More precisely, the components to be changed are as follows: Three FMUs
need to be replaced, one twin schema needs to be replaced and one twin schema
needs to be added. Two twin configuration files featuring FMIEndpoint inter-
faces need to be replaced and one need to be deleted; two twin configuration
files featuring MQTTEndpoint interfaces need to be added; and one twin system
configuration featuring the co-simulation (DT part) needs to be replaced and one
featuring the PT system needs to be added. In terms of the architecture-specific
components, the instances for the Twin Manager, three twins, one twin system,
two FMIEndpoints, and one MaestroEndpoint can be reused with light parameter-
ization, i.e., by initializing them to the second case study with the corresponding
configuration files and models; one additional twin, one twin system, and two
MQTTEndpoints need to be added; and one FMIEndpoint needs to be deleted.

This yields that to instantiate the Flex-cell case study based on the Three-Tank
System instantiation, seven components need to be replaced (replacements = 7),
seven components can be reused (reuses = 7), eight components need to be added
(additions = 8), and two components need to be deleted (deletions = 2). To calcu-
late the ratio, we use the formula ratiometric =

metric
totalc

, where totalc stands for the
total number of components to be modified (including the deletions), i.e., 24.

We also consider the queries as components (more precisely, as configuration
files, which configure the defect monitoring) to analyze their contributions to the
ratios; of these, two are replaced and three are reused. These metrics are all
given in in Table 1, with and without the defect queries.

The instantiation of the Flex-cell based on the Three-Tank System is dras-
tic since it changes from one case study to another one completely different. It
demonstrates reuse in an extreme case and illustrates the capabilities of the Twin
Manager to generalize to multiple systems. A less drastic, yet hypothetical, recon-
figuration scenario is the replacement of a robotic arm of the Flex-cell, e.g., to use
two UR5e. In that case, the modifications to set up the Flex-cell with two UR5e
include: the replacement of the FMU for the second UR5e instead of the one for
the Kuka LBR iiwa 7 and the configuration file featuring the existing instance of
the FMIEndpoint previously used by the Kuka LBR iiwa FMU; the replacement of
the configuration file featuring the existing instance of the MQTTEndpoint pre-
viously used by the real Kuka LBR iiwa 7; the twin schema for the second UR5e
is reused from the first UR5e; and the MaestroEndpoint is reused by replacing

33

the twin system configuration file of the existing co-simulation with the updated
setting including the two UR5e FMUs.

Regarding Metric 5, we follow the method proposed by Washizaki et al. [71],
where we compute the sub-metrics for the component’s observability (RCO),
customizability (RCC), and self-completeness of return’s value (SCCr) and self-
completeness of parameter (SCCp) to come up with the COR. For this computa-
tion, we have four settings, namely, (1) the business logic inside the Twin Schema
file is considered, and the defect queries are not, (2) the business logic inside the
Twin Schema file is not considered, and the defect queries are not, (3) like (1),
but with the defect queries, and (4) like (2), but with the defect queries. For set-
ting (1) and (3), we make an assumption the Twin Schema is provided with six
attributes (observations) and three operations (business methods), replicating the
UR5e’s useful properties under the scope of this work, which is part of the Flex-
cell case study (see Section 2.2.2). The observations refer to the joint positions
for joints zero to five and the business methods refer to the executable commands
movej, movel, and movep. For the properties, we use the number of readable and
writable properties, and number of business methods without return value and
without parameters in the TwinManager class, which is the unique interface to
the DT-enabled system, in relation to the actual existing properties and business
methods in the component. For settings (3) and (4) we make the assumption that
the two specific queries are provided as writable attributes, and the three generic
ones as business methods (without return value), that are used by the lifting
services internally.

For readable and writable properties of the Façade component, we con-
sider that the Twin Manager’s getter and setter methods are the interfaces to
access the internal properties, namely, getAttributeValue, getSystemAttribute-
Value, setAttributeValue, and setSystemAttributeValue. Similarly, for the business
methods of the Façade component, we consider that the Twin Manager’s meth-
ods to execute operations are the interfaces to access the internal business
methods, namely, executeOperation and executeOperationOnSystem. Internally
speaking, we consider nine relevant system-wise properties in the component
(name, schema, configuration, endpoint, list of attributes, list of operations, twins,
and twin systems). Similarly, we consider four relevant system-wise internal busi-
ness methods without return value (executeOperation, simulate, doStep, and
resetSimulation) and two without parameters (simulate and doStep).

These data yield to the metrics in Table 1, with and without the twin schema
and the defect queries.

We discuss the results in the next section.

34

Table 1: Summary of reusability metrics. ✓denotes that this part
is considered, X denotes that it is not. The upper table gives
metrics 1 – 4, the lower metric 5.

Queries ratioreuses ratioreplacements ratioadditions ratiodeletions

X 0.292 0.292 0.333 0.083
✓ 0.344 0.310 0.275 0.069

Schema Queries RCO RCC SCCr SCCp COR

✓ X 0.533 0.533 0.741 0.286 0.189

X X 0.22 0.22 0.5 0.5 −0.120

✓ ✓ 0.533 0.66 0.8 0.2 0.317

X ✓ 0.22 0.44 0.71 0.29 0.136

6 Discussion

6.1 Regarding the Evaluation Results

Further analyzing the evaluation of this approach, we identify some of the out-
comes highly relevant for the realization of DT systems with coupled behavior
with additional semantic services.

The metrics collected here based on the multi-case study approach indicate
the potential for reuse of the architecture in two very different case study set-
tings of a similar scale. Additionally, the computation for the metrics proposed
by Washizaki et al. [71] indicate that, the Twin Manager is reusable when either
semantic queries or twin schemas and their business logic behind are considered
since COR > 0, but it is not sufficient reusable if neither twin schema nor seman-
tic queries are considered. Additionally, in any setting, according to Washizaki et
al. [71], the Twin Manager is highly customizable in terms of business methods,
which limits the reusability of the approach to some extent.

Speaking of the advantages, if we assume the models, queries , and configu-
ration files are already existing and can be straightforwardly replaced, the ratios
for replacements and reuses indicate the saving in engineering effort, while the
additions and deletions indicate the extra effort required. Specifically for this
evaluation based on the multi-case study approach, 29.2% (34.4% if consider-
ing queries) of the components can be reused and 29.2% (31.0% if considering
queries) can be replaced. This means, that at least, there is a saving in engineer-
ing effort of 58.4% (65.4% if considering queries) where at least half of it is
due to the enhanced reusability of the approach, which responds to the need for
reusability in RQ1. This reusability can be further enhanced when the approach is
incorporated into the DTaaS platform, which responds to RQ3, where infrastruc-
ture services, such as the RabbitMQ and MQTT brokers, tools, such as, Maestro
and the Twin Manager jar, and models, such as RMQ FMU, can be reused to
realize DTs. On the other hand, there is at least a 33.3% (27.5% if considering
queries) of components that require engineering effort. This number, in addition,

35

increases for systems of larger scales and the incorporation of more elaborated
business logic. Therefore, there is still potential to further reduce the engineer-
ing effort, especially for the realization of large DT-enabled systems with multiple
twins and twin systems.

Regarding the reusability of the semantic lifting services we point out that all
four are reusable between the case studies and are directly reusable for further
applications following the same architecture. The generic defect queries are also
reusable, while the non-generic defect queries must be configured anew. This
means that only 1 out of 6 components (4 services, 2 sets of defect queries) must
be replaced, and none must be added or removed, which gives us a high reusabil-
ity for the semantic lifting: Only 16.6% of components require engineering work.
This shows that a positive answer of RQ2 does not necessarily compromise the
reusability aspects of RQ1 and RQ3.

6.2 Capabilities

This work provides an improvement to our previous work [8] that adds the capa-
bilities and interfaces to (i) realize composed DT systems with coupled behavior,
(ii) run co-simulation settings, (iii) be used in a DTaaS platform, and (iv) pro-
vide case-independent DT services using semantic reasoning and querying. The
integration of co-simulation with DT platforms also bridges two categories of
frameworks to realize DTs, namely, IoT-based frameworks and co-simulation-
based frameworks [22]. On the downside, this extension adds overhead for the
computation of the co-simulation settings, which introduces delays that can affect
the real-time response capabilities of DTs.

With the multi-case study approach used in this work, we validate the capabil-
ity of this architectural approach to address the challenge regarding composition
of DTs with coupled behavior, which was present in our previous work that
approaches composition of DTs [7] and a common challenge in relation to com-
position of heterogeneous DTs [6]. This capability is the result of integrating DTs
with co-simulation, which has been proved to be useful to approach the inter-
operability of heterogeneous hierarchies of simulators [72]. Such capability has
been validated to work with coupled behavior in cascade (Three-Tank System)
and synchronization (Flex-cell) coupling. Other types of coupling are yet to be
researched.

The architectural approach enables a one-level composition of twins into twin
systems, which provides a functional implementation of composition for DTs with
coupled behavior, which responds to the qualitative aspects of RQ1. Twin sys-
tems, however, cannot be composed into other twin systems, and therefore, the
approach is limited to a one-level composition hierarchy. Thus, the ultimate twin
system to be instantiated with the architecture is to be the last in the model
hierarchy (e.g., following the modeling approach in [7]). This limitation does not
necessarily affect the consistency of the internal coupling if the relationships of

36

the composed twin are translated into hierarchical connections of the simula-
tors in the Twin System Configuration file, which would represent the multi-level
composition in the background.

Answering RQ2, we have shown that semantic lifting enables to check addi-
tional consistency constraints during execution. Using the generic lifting map for
our architecture, it can be used to check (a) internal consistency, i.e., constraints
within the components of DT platform, such as correct coupling between the
robotic arms, (b) external consistency, i.e., constraints between the DT structure
and external knowledge, such as the structure of the PT as described by an asset
information model, and (c) generic consistency, such as the existence of at least
one DT model.

The application of defect queries has been proven useful for structural self-
adaptation to detect defects in programs [46] and DTs [73]. Here, we have
generated the lifting map from the software architecture by manually designing
an ontology for it. Alternatively, one can consider a general scheme that gen-
erates a mapping from a software architecture, based on the used architecture
description language (ADL). As discussed, there is no direct mapping from UML
architecture diagram to ontologies that cover all features, but alternative ADLs
or a restricted subset are possible ways to give a generic mapping. In this case,
one of the four semantic services would be not directly reusable, but would be
automatically generated.

6.3 Limitations of This Study

In the following, we discuss the identified limitations that are threats to validity
and the mitigation strategies to address them.

External validity

Simulation-only case study The Three-Tank System case study used in this
work is a simulation-only system which helps with the illustration of the coupled
behavior involved in such a system. However, this system is purely conceptual and
does not include a proper PT, and therefore, no additional physical considerations
or constraints are involved in this case study, which can limit its generalizabil-
ity to more realistic settings. Mitigation strategy: A mitigation strategy to avoid
this limitation is to use the architecture in a different case study that includes a
proper PT, which also requires to have more accurate definitions for the models,
configurations, and constraints required in the real setup.
One-level composition The architectural approach only supports a one-level
composition, where objects of the Twin class can be aggregated to objects of the
Twin System class. Objects of the Twin System class cannot yet be composed into
a higher hierarchical level. Migitation strategy: A workaround for this limitation
is to only implement the composed twin at the highest hierarchy level (in the con-
ceptual model, i.e., using the modeling approach proposed in [7]) as the object
of the Twin System class, and represent the internal hierarchical relationships as

37

part of the connections field in the Twin System Configuration file. This ensures
the coupling and the hierarchy are consistent throughtout and implementable
with the architecture.
Scalability of the semantic lifting services Our ontology is built specifically
for the architecture and does neither refer to top-level-ontologies, nor to a full
industrial ontology (e.g., the Industrial Data Ontology [74] or the Industrial
Ontologies Foundry Core Ontology [75]). This can limit the applicability where the
semantic lifting is also concerned with constraints stemming from industrial stan-
dards or data integration. Semantic technologies are computationally costly and
we did not perform a detailed performance evaluation on defect queries. In our
experiments, the monitoring overhead was negligible. Therefore, the case stud-
ies do not demonstrate the applicability on real-time changes of large industrial
assets. We assume, however, that structural changes detected by defect queries
must not be monitored in real time due to their rather rare occurrence.

Internal validity

Synchronization with the RMQ FMU The bridge between real world and co-
simulation with RMQ FMU still requires improvement regarding the synchro-
nization of input/output messages in the co-simulation and the time delays that
introduced. This is still a current challenge in the architectural approach to
be solved and requires deeper research in how to effectively integrate hybrid
co-simulation within the Twin Manager, which is a challenging feature of co-
simulation [40]. Mitigation strategy: A workaround for this limitation is to
externally administrate the messaging between the Twin Manager and RMQ FMU
(as shown in Figure 10 with the Routine Publisher block).
Grippers The grippers attached to the robotic arms, which are controlled inde-
pendently from the robotic arms, have not been considered as explicit assets of
the Flex-cell in this study, though they have modeled as components of the Flex-
cell in our previous study [7]. This is because of the lack of behavioral models
for the grippers, which limits their integration in the system with coupled behav-
ior. Therefore, they have not been included in the co-simulation setting nor in
the representation of the twins in the DT-enabled system. Mitigation strategy:
The mitigation strategy for this limitation is to include the behavioral models of
the grippers as FMUs. These FMUs should then be integrated via FMIEndpoints,
and subsequently, aggregated into the Flex-cell DT System and interfaced via
a MaestroEndpoint. This integration would require an additional change of the
connections in the Twin System Configuration file of the twin system.
Measuring the engineering effort As part of the evaluation, we collect some
metrics related to reusability of the components in the architectural approach.
However, we do not make emphasis on the associated engineering efforts
required to create the models for the case study, define the configuration settings,
or set up the application with the Twin Manager. Mitigation strategy: A mitigation
strategy for this limitation is to further measure in detail the engineering effort

38

required to carry out the tasks involved in the set up of a new case study with the
Twin Manager approach.

7 Concluding Remarks

This paper presents an extension to a DT architecture for systems of DTs with
coupled behavior via co-simulation with additional semantic services. Two repre-
sentative case studies of highly coupled systems are used for the evaluation of
the approach. The findings show improvements regarding the capabilities to real-
ize DTs with coupled behavior and the combination with other tools, such as the
DTaaS platform, and an increased reusability of components that can be used for
different DT case studies, which leads to reducing the implementation effort of
the DT engineering.

Concerning the semantic reflection, we point out that this is the first appli-
cation of this approach in DTs that reflects the target structure in a generic
fashion, yet abstracts from implementation detail – the lifting of the DT is not the
lifting of the implementation. This opens new avenues for software engineering
approaches targeting cognitive and other semantically enhanced twins.

The main contributions are related to (1) the use of extended co-simulation
scenarios for hierarchical and coupled DTs, managed from a DT architecture
that can be integrated into a DTaaS platform, and (2) the use of semantic lifting
for microservice platforms to store, load, monitor, and check connections using
semantic technologies.

Future Work

This work lays the foundation to integrate coupled DTs and semantic lifting into
a DTaaS platform. We conjecture that reusing the optimizations of the DTaaS
platform, as well as suitable virtualization [76] of the lifting state, will improve
the performance of coupled DT simulations and increase the number of avail-
able case-independent services for deployed DTs. Furthermore, improving the
synchronization and the asynchronous functionalities of the architecture and its
integration with co-simulation engines is a promising research direction.

The authors also plan to assess the approach in a real industrial setting at one
of the partner companies to further assert the validity for generalization and col-
lect data regarding reusability and implementation effort. These data can then be
used to more objectively evaluate the benefits of the approach using a third case
study deployed in an industrial setting with feedback provided by practitioners,
which would address the limitation Measuring the engineering effort provided
in Section 6.3.

Declarations

Funding. This work has been partially funded by the Ringkøbing-Skjern Munic-
ipality, Denmark, under the Framework Collaboration Agreement for Aarhus

39

University Digital Transformation Lab-Skjern, the CP-SENS project supported by
the Danish Innovation Foundation, the Poul Due Jensen Foundation, the Research
Council of Norway through PeTWIN (Grant 294600) and SIRIUS (Grant 237898),
as well as the EU project SM4RTENANCE (Grant 101123423).

Competing Interests. The authors declare that there are no competing inter-
ests.

Code Availability. The prototypical implementation and source code are pub-
licly available on GitHub5.

References

[1] Wagg, D., Worden, K., Barthorpe, R. & Gardner, P. Digital twins: state-of-the-art
and future directions for modeling and simulation in engineering dynamics applica-
tions. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:
Mechanical Engineering 6, 030901 (2020).

[2] Lehner, D. et al. Digital Twin Platforms: Requirements, Capabilities, and Future
Prospects. IEEE Software 39, 53–61 (2022).

[3] Pfeiffer, J., Lehner, D., Wortmann, A. & Wimmer, M. Modeling Capabilities of Digital
Twin Platforms - Old Wine in New Bottles? Journal of Object Technology 21 (2022).

[4] Aheleroff, S., Xu, X., Zhong, R. Y. & Lu, Y. Digital Twin as a Service (DTaaS) in Industry
4.0: An Architecture Reference Model. Advanced Engineering Informatics 47, 101225
(2021). URL https://www.sciencedirect.com/science/article/pii/S1474034620301944.

[5] Talasila, P. et al. Digital Twin as a Service (DTaaS): A Platform for Digital Twin
Developers and Users, SWC 2023 (IEEE, Portsmouth, UK, 2023).

[6] Michael, J., Pfeiffer, J., Rumpe, B. & Wortmann, A. Integration Challenges for Digital
Twin Systems-of-Systems, SESoS, 9–12 (IEEE/ACM, 2022).

[7] Gil, S., Mikkelsen, P. H., Tola, D., Schou, C. & Larsen, P. G. A Modeling Approach for
Composed Digital Twins in Cooperative Systems, 1–8 (IEEE, 2023).

[8] Lehner, D., Gil, S., Mikkelsen, P. H., Larsen, P. G. & Wimmer, M. An architectural
extension for digital twin platforms to leverage behavioral models, 1–8 (2023).

[9] Kamburjan, E., Klungre, V. N., Schlatte, R., Johnsen, E. B. & Giese, M. Program-
ming and debugging with semantically lifted states, Vol. 12731 of Lecture Notes in
Computer Science, 126–142 (Springer, 2021).

[10] Kritzinger, W., Karner, M., Traar, G., Henjes, J. & Sihn, W. Digital Twin in manufac-
turing: A categorical literature review and classification, Vol. 51 of IFAC, 1016–1022
(Elsevier, 2018).

[11] Lee, E. A. Cyber physical systems: Design challenges, 363–369 (2008).
[12] VanDerHorn, E. & Mahadevan, S. Digital Twin: Generalization, characterization and

implementation. Decision Support Systems 145, 113524 (2021). URL https://doi.org/
10.1016/j.dss.2021.113524.

[13] Tao, F., Xiao, B., Qi, Q., Cheng, J. & Ji, P. Digital twin modeling. Journal of
Manufacturing Systems 64, 372–389 (2022).

5https://github.com/Edkamb/ConfLiftingaaS

40

https://www.sciencedirect.com/science/article/pii/S1474034620301944
https://doi.org/10.1016/j.dss.2021.113524
https://doi.org/10.1016/j.dss.2021.113524
https://github.com/Edkamb/ConfLiftingaaS

[14] Zambrano, V. et al. Industrial digitalization in the industry 4.0 era: Classification,
reuse and authoring of digital models on digital twin platforms. Array 14, 100176
(2022).

[15] Jones, D., Snider, C., Nassehi, A., Yon, J. & Hicks, B. Characterising the Digital Twin: A
systematic literature review. CIRP Journal of Manufacturing Science and Technology
29, 36–52 (2020). URL https://doi.org/10.1016/j.cirpj.2020.02.002.

[16] Dalibor, M. et al. A Cross-Domain Systematic Mapping Study on Software Engineering
for Digital Twins. Journal of Systems and Software 193, 111361 (2022).

[17] Oakes, B. et al. Improving Digital Twin Experience Reports, 179–190 (SCITEPRESS -
Science and Technology Publications, Online, 2021).

[18] Schluse, M., Priggemeyer, M., Atorf, L. & Rossmann, J. Experimentable Digital
Twins-Streamlining Simulation-Based Systems Engineering for Industry 4.0. IEEE
Transactions on Industrial Informatics 14, 1722–1731 (2018).

[19] Barbieri, G. et al. A virtual commissioning based methodology to integrate digital
twins into manufacturing systems. Production Engineering 15, 397–412 (2021). URL
https://doi.org/10.1007/s11740-021-01037-3.

[20] IEC. Asset Administration Shell for industrial applications - Part 1: Asset Administra-
tion Shell structure IEC 63278-1:2023 edn (International Electrotechnical Commis-
sion, Geneva, Switzerland, 2023). URL https://webstore.iec.ch/publication/65628.

[21] Larsen, P. G. et al. Integrated tool chain for model-based design of Cyber-Physical
Systems: The INTO-CPS project, 2016 2nd International Workshop on Modelling,
Analysis, and Control of Complex CPS, CPS Data 2016 (2016).

[22] Gil, S., Mikkelsen, P. H., Gomes, C. & Larsen, P. G. Survey on open-source digital twin
frameworks–A case study approach. Software: Practice and Experience 54, 929–960
(2024).

[23] Zambrano, V. et al. Industrial digitalization in the industry 4.0 era: Classification,
reuse and authoring of digital models on digital twin platforms. Array 100176 (2022).
URL https://www.sciencedirect.com/science/article/pii/S2590005622000352.

[24] Talasila, P. et al. Comparison Between the HUBCAP and DIGITBrain Platforms for
Model-Based Design and Evaluation of Digital Twins, Vol. 13230 LNCS, 238–244
(2022).

[25] Geman, S., Potter, D. F. & Chi, Z. Composition systems. Quarterly of Applied
Mathematics 60, 707–736 (2002).

[26] Keller, R. K. & Schauer, R. Design components: Towards software composition at the
design level, 302–311 (1998).

[27] Jia, W., Wang, W. & Zhang, Z. From simple digital twin to complex digital twin Part
I: A novel modeling method for multi-scale and multi-scenario digital twin. Advanced
Engineering Informatics 53, 101706 (2022).

[28] Gao, Y., Lv, H., Hou, Y., Liu, J. & Xu, W. Real-time modeling and simulation method of
digital twin production line, ITAIC, 1639–1642 (IEEE, 2019).

[29] Andryushkevich, S. K., Kovalyov, S. P. & Nefedov, E. Composition and application of
power system digital twins based on ontological modeling, INDIN, 1536–1542 (IEEE,
2019).

[30] Preuveneers, D., Joosen, W. & Ilie-Zudor, E. Robust Digital Twin Compositions
for Industry 4.0 Smart Manufacturing Systems, International Enterprise Distributed
Object Computing Workshop, 69–78 (IEEE, 2018).

41

https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1007/s11740-021-01037-3
https://webstore.iec.ch/publication/65628
https://www.sciencedirect.com/science/article/pii/S2590005622000352

[31] Human, C., Basson, A. H. & Kruger, K. A design framework for a system of digital
twins and services. Computers in Industry 144, 103796 (2023).

[32] Schroeder, G. N. et al. A Methodology for Digital Twin Modeling and Deployment for
Industry 4.0, Vol. 109, 556–567 (2021).

[33] Dinar, M. & Rosen, D. W. A design for additive manufacturing ontology. Journal of
Computing and Information Science in Engineering 17, 1–9 (2017).

[34] Ayinla, K., Vakaj, E., Cheung, F. & Tawil, A. R. H. A semantic offsite construction
digital Twin-Offsite Manufacturing Production Workflow (OPW) ontology, Vol. 2887,
1–14 (2021).

[35] Maria, A. Introduction to modeling and simulation, 7–13 (1997).
[36] Banks, J. Handbook of Simulation (Wiley, 1998).
[37] Gomes, C., Thule, C., Broman, D., Larsen, P. G. & Vangheluwe, H. Co-simulation: A

survey. ACM Computing Surveys 51 (2018).
[38] Sadjina, S. et al. Distributed co-simulation of maritime systems and operations.

Journal of Offshore Mechanics and Arctic Engineering 141 (2019).
[39] Bullock, D., Johnson, B., Wells, R. B., Kyte, M. & Li, Z. Hardware-in-the-loop

simulation. Transportation Research Part C: Emerging Technologies 12, 73–89
(2004).

[40] Cremona, F. et al. Hybrid co-simulation: it’s about time. Software and Systems
Modeling 18, 1655–1679 (2019).

[41] Thule, C., Lausdahl, K., Gomes, C., Meisl, G. & Larsen, P. G. Maestro: The INTO-
CPS co-simulation framework. Simulation Modelling Practice and Theory 92, 45–61
(2019).

[42] Havard, V., Jeanne, B., Lacomblez, M. & Baudry, D. Digital twin and virtual reality:
a co-simulation environment for design and assessment of industrial workstations.
Production and Manufacturing Research 7, 472–489 (2019). URL https://doi.org/10.
1080/21693277.2019.1660283.

[43] Fitzgerald, J., Larsen, P. G. & Pierce, K. Multi-modelling and Co-simulation in the
Engineering of Cyber-Physical Systems: Towards the Digital Twin, Vol. 11865 LNCS
of Lecture Notes in Computer Science, 40–55 (Springer, 2019). URL http://dx.doi.org/
10.1007/978-3-030-30985-5{_}4.

[44] Qu, Y., Kamburjan, E., Torabi, A. & Giese, M. Semantically triggered qualitative sim-
ulation of a geological process. Applied Computing and Geosciences 21, 100152
(2024).

[45] Kamburjan, E. & Johnsen, E. B. Knowledge structures over simulation units, ANNSIM,
78–89 (IEEE, 2022).

[46] Kamburjan, E. et al. Digital twin reconfiguration using asset models, Vol. 13704 of
Lecture Notes in Computer Science, 71–88 (Springer, 2022).

[47] Paredis, R. & Vangheluwe, H. Towards a digital Z framework based on a family of
architectures and a virtual knowledge graph, 491–496 (ACM, 2022).

[48] Lu, J., Zheng, X., Gharaei, A., Kalaboukas, K. & Kiritsis, D. Cognitive twins for
supporting decision-makings of internet of things systems. CoRR abs/1912.08547
(2019).

[49] Li, H., Wang, G., Lu, J. & Kiritsis, D. Cognitive twin construction for system of systems
operation based on semantic integration and high-level architecture. Integr. Comput.
Aided Eng. 29, 277–295 (2022).

42

https://doi.org/10.1080/21693277.2019.1660283
https://doi.org/10.1080/21693277.2019.1660283
http://dx.doi.org/10.1007/978-3-030-30985-5{_}4
http://dx.doi.org/10.1007/978-3-030-30985-5{_}4

[50] Rozanec, J. M. et al. Actionable cognitive twins for decision making in manufacturing.
Int. J. Prod. Res. 60, 452–478 (2022).

[51] Li, Y. et al. Co-simulation of complex engineered systems enabled by a cognitive twin
architecture. International Journal of Production Research 60, 7588–7609 (2022).

[52] Abburu, S. et al. COGNITWIN - hybrid and cognitive digital twins for the process
industry, 1–8 (IEEE, 2020).

[53] Ali, M. I., Patel, P., Breslin, J. G., Harik, R. F. & Sheth, A. P. Cognitive digital twins for
smart manufacturing. IEEE Intell. Syst. 36, 96–100 (2021).

[54] Zheng, X., Lu, J. & Kiritsis, D. The emergence of cognitive digital twin: vision,
challenges and opportunities. Int. J. Prod. Res. 60, 7610–7632 (2022).

[55] Tsang, E. W. Generalizing from research findings: The merits of case studies.
International Journal of Management Reviews 16, 369–383 (2014).

[56] Wieringa, R. & Daneva, M. Six strategies for generalizing software engineering theo-
ries. Science of Computer Programming 101, 136–152 (2015). URL http://dx.doi.org/
10.1016/j.scico.2014.11.013.

[57] Gil, S., Oakes, B. J., Gomes, C., Frasheri, M. & Larsen, P. G. Toward a sys-
tematic reporting framework for digital twins: a cooperative robotics case study.
SIMULATION 1–27 (2024). URL https://doi.org/10.1177/00375497241261406.

[58] Azizkhani, M., Godage, I. S. & Chen, Y. Dynamic Control of Soft Robotic Arm: A
Simulation Study. IEEE Robotics and Automation Letters 7, 3584–3591 (2022).

[59] Madsen, E., Tola, D., Hansen, C., Gomes, C. & Larsen, P. G. AURT: A Tool for Dynamics
Calibration of Robot Manipulators*, 190–195 (IEEE, 2022).

[60] Corke, P. & Haviland, J. Not your grandmother’s toolbox–the robotics toolbox
reinvented for python, 11357–11363 (IEEE, 2021).

[61] Legaard, C. M., Tola, D., Schranz, T., Macedo, H. D. & Larsen, P. G. A universal
mechanism for implementing functional mock-up units, SIMULTECH 2021, to appear
(Virtual Event, 2021).

[62] Fitzgerald, J., Gomes, C. & Larsen, P. G. (eds) The Engineering of Digital Twins
(Springer, 2024).

[63] Gamma, E., Johnson, R., Helm, R., Johnson, R. E. & Vlissides, J. Design patterns:
elements of reusable object-oriented software (Addison-Wesley, 1995).

[64] Frasheri, M., Ejersbo, H., Thule, C. & Esterle, L. Macedo, H. D., Thule, C. & Pierce,
K. (eds) Rmqfmu: Bridging the real world with co-simulation for practitioners. (eds
Macedo, H. D., Thule, C. & Pierce, K.) Proceedings of the 19th International Overture
Workshop (Overture, 2021).

[65] Mkhinini, M. M., Labbani-Narsis, O. & Nicolle, C. Combining UML and ontology: An
exploratory survey. Comput. Sci. Rev. 35, 100223 (2020).

[66] Horridge, M. et al. The manchester OWL syntax, Vol. 216 of CEUR Workshop
Proceedings (CEUR-WS.org, 2006).

[67] Wiens, V., Lohmann, S. & Auer, S. Webvowl editor: Device-independent visual ontology
modeling, Vol. 2180 of CEUR Workshop Proceedings (CEUR-WS.org, 2018).

[68] IEEE Standard for Information Technology–System and Software Life Cycle
Processes–Reuse Processes. IEEE Std 1517-2010 (Revision of IEEE Std 1517-1999)
1–51 (2010).

[69] Ghasemi, G., Müller, M. S., Jazdi, N. & Weyrich, M. Quality Analysis Framework based
on Complexity for Change Management Using Intelligent Digital Twin, Vol. 120, 1516–
1521 (Elsevier B.V., 2023). URL https://doi.org/10.1016/j.procir.2023.09.207.

43

http://dx.doi.org/10.1016/j.scico.2014.11.013
http://dx.doi.org/10.1016/j.scico.2014.11.013
https://doi.org/10.1177/00375497241261406
https://doi.org/10.1016/j.procir.2023.09.207

[70] Lia, M. & Colella, D. D. CkanFAIR: a digital tool for assessing the FAIR principles,
3980–3984 (IEEE, 2023).

[71] Washizaki, H., Yamamoto, H. & Fukazawa, Y. A metrics suite for measuring reusability
of software components, 211–223 (IEEE, 2003).

[72] Gomes, C. et al. Semantic adaptation for FMI co-simulation with hierarchical
simulators. Simulation 95, 241–269 (2019).

[73] Kamburjan, E. et al. GreenhouseDT: An Exemplar for Digital Twins, SEAMS’24 (ACM,
2024).

[74] ISO. Automation systems and integration — ontology based interoperability. Stan-
dard, International Organization for Standardization, Geneva, CH (2024).

[75] Drobnjakovic, M. et al. The industrial ontologies foundry (IOF) core ontology, Vol.
3240 of CEUR Workshop Proceedings (CEUR-WS.org, 2022).

[76] Xiao, G., Ding, L., Cogrel, B. & Calvanese, D. Virtual knowledge graphs: An overview
of systems and use cases. Data Intell. 1, 201–223 (2019).

44

	Introduction
	Structure

	Background
	State-of-the-Art
	Digital Twin
	Composition of Digital Twins
	Co-simulation
	Semantics and Digital Twins
	Cognitive Digital Twins
	Research Gap

	Introduction to Case Studies
	Three-Tank System
	A Coupled DT of a Manufacturing Cell: The Flex-cell

	Materials and Methods
	Terminology
	Architecture for coupled DT systems
	Concepts and Foundations
	Proposed Extensions
	Configurations

	Reusable DT services for semantic lifting
	Semantic Lifting of Architectures
	Services Supporting Semantic Reflection
	Lifting Service
	Query Service
	Monitor Service
	Defect Analysis Service

	Results
	Instantiation of the Architecture
	Three-Tank System
	Flex-cell

	Mapping to the DTaaS Platform Implementation
	Three-Tank System
	Flex-cell

	Applying Semantic Lifting Services

	Evaluation
	Metrics and Settings
	Metrics concerning the use and reuse of the architecture and its components

	Evaluation Results

	Discussion
	Regarding the Evaluation Results
	Capabilities
	Limitations of This Study
	External validity
	Internal validity

	Concluding Remarks
	Future Work
	Funding
	Competing Interests
	Code Availability

