
Composable Digital Twins on Digital
Twin as a Service Platform

Journal Title
XX(X):1–22
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Prasad Talasila1, Cláudio Gomes1, Lars B. Vosteen2, Hannes Iven2, Martin Leucker2,
Santiago Gil1, Peter Høgh Mikkelsen1, Eduard Kamburjan3 and Peter Gorm Larsen1

Abstract
Establishing digital twins is a non-trivial endeavour especially when users face significant challenges in creating them
from scratch. Ready availability of re-usable models, data, functions, and tool assets, can help with creation and use
of digital twins. A number of frameworks/platforms exist to facilitate creation and use of digital twins. In this paper we
propose such a platform to manage digital twin assets, create composable digital twins from re-usable assets and make
the digital twins available as a service to other users. The proposed platform supports the management of re-usable
assets, storage, provision of compute infrastructure, communication, monitoring and execution tasks. Two case studies
are used to demonstrate the capabilities of this platform.

Keywords
Digital twin, Physical twin, Platform, Service, Automation, Life cycle, Composition, Composable DTs, Reuse,
Configuration, Firefighter DT.

Introduction

Digital Twins (DTs) are used to add value to Cyber-Physical
Systems (CPSs) of interest, typically called Physical Twins
(PTs). At the heart of a DT is a collection of models
describing characteristics of PT, which is used to provide
additional services for it. Many such services can be
imagined and it is the vision of these capabilities that
makes DTs so valuable: the main motivation for DTs is
to enable real-time monitoring, analysis, and simulation
of a PT. This technology facilitates improved decision-
making, predictive maintenance, and optimisation in various
industries, including manufacturing1, healthcare, urban
planning, and energy storage2. DTs enhance efficiency,
reliability, and sustainability by providing a comprehensive
understanding of complex systems and supporting data-
driven insights. They represent a natural stepping stone from
the massive availability of sensors and data in different
industries, and it is our conviction that DT architecture is
common across many such industries.

However, the implementation of DTs is still a major
endeavour, requiring a significant effort from stakeholders
with different disciplinary backgrounds. For instance,
establishing the communication between the PT and the DT
requires potentially knowledge of computer networks and
architecture as well as programming skills, while building
predictive models of the PT requires potentially knowledge
of the corresponding physics domain. Furthermore, in order
to promote re-usability, a DT may marshal a collection
of data sources and sinks, generic functions, and tools.
Delivering such a DT can be a complex task; coordinating
and orchestrating the numerous services and models
remains a challenge. This is especially true because of the
need for several different modelling approaches, including
information models, geometry, physics, and behaviours3,4.

In this work we present the Digital Twin as a Service
platform (DTaaS). It aims to both (a) speed up development
of DTs and (b) simplify its management during operations
based on the notion of re-usable DT assets: data, functions,
models and other software components that can be reused
by multiple DTs. A number of DT platforms have been
proposed to reduce the implementation effort in relation to
the structural aspects of DTs5, and some also recognise
re-usability as a major challenge, but these platforms that
support the creation and execution of DTs from composable
components6,7 enforce certain implementation styles and are
not service-oriented. Recently, a similar idea of establishing
a DTaaS platform has been proposed8, but with a primary
focus on services related to Augmented Reality.

Our DTaaS platform targets not only re-usability in the
design stage of DTs, but also re-usability at operations –
different life cycle phases of a DT require different assets.
DTaaS gives a practical platform to manage DTs throughout
their respective life cycle.

Contribution Our main contributions are (a) a precise
definition of DT assets and DT life cycle, (b) an architecture
for DT design and operations based on these definitions, and
(c) an implementation of this architecture with an evaluation

1Centre for Digital Twins, DIGIT, Department of ECE, Aarhus University,
Finlandsgade 22, 8200 Aarhus N, Denmark
2Institute for Software Engineering and Programming Languages,
Universität zu Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
3Department of Informatics, University of Oslo, Gaustadalleen 23 B,
0373 Oslo, Norway

Corresponding author:
Prasad Talasila, Centre for Digital Twins, DIGIT, Department of Electrical
and Computer Engineering, Aarhus University, Finlandsgade 22, 8200
Aarhus N, Denmark.
Email: prasad.talasila@ece.au.dk

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

on the incubator9 DT and firefighter DT of the O5G-N-IoT
project10.

Prior Work This work is an extension of previous work
from the co-authors that has introduced the foundations of
DTaaS11, its nomenclature and life cycle phases for DTs
deployed in the platform.

This current manuscript introduces the definition of a re-
usable DT asset, an extended and adopted architecture to
support this definition, and two realistic case studies as an
evaluation. The current manuscript also expands on prior
work by providing details about how two case studies have
gained from establishing DTs using DTaaS. From those
case studies, we describe the benefits of re-usable assets,
the use of different life cycle phases, the realisation of the
DTs and their performance evaluation. Moreover, we provide
a more detailed comparison with existing platforms, and
introduce two new re-usable commonly used DT services
(visualisation and alerts).

Structure The rest of this paper is structured as follows.
We first introduce Background and Related Work in DT
platforms. Afterwards, we introduce the two different Case
Studies (a DT for food fermentation and a DT for rescue
mission support in firefighting), which are consequently
used as running examples for illustration. Then we give
the definitions and illustrations for Re-usable Digital Twin
Assets, Digital Twin Definition and Phases in Digital Twin
Life Cycle, before we give an overview of the System
Architecture and its Platform Implementation. We provide
feature comparison of DTaaS with other DT platforms
in Platform Implementation. Afterwards, we illustrate the
Implementation of Case Studies on the platform and describe
the Performance Evaluation. The paper ends with Discussion
and Future Work and Concluding Remarks.

Background and Related Work

Digital Twin Definition and Realisation
In abstract, DT is a digital representation of a physical
object, that influences the future behaviour of the PT.
However, this definition hides the variants and possible
interpretations12,13. In this manuscript we refer to DT as a
software running remotely in conjunction with cloud services
that collectively add value to an existing PT through the
use of models and simulations14. Some of the existing
literature proposes three subcategories of DTs15: (i) Digital
Model, in which physical object (PO) and digital object
(DO) have no automated exchange of data, (ii) Digital
Shadow, where PO emits data to the DO automatically
and finally (iii) Digital Twin, in which case there exist a
two-way automated data exchange between the DO and
PO. Only in this case the PO is referred to as a PT.
Nevertheless, a DT should be created to accomplish certain
business goals, i.e., in terms of optimisation or provision of
insights16, and therefore, the inclusion of simulation models,
inference and reasoning mechanisms, and data analysis
become essential17. The orchestration for including these
components towards achieving the business goals of DTs is
called the DT constellation18.

A five-level DT architecture has been proposed previ-
ously19. On the lowest level (i) Smart Connection, resides the

data exchange between DT and PT; (ii) Data-to-information
conversion, concerns conversion and aggregation of data for
monitoring and to make it useful for (iii) Cyber, which is
the central information hub and source of analysis across
multiple data sources. At level (iv) Cognition, the knowledge
acquired from lower levels are made available for decision-
making, and finally at level (v) Configuration, is where
decisions or reconfiguration from the DT is fed back to
the PT, to make it self-adaptable. Thus, to create a DT,
infrastructure, tools, models and configurations must address
each level.

In the DT platforms discussed next, we focus on those
that promote the implementation of the (iii) Cyber and
higher layers, choosing to leave out platforms whose goal
is to enable the Smart Connection and Data-to-information
conversion layers, as platforms falling in this category have
been surveyed before17,20.

Re-usability in Digital Twin Implementations
Completely new development of a DT for each PT is not
necessary if the DT or its parts are re-usable21. DTs should
therefore be engineered and operated by reusing the parts
previously developed for other DTs. Towards this end, we
highlight two approaches, detailed next: asset reuse, and
code generation.

Asset Reuse A prior work in the HUBCAP and
DIGITbrain platforms22 shows that a DT can be structured
to be composed of re-usable assets other than models.
The DIGITbrain project23 introduces the notion of four re-
usable assets: data, models4, algorithms and behaviours.
The software tools and frameworks have also been included
in the algorithms asset. Each behaviour contains a pair
of model and algorithm. The data and behaviours assets
are selected and configured to create new DTs. Such re-
usability can also be seen in both medical, manufacturing
and maritime DTs6,24–27. The Digital Twin Platform Stack
Architectural Framework of Digital Twin Consortium28

proposes data, multiple representations of models (both static
and computable), algorithms and services as re-usable assets.

Knowledge graphs29 have been recognised early as a
possible technology that can be used to configure DTs30.
Subsequently, several DT architectures have used knowledge
graphs. The SINDIT31 is a component-based framework
and architecture for rapid prototyping of DTs that uses
knowledge graphs to represent the relationship between
assets. A few cognitive twins32 have used ontologies to
connect simulation units33 and component description34.

Code Generation An alternative to re-usable assets,
is the use of code generation techniques, informed by
Domain Specific Languages (DSLs) descriptions, to generate
DTs21. The proposed DSLs describe domain, data, tagging,
constraint, and GUI as input to a set of generation tools, to
create the application-independent parts of a DT platform.
The proposed platform can then be tailored by a domain
expert for a specific purpose, using a web-based front-end.

We argue that code generation approaches are comple-
mentary to asset reuse, since the configuration of such assets
can be generated by means of a DSL. Several commercial

Prepared using sagej.cls

Talasila et al. 3

and open-source projects propose DSLs to specify composi-
tion of a DT as a configuration of models, relations and data
exchange35.

Microsoft Azure’s Digital Twin Description Language
(DTDL)36 and Eclipse Vortolang37 provide object-oriented
modelling capabilities, such as class, property, method and
association, as well at specifying data exchange endpoints35.
The commercial platforms have come up with their own DT
DSLs5. Examples include DTDL for Azure DTs, Eclipse
Hono38, Eclipse Ditto39, and also AWS IoT twinmaker40.
Other platforms, such as Eclipse BaSyX41 are designed
based on the Asset Administration Shell (AAS) meta-model,
which is one of the outcomes of the German initiative
Reference Architectural Model Industrie 4.0 (RAMI 4.0)42,
that recently turned into the IEC 63278-1 Standard43. Some
of these platforms and frameworks have been previously
analysed17,44. A feature comparison of these platforms and
DTaaS is available in Comparison with Existing Platforms.

Comparison with Related Work
DTaaS takes a complementary approach across different
DT frameworks and platforms. Multiple prior surveys17,45,46

compare existing DT frameworks based on system archi-
tecture, interoperability, scalability, reproduction of previous
results and composition. DTaaS intends to provide the infras-
tructure where complementary services can be orchestrated
to run and maintain DTs with a well-defined DT asset
configuration. Hence, there can be coexistence of existing
DT platforms and DTaaS47.

DTaaS provides two additional features not available
in comparable DT platforms, namely, i) providing private
workspaces for authoring and verification of re-usable assets
and ii) enabling sharing of DT assets to foster collaboration
and re-usability.

Some of the challenges in the theory-to-practice transition
of DT platforms are the support for different operating
phases of the DT and the orchestration of services17,48.
DTaaS development process addresses these challenges
by following successful software engineering practices
such as microservices, DevOps and GitOps, which have
found their way into the development and operation of
DT platforms49,50. Additionally, it can include extended
functionalities to perform verification of the published
assets with DevOps51 and provisioning of DT execution
infrastructure by using Git workflows52.

In DTaaS, the user is presented with two ways to work
with a DT. In the simplest form a pre-existing, pre-packaged
DT is made available on the platform. For example, a DT
can be realised as a set of tightly-coupled services that
exchange messages and stream data to/from a PT. Some of
these services can execute models to provide their services.
This form of DT is consistent with the DT implemented for
an incubator machine9,53. In this case, the DT as a whole is
re-usable. However, the services and the embedded models
are tightly coupled preventing their reuse. The need for more
enhanced re-usability motivates the second realisation of
DTs which is the focus of this paper. In this paper, a DT
is realised as a set of re-usable assets are categorised as Data
assets, Model, Function, and Tools. A key innovation in our
platform is that these four categories of assets, detailed later
in Re-usable Digital Twin Assets, can be declared in the

platform by the user, and made available to be reused by
other users wishing to build DTs.

Monitoring of Digital Twins
Monitoring of DTs and there by their linked PTs is
one of the use cases for DTs. Runtime monitoring tools
are suitable for creating monitors especially from safety
properties defined on either DTs or PTs. The Temporal
Stream-based Specification Language (TeSSLa)54 has been
used to integrate monitoring into the described firefighter
DT. TeSSLa refers to both a specification language and an
associated tool-chain developed within a community-driven
open-source initiative55.

The fundamental principle of TeSSLa lies in its ability
to describe transformations of data streams from inputs to
outputs. It can be used within DTs to monitor (i) data
from PT and (ii) predictions of DT. In both cases, the
deviations can be reported to either users or to decision
making software.

TeSSLa specifications are constituted by a set of
input stream declarations. The specification defines derived
streams created by applying specific operators to the
input and previously defined streams. Some of these
derived streams are designated as the specification’s output
streams. TeSSLa provides libraries and supports the creation
of macros. Macros are user-defined stream operations
constructed from the core operations or other macros,
thereby aiding the specification of complex properties.
TeSSLa specifications allow for the creation of advanced
output streams, including statistical data, with timestamps
for events and support compiling into monitors binary,
executable monitors that may be integrated into DTs.

Case Studies

Incubator
The incubator PT is a box containing a heater and a
fan connected to a controller that can turn on and off
the heater/fan. The controller is supported by temperature
sensors placed inside the box. The incubator has a single
requirement which is to save energy if the user forgets to
close the lid, or simply misplaces it. The incubator PT is used
to produce tempeh56, which is a food produced by growing
mold around soybeans. The original method for producing
tempeh, discovered in Indonesia, consists of: 1. Hydration
of soybeans: Soybeans are soaked either overnight in cool
water or for a shorter period in hot water. 2. Removal of
skins: The hydrated beans are rubbed together with water,
either before or after cooking, to remove skins. The loosened
skins float away with the water. 3. Partial cooking: The
beans are partially cooked by steaming or boiling, retaining
firmness. 4. Inoculation: After cooking, all liquid is drained,
and the beans are inoculated with scrapings from a previous
fermentation. 5. Fermentation: The inoculated beans are
wrapped in banana leaves and placed in a warm location to
ferment. Mold mycelia bind the beans into a compact cake,
and enzymic digestion softens individual beans. 6. Further
processing: Raw tempeh can be sliced and dried, roasted,
cooked in soup, or deep-fried before consumption.

Prepared using sagej.cls

4 Journal Title XX(X)
Our Office-Made Incubator and Its DT

Claudio Gomes | Assistant Professor at ECE, AU 18

Temp
Sensor

Temp
Sensor

Heater

Fan

Figure 1. Example fermentation of tempeh using the incubator PT at the beginning (left), halfway through (middle), and finished
(right).

The incubator is designed to support the fermentation
process, where the user is expected to open the box lid to
inspect its contents and determine whether the fermentation
has been concluded. Figure 1 shows an example tempeh
production process at the beginning (left), halfway through
(middle), and finished (right). As can be seen, the mold
mycelia in white grows around the soybeans, consuming
them and becoming a compact cake. What makes this case
study deceivingly simple is the fact that at its highest growth
rate the tempeh switches from being a heat sink into a heat
source56, effectively changing the dynamics of the system.
This effect varies substantially from batch to batch because
it is a biological system and depends on the number of
factors such as the amount of starter mold as well as its
genetics. Detecting the open lid is just a simplified use case
of the digital twin used in this paper to illustrate the DTaaS
platform.

Firefighter
The firefighting scenario, part of the O5G-N-IoT project10,
aims to enhance decision-making and operational safety in
emergency response situations. Firefighters equipped with
self-contained breathing apparatuses (SCBAs), including
oxygen tanks, operate in hazardous, rapidly changing
environments. This scenario presents various challenges that
necessitate quick, informed decisions based on accurate,
real-time information.

Current firefighting practices involve firefighters period-
ically reporting their oxygen tank pressure to a mission
commander. This method suffers from delays in information
updates and the potential for human error, hindering real-
time situational awareness. In contrast, a firefighter DT offers
continuous, real-time monitoring and automatically updating
crucial data like oxygen levels and firefighter locations.
Using a firefighter DT significantly improves response strate-
gies, adapting quickly to changes in the operation.

The primary requirements57 for the firefighter DT
are continuous monitoring of firefighters’ oxygen levels
and locations within the building, providing actionable
insights to the mission commander based on real-
time data, and ensuring the safety of firefighters by
predicting oxygen depletion and recommending safe exit
routes. The primary challenge is ensuring firefighter
safety while maximising operational efficiency, which
involves continuously monitoring SCBA oxygen levels and

navigating through the building using real-time data. The
firefighter DT and the coupled PT can also be used to
simulate emergency missions.

The firefighter DT described in this paper requires
the existence of localisation services and the continued
validity of the building model. The building under fire
likely undergoes structural deterioration and transformation.
If the changes in the building significantly deviate from
the building model used in the firefighter DT, then the
predictions made by the DT become invalid. Another
limitation could be the over-reliance on a robust localisation
service in a very dynamic environment (building under
fire). The current version of firefighter DT is not capable
of handling intermittency in localisation service. Further
explanation on the limitations of the firefighter DT in terms
of data collection, necessary prerequisites and scope are
available in a previous publication57.

Digital TwinsRe-usable
Assets

Life cycle
Phases

DTaaS Architecture

composed of advances
through

provides manages

configures

Figure 2. Relations between central concepts.

Re-usable Digital Twin Assets
In the following sections we introduce the core notions
needed for an architecture for a DT platform that facilitates
reuse of different models, tools and other heterogeneous
components:

• The Digital Twin assets, which represent the smallest
elements of a DT that can be reused

• the Digital Twin Definition itself, and its composition
from DT assets and services as DT configuration,

• the Phases in Digital Twin Life Cycle, and their
relation to DTs, and finally

• the System Architecture that connects all these.

Prepared using sagej.cls

Talasila et al. 5

The relation between these concepts is shown in Figure 2.
Let us turn to re-usable DT assets first. DTaaS treats

DTs as having re-usable assets. In short, a DT asset is the
smallest element of a DT that can be reused. These assets
are put together and configured in a certain way. We use
four categories of assets: data (D), model (M), function
(F) and tool (T). This section provides explanations for
categorisation of DT assets.

The data (D) asset refers to data sources and/or sinks
available to a DT. Typical examples of data sources are
sensor measurements from the PT, and test data provided by
manufacturers for calibration of models. Typical examples of
data sinks are visualisation software, external user software
and data storage services. There exist special outputs such
as events, and commands which are akin to control outputs
from a DT. These control outputs usually go to the PT, but
they can also go to another DT58.

The model (M) assets are used to describe different aspects
of a PT and its environment, at different levels of abstraction.
Therefore, it is possible to have multiple models for the same
PT. For example, a flexible robot used in a car production
plant may have structural model(s) which will be useful in
tracking the wear and tear of parts. It can have a behavioural
model(s) describing the safety guarantees provided by the
robot manufacturer. It can also have a functional model(s)
describing the part manufacturing capabilities of the robot.
Models have inputs, outputs, states, and parameters, as well
as initial values for states, following the nomenclature of the
Functional Mockup Interface59 standard.

The function (F) assets are primarily responsible for pre-
and post-processing of data. The data to DT comes from
either PT or databases. This data is used for evaluation of
models. Given that a DT might have multiple models, the
data (and its format) required is not going to be the same
for all of them. This observation is acutely true in cases of
models developed long after data has been captured. Another
case is that of normalisation and unit conversion of data;
well-implemented pre-processing functions help with this
task. In the same vein, post-processing functions help with
the conversion of model outputs into valid control inputs
to PT. One such example is that of controlling a machine
speed based on predictions of a machine learning model.
The model provides normalised (say zero to one) prediction
which must be converted into actuator input for the machine.

The software tools and frameworks (in short, tools)
contain implementations of engineering domain-specific or
generic computer algorithms. A few examples of domain-
specific algorithms are: SIMPLE (computational fluid
dynamics), Barycentric method (graph drawing), SPICE and
Xyce (electronic circuit simulation), ant colony optimisation
(genetics), and generative adversarial networks (machine
learning). A few examples of generic algorithms are:
Newtons method (numerical), Bubble sort and Strassen
matrix multiplication. Domain-specific tools such as Maestro
CoE60 contains implementation algorithms for conducting
co-simulation. Same is the case with OpenFOAM61 and
Tensorflow62. On the other hand, Matlab63 is an example of
a tool that has implementations of algorithms coming from
many engineering domains.

These tools are executed on top of a computing platform,
i.e., an operating system, or virtual machines like Java

Virtual Machine, or inside Docker containers. The tool are
used to create, evaluate and analyse models. Most models
require tools to evaluate them in the context of data inputs.
There exist cases where models and tools are combined. The
combined entity is run in the same way a tool is run.

Incubator
Let us now investigate the assets used in the incubator case
study. Figure 3 provides an overview, and we detail the
different kinds of assets next.

The incubator DT therefore has the single requirement:
to save energy if the user forgets to close the lid, or
simply misplaces it. This requirement is implemented by the
following DT services:

• Temperature Prediction – Responsible for predicting
the average temperature in the box at time t+H
from the average temperature, control actuation, and
room temperature, at time t. This service is triggered
whenever a new control actuation is issued.

• Lid Open/Closed Detection – Detect and signals,
whether the incubator lid has been opened or closed.

The above services work together to fulfil the energy
saving requirement as follows:

1. The open lid detection service compares the tempera-
ture predictions with the actual temperature, and when
there is a deviation it signals the lid as being open.

2. The supervisor then re-configures the controller
accordingly to save energy by placing it in a low power
mode.

We refrain from giving more details about how these
different services coordinate, which is explored in prior
work9, and focus on the assets used in the incubator DT.

The data assets are an InfluxDB time-series database
and a RabbitMQ broker. The InfluxDB time-series database
acts both as data store and visualisation service. The
RabbitMQ endpoint acts as bidirectional communication
broker between PT and DT.

An example function is the calculation of the average
between the two temperature sensors installed inside the box.
If analogue temperature sensors were to be used, one would
also need smoothing functions to eliminate the noise from
the temperature measurements.
The models are:

Plant Models The incubator case study uses four different
models for the plant itself, each for a different aspect.

• 2-Parameter Model: A simple scalar ordinary
differential equation (ODE) representing the
plant dynamics. It takes as inputs the room
temperature, the state of the heater, and
returns as an output the average temperature
of the air volume inside the box. It contains
two parameters related to the box-walls heat
conductivity and air heat-capacity.

• 4-Parameter Model: A plant dynamic model
(ODE) that takes as inputs the room temperature,

Prepared using sagej.cls

6 Journal Title XX(X)

 Digital Twin Reusable Assets

Physical Twin: Incubator

Plant: Box, Heater,
Fan, Temperature

Sensors

turns heater on/off
Controller

[Keeps temperature at
]

sensors provide

temperature

readings

Digital Twin: Incubator

Temperature
Prediction

Lid Open/Closed Detection

[Detects lid state based on

temperature prediction error]

predicted

next temperature

Supervisor

detected lid

open/closed

Models

Plant Models

2P ODE

4P ODE

ANN

Controller
Model State

Machine

ANN State
Estimation

PT Model

couples controller

and 4P model

Environment Model

PT+Environment
Model

couples PT

with Env

Functions

Temperature
averaging

simulate and calibrate

Software Tools and
Frameworks

SciPy PyTorch

Data

RabbitMQInfluxDB

sensor and actuator signals

uses

Figure 3. Summary of the assets used in the incubator running example.

the state of the heater, and returns as an output
the average temperature of the air volume inside
the box, as well as the temperature of the heating
element.

• ANN Model: A neural network based model, that
takes as inputs the room temperature, the state
of the heater, the previous average temperature
of the air volume inside the box, and returns as
output the average temperature of the air volume
inside the box.

• ANN State Estimation Model: A neural network
based model, that takes as inputs the room
temperature, the state of the heater, the previous
average temperature of the air volume inside
the box, and returns as output the average
temperature of the air volume inside the box as
well as the temperature of the heating element.

Controller Model A controller model (state machine), that
takes as input the average temperature of the air
volume and outputs the state of the heater.

PT Model A hybrid automata model. The input is the room
temperature, and the set of parameters is the union
of the 4-Parameter model and the controller state
machine model.

Environment Model A simple algebraic model Tr =
A sin(Bt) + C representing the temperature of the
room as a function of the time (in seconds). The
parameters are A,B,C.

PT + Environment Model A model coupling the PT and
Environment models.

Mock firefighter

via MQTT Broker
via MQTT Broker and Telegraf

Software Tools
and Frameworks

IFC2Graph

Graph2Path

Monitor

Digital Twin Reusable Assets
Model

IFC file

Model + Tool

Path2Time

Pressure2Time

Grafana Dashboard
(platform service)

Data

MQTT
Broker

InfluxDB
Database

IFC2Graph

Graph2Path Path2Time

Pressure2Time

Monitor

IFC file

pressure

location

load

InfluxDB
Database

Grafana
Dashboard

Digital Twin: Firefighter

Use

Legend for the data exchange protocol:

mission time
left

alarm

Figure 4. Re-usable assets included in the firefighter DT.

Finally, tools such as the numerical solver from SciPy64,
and the neural network framework PyTorch65 are used.

Firefighter
The firefighter DT continuously monitors self-contained
breathing apparatuses (SCBA) pressure levels and firefighter
locations. If the oxygen level is deemed too low in relation
to the fastest escape route, the DT alerts the individual
firefighter. It also recommends the quickest and safest exit
route based on the current location of the firefighter and
building layout. DTaaS user in this scenario is a firefighter
sub-contractor or mission controller, who deploys and adapts
the system before firefighting missions take place.

Each firefighter DT is realised using the following assets.
The Data used in this DT is provided by a mock PT (mock
firefighter). Simulated SCBA pressure data and location data

Prepared using sagej.cls

Talasila et al. 7

Digital Twin

Reusable
Assets

needs

types

Configuration

Asset
Configuration

may
have

defines

Services and
External Systems

Configuration

Execution
Environment
Configuration

Execution Manager Cloud

Infrastructure

manages

Physical Twin
Configuration Physical Twin

contains

links

Models

Data

Software
Tools and

Frameworks

Functions

uses

Figure 5. A conceptual relationship between DT assets (Data, Model, Function, Tool) and DT configuration 66.

from inside of the building are sent to a MQTT broker to
be ultimately used by the DT. The communication between
PT and DT is based entirely on MQTT topics. Thus the DT
case study outlined in this paper works for a real firefighter
PT as long as the location and oxygen level data is sent
to the DT. It then produces a prediction on mission time
and raises an alarm if the oxygen level is deemed too low.
The remaining mission time is also stored in InfluxDB –
a time-series database. The InfluxDB acts as data storage.
Real-time data visualisation using InfluxDB and Grafana
dashboards displays crucial information such as oxygen
levels and remaining mission time for the usage by the
mission controller.

The 3D-building data specified as an Industry Foundation
Classes (IFC)-file serves the role of model to the DT. Three
tools are included in this DT.

• Building Data Transformation a tool that transforms
building data from the IFC-file into a graph structure
for navigation purposes. This tool is essential for
creating an accurate and navigable representation of
the building within the DT.

• Route Determination determines the shortest path
using the graph derived from building data. This tool
plays a key role in the continuous route planning of the
system.

• Monitor is a run-time monitor for maintaining the
safety of a firefighter. This monitor sends an alert if
there is insufficient oxygen for the firefighter to safely
exit a firefighting situation.

In certain cases, the models are integrated tightly into
the tools and are published as one re-usable asset. Such
integrations can be considered as model-tool pairs. There are
two tools with integrated human physiological models in the
firefighter DT. They are:

• Air Consumption Calculation is a tool for calculating
the shortest path information to calculate the amount
of air consumed during navigation. This tool is vital
for approximating the rate of oxygen depletion and
managing the firefighters’ air supply.

• Pressure to Time uses the pressure sensor values to
approximate the amount of time the air in the SCBA’s
air cylinder will last.

Every asset in this list is reused for serving multiple
firefighters with one DT for each firefighter. Multiple
firefighters DTs can coexist at the same time on the platform
and their collected data can be shown in the same dashboard.

Digital Twin Definition
Having defined the DT asset, we now turn to their
composition into DTs. Indeed, for our purpose a DT
is mainly a (constrained) set of assets, called a DT
configuration, connected to a physical system - the PT - using
some services.

First, we investigate the constraints in the relation
between assets to have a valid DT configuration. There
is a dependency between the assets especially in the
context of creating DTs (Figure 5): Only functions/tools
can use models/data. A specific combination of these assets
constitute a DT. We distinguish between the digital twin
design (a set of assets) and its digital twin configuration.

Digital Twin Design A DT design Dt describes the
possible sets of assets that a concrete DT instance can have.
Here, P(·) denotes the power set and P>(·) = P(·) \ {∅}.
The possibilities of asset combinations used in a DT are
expressed below (Definition 1), where a DT design Dt is a
tuple of the possible data assets (denoted D), model assets
(denoted M), function assets (denoted F) and tool assets
(denoted T).

Dt ∈ P(D)× P(M)× P(F)× P>(T) (1)

We demand that a digital twin design has at least one tool.

Digital Twin Configuration The interconnections between
assets, parameters (configurable run-time variables) of the
assets need to be specified for each DT. This information
becomes a part of the DT asset configuration (Ca). The
information encoded in Ca is not sufficient to truly manifest
a closed-loop communication between a DT and a PT. Thus,
each DT requires a complete configuration (Cdt) that is

Prepared using sagej.cls

8 Journal Title XX(X)

Terminate
DT Life Cycle
Phase Create Execute Save Analyse Evolve

Activities

Data, models, functions,
and tools selected and DT
configuration specified.

DT is executing and adds
value to the PT.

The multiple DT services
are running: monitoring the
system, storing data,
visualising it, and any other
services.

The DT is paused. All
relevant state is stored,
and made ready to
restart later.

The PT continues to
operate but without the
support from the DT.

Incubator

Example

All relevant state of PT
and DT are monitored
and analysed.

The PT continues to
operate.

The DT is updated
thanks to collected
insight of its analyse
phase.

The PT is reconfigured
based on analysis
results.

State estimation and
anomaly detection are
used as single model.
Data input comes from
physical incubator and
output goes to incubator.
Visualisation functions are
InfluxDBqueries.

The DT is running,
anomalies are detected
(such as when the lid is
openned) and handled
accordingly.

The DT is paused. No
recording of new
temperature
measurements is
done, and no
temperature prediction
is done. The PT
continues to operate
without the support
from the DT

All the
communication from
the DT to the DT
services stops. The
DT stops execution

Communication with
the physical
incubator stops. The
connection to
InfluxDB is
terminated. The
incubator DT
process is
terminated

New state estimator
and visualisation
services are deployed,
replacing the old state
estimation and
visualisation.

Users would like to
receive an estimate of
tempeh density, so a
model correlating
tempeh density with
temperature is created.
In addition, a new state
estimator, and a new
visualisation for the
new data, are added.

Figure 6. Mapping of the DT life cycle phases to the incubator use case 67. The ODE acronym stands for ordinary differential
equation.

DT Life Cycle
Phase Create Execute Save Analyse

Activities

Prepares the execution
environment, configures
TeSSLa, links PT and DT
with MQTT, InfluxDB,
Grafana, and sets up the
Grafana dashboard.

Starts the mock physical
twin, executes the digital
twin, and utilizes MQTT,
InfluxDB, and Grafana.

Processes sensor data
from the mock PT and
the results of the
TeSSLa monitor for the
stateless DT.

Stops all the
components of DT. The
connections to MQTT,
InfluxDB and Grafana
are terminated.

Uses a TeSSLa
monitor to verify a data
stream and presents a
Grafana dashboard for
human decision
making

concurrent

Terminate

Figure 7. Mapping of the DT life cycle phases to the firefighter use case. 57

sufficient to execute a DT in the presence of supporting
services and execution environment.

The Cpt denotes configuration information required
by a DT to communicate with a PT. Each DT may
have constraints on the kind of execution environments
it is capable of using, i.e. tools that can only run
either on a specific operating system or on a server
with specific hardware capabilities. The Ci denotes the
infrastructure configuration required by a DT. The Ce

denotes configuration for integration of a DT with external
software systems and services, e.g. third-party visual
dashboards.

Cdt ∈ Ca × Ci × Ce × Cpt (2)

Among all the configurations shown in Definition 2,
Ca and Cpt are very specific to one DT design Dt.
Thus, generalisation of these two configurations into a
configuration specification standard is a challenging task.
The other two configurations – Ci and Ce – are more general
and a configuration specification standard for these two is a
manageable challenge. A sanity check is required on validity
of any given Cdt.

We denote an instance that stems from a design Dt

configured with a configuration Cdt with DtCdt.

Table 1. DT configuration for the incubator and firefighter case
studies.

Configuration for Case Studies
Incubator Firefighter

Assets (Ca) asset
selection;
configuration
for models,
ex: 4-
parameter
model

asset
selection

Infrastructure (Ci) docker docker
Services (Ce) RabbitMQ,

InfluxDB
MQTT,
InfluxDB,
Grafana

Physical Twin (Cpt) Plant
controller
parameters

Not Applica-
ble

Three situations demand adjustments to Cdt. First is a
user-driven change in Ca, Cpt, Ci, Ce, or Cdt of included
DTs. In this case, a validity check is required before a
transition to new a configuration can be made. Second is

Prepared using sagej.cls

Talasila et al. 9

a requirement to perform what-if analysis. What-if analysis
requires minor variations on Cdt to plan and optimise future
steps to be undertaken either on a PT or a DT. Actual
implementation of what-if analysis can be resource intensive
with the resource requirements scaling up in proportion to
algorithmic bounds on the (sub)-systems being used by a DT.
Third is the reuse of a DT by one or more users. Reuse at
minimum requires reconfiguration of credentials to external
services. In addition, users might want to change parameters
in Ca before using a DT.

A DT can also use external tools such as planning and
optimisation. This is especially true in what-if analysis. If
these tools are used exclusively within a DT, then, they can
be considered as tools in the asset library. Otherwise, they
are part of the infrastructure / external world.

Case Studies A mapping of Cdt to the incubator and
firefighter case studies is shown in Table 1. There are
many models suitable for use in incubator DT and some
of these are parameterised models. The model selection
and their configuration is expressed in Ca. The models and
tools used for firefighter are expressed in Ca. Both these
case studies run inside docker containers. Each of them
use platform services for communication with real/mock
PTs. The incubator uses RabbitMQ for PT-DT bidirectional
communication. Both the case studies use InfluxDB for
storing the PT data and analysis results. In addition, the
firefighter case study uses MQTT for data transmission from
PT to DT and Grafana for visualisation.

Phases in Digital Twin Life Cycle
A digital twin is a not a static structure – it transitions through
a life cycle with different phases, and we consider it to be one
of the main tasks of a DT platform to manage DTs in all these
phases, as well as the transitions between these phases.

Two pioneering standards for DTs, namely, the ISO 23247
Standard68 (Digital Twin framework for manufacturing) and
the IEC 63278 Standard43 (Asset Administration Shell for
industrial applications which is based on the RAMI 4.0
model), use life cycle as a general principle for defining DTs.
The former motivates the DT life cycle from the definition of
product life cycle. However, such a definition states that DTs
are more useful if the DTs in effect can be shared across the
product life cycle, including design, planning, production,
maintenance, and support. Similarly, the IEC 63278 standard
motivates DT life cycle based on the life cycle of the
physical asset that the digital representation is featuring,
which can be done in a product or process. Digital twinning a
product or a process require different (yet similar) life cycle
phases, such as design, manufacturing, usage/maintenance,
and end of life treatment for products, and design,
implementation,operation/maintenance, and decommission
for process. The life cycle phases so far are for DTs
themselves. There is a need to translate these product
life cycle phases onto DT platforms without the loss of
conceptual and practical nuances. The rest of this section
describes DT life cycle phases on DT platforms. The
mapping of these phases to product life cycle phases is
explained at the end of the section.

A DT life cycle on DT platforms consists of the create,
execute, analyse, evolve, save, and terminate phases. The

platform allows a user either to create a new DT or select
an existing DT to engage with it in any of its phases. Thus,
reuse is possible by reusing assets that existed before the DT
is created, or reusing assets from prior runs and phases of
the same DT. We next describe the phases on a conceptual
level, and describe the used techniques in the case studies to
illustrate them.

Create and Execute Phases The create phase involves
asset selection and specifying DT configuration. There is
no creation phase at the time of DT reuse. The execute
phase involves an automated execution of a DT based on its
configuration.

Analyse and Evolve Phases The analyse and evolve
phases are concerned with monitoring and potential
reconfiguration of a DT. Monitoring, at its most basic
level, requires data gathering and storage, of the interaction
between the PT and its environment, and among the
PT’s assets. However, even for a simple system, such as
the incubator67, monitoring requires that hidden quantities
(that is, quantities for which we cannot obtain a
sensor measurement directly) be estimated. This activity
corresponds to analyse life cycle phase. Often these hidden
quantities are represented by variables in various models
used by the DT. The consequence is that estimates of
these hidden quantities need to be stored in database,
becoming then input to decision-making simulations, where
all variables of the models need to be properly initialised. For
more details we refer the reader prior work53.

Monitoring also informs the next life cycle stage of DT:
the evolve stage. The evolve phase involves user/event-
triggered reconfiguration of an instantiated DT. Note that
the monitoring and planning steps make use of the other DT
services.

Reconfiguration and Consistency The evolve phase
requires reconfiguration of DTs. The aim of reconfiguration
is to ensure consistency between DT and its PT, i.e., the
adequacy of the DT to mirror its PT, access its data, and
enable the required analyses.

Reconfiguration may be triggered by different kinds of
events, three of which we discussed above, they are specific
to the system and, thus, reconfiguration procedures must be
provided by the user. These procedures are highly application
specific. The reconfiguration procedures must be able to
access the current DT configuration and its assets. As the
configuration is highly heterogeneous, the platform should
offer a way for uniform access to it, i.e., a representation
mapping µ that is defined on Cdt and all its assets as
well as provide an interface for the user to program re-
configurations in terms of the uniform access, i.e., define
transitions µ

(
Cl

dt

)
→µ µ

(
Cl+1

dt

)
. Knowledge graphs are

a suitable technology to implement such mappings. The
approaches to express consistency between DT and PT in
terms of queries on knowledge graphs have been shown to
be useful69.

Save and Terminate Phases The save phase involves
saving the state of DT to enable future recovery. If a DT is
reused, there will be a temporal gap between creation and
execution times of a DT. Thus, a need might arise for just-in-
time DT reconfiguration at the point of execution.

Prepared using sagej.cls

10 Journal Title XX(X)

The terminate phase involves stopping the execution of
the DT and releasing all the resources and connections
mentioned in the DT configuration. It is also responsible for
cleanup and correct shutdown of the PT (via its components),
e.g., for hardware-in-the-loop testing.

The create life cycle phase of DTaaS corresponds to
creation of first prototype DT perhaps during the design
phase. This create phase also corresponds to preparation of
DT platform environment for DT execution. This DT will
have to be executed to glean insights; such DT execution
corresponds to execute life cycle phase via dedicated life
cycle script / program. Depending on the results of execute
life cycle phase, transition to other phases can happen. The
save life cycle phase can be used to save DTs for reuse, i.e.
future execution. The analyse and evolve phases together can
help with DT management during the complete PT product
life cycle. The terminate phase corresponds to termination of
execution for a DT. This phase is specific to DT platforms
and does not correspond to any PT life cycle phase.

Incubator
Figure 6 contains a mapping of different activities done for
the incubator DT and the conceptual description of DT life
cycle phases.

In the create phase, state estimation and anomaly detection
are combined into a single model. Data input from the
physical incubator is processed, and the output is sent back
to the incubator. Visualisation functions are handled using
InfluxDB queries.

During the execute phase, the Digital Twin (DT) runs,
detecting and addressing anomalies, such as when the
incubator lid is opened.

Transitioning to the save phase, the DT is paused. No new
temperature measurements are recorded or predicted, but the
physical twin (PT) continues to function independently of the
DT.

In the analyse phase, users require an estimate of
tempeh density. A model correlating tempeh density with
temperature is created, along with a new state estimator and
visualisation for the new data.

In the evolve phase, new state estimation and visualisation
services are deployed, replacing the previous versions.

Finally, in the terminate phase, communication with the
physical incubator ceases, the connection to InfluxDB is
terminated, and the incubator DT process is concluded.

Firefighter
DTaaS platform’s management of firefighter DT is facilitated
through a series of life cycle phases, detailed in the overview
graphic in Figure 7.

The DT assets are configured in create phase to create
firefighter DT and to prepare the execution environment.
The TeSSLa is configured, links between PT and DT are
created using MQTT, InfluxDB, and Grafana dashboard is
setup. Execute phase activates mock PT and DT. DT now
employs MQTT for data transmission, InfluxDB for storing
data, Grafana for displaying real-time information. Save and
analyse phases are run concurrently to execute phase. The
system’s design ensures that the most recent data from mock
PT is always available, with historical data primarily used

for human decision-making. In analyse phase, the TeSSLa
monitor continuously checks for oxygen levels and sends an
alert when the level is too low. In essence, the possibilities for
firefighters to escape is continuously analysed using monitor.
The results are streamed in real-time to Grafana dashboard.
This concurrent activation of execution, save and analysis
phases makes DT responsive and effective. The process
concludes with terminate phase in which all the executing
DT assets are terminated, connections to MQTT, InfluxDB,
and Grafana are closed, ensuring an orderly shutdown of DT
operation.

Through these life cycle phases, DTaaS manages the
complex operations involved in the firefighting scenario,
ensuring efficient data handling and real-time analysis for
decision-making.

System Architecture
Having established the notions of DT assets, DT config-
uration, and DT life cycle phases, we now examine the
requirements for a platform that uses these concepts to
manage DTs, as well as describe the microservice-based
software architecture underlying DTaaS that realises these
requirements.

Requirements
The HUBCAP project70 promoted the collaborative model-
based engineering. One of the outcome of the project is a
collaborative sandbox platform in which the providers of
the model authoring tools save their tools pre-packaged in
virtual machines (VMs). The models are published as either
public or private packages inside their workspaces. The users
of tools instantiate VMs and work with their models. This
experience has brought forth the need to support on-platform
creation of DT assets. With the advances in virtualisation, it
is now possible to support software tools inside containerised
environments (Docker, Kubernetes etc.). In addition, there
are cases where the generation of DT assets can be done
impromptu. For instance, the safety monitoring use cases
use runtime monitors like NuRV71 which can generate the
required model(s) for just-in-time execution of DTs.

The large-scale collaboration among partners creating
DTs requires the ability to share re-usable assets and then
help users discover the availability of existing assets. For
example, the co-simulation based DTs reuse Maestro tool. In
addition, there is also significant reuse of functional mockup
units (FMUs). Some of these FMUs are confidential. So there
is a need to facilitate both the private and common spaces
for DT assets. The DIGITbrain project23 promoted the use
of structured metadata for facilitating the discoverability of
DT assets. It is important to note that the consolidation
here refers more towards discoverability and less towards
centralisation. As long as the assets are discoverable and
integrable into DTs at execution time, their storage location
is irrelevant. Such a decentralised storage of DT assets
respects commercial advantages of asset owners and is not
an impediment to DT execution72.

The value of DTs is realised at execution time. This
execution can either be manual or automated. It can also
happen in centralised or distributed fashion. All these are
possibilities DTs may take advantage of. For instance,

Prepared using sagej.cls

Talasila et al. 11

Digital Twin as a Service (DTaaS)
[Software System]

Web Application
[: WWW]

Web
[HTTP, GraphQL]

Reusable Assets
[Container: OCI]

Manage
[HTTP,git,GraphQL]

DT

Life cycle Manager

[Container
: NestJS,GraphQL]

Manage
[GraphQL,

DT DSL]

Configure and use DTs
[HTTP, GraphQL]

Execution Manager
[Container:

virtualisation]

Start, Change,

Terminate

DT execution
[DT DSL, HTTP]

Copy Assets
[HTTP, GraphQL]

Authenticate and authorise
[HTTP,TCP]

User
[Person]

Security
[Container: Kerberos,

OAuth2]

Cloud Services
[Software System]

compute infrastructure for

executing digital twins

deploy and

connect

[Git, HTTP, FTP]

data and control flow
[Comm Protocols]

Physical Twins
[Physical System]

data
[Comm Protocols]

Gateway

[:Kubernetes]

[:]

[:]

User

Workspaces
[Container:

Virtualisation]

Service
[HTTP,VNC]

Access
[TCP/IP]

integrate external

software systems

[TCP/IP]

dummy
[: dummy]

[:]

Platform

Services

[Container: OCI]

Data, Monitor,

Vis,

Accounting

Access
[TCP/IP]

Store
[HTTP,FTP]

Figure 8. The software architecture of DTaaS platform. It is based on microservices architecture.

incubator DT can be executed by users in their workspaces,
or it can be executed as an automated service. It is also
possible to package incubator DT into Helm Chart and
execute the same on a Kubernetes cluster. Thus DT platforms
need to support diverse execution environments for DTs.

The previous sections explain the advantage of re-
usable DT assets and creation of DT from these assets
using configuration. Thus support for configuration and
reconfiguration is a vital feature on any DT platform. Some
widely used DT platforms like Azure DT, Eclipse Ditto
promote configurability as a means of managing DTs.

Monitoring and predictive maintenance are two prominent
use cases for DTs. Monitoring of civil infrastructure such as
bridges and power infrastructure such as wind turbine farms
require DTs which are either 24x7 available or executable
on-demand (CP-SENS project73). For instance, a safety
monitoring team might perform audit on the wind turbine
farm and schedule the next audit after 12 months. If it is not
desirable for the DT (as relevant to the audit scenario) to be
run in the interim it is advantageous to save and re-instantiate
the DT at the time of next audit. One of the key activities of a
safety audit is to perform what-if scenario analysis to gauge
the safety of the wind turbine farm under alternative weather
conditions. The DT platforms must facilitate such a use case.
One of the exemplar case studies developed on DTaaS is a
fault injection based co-simulation. In this use case, faults are
provided as DT configuration for a what-if scenario analysis.

Finally, users do have either direct or indirect interaction
with DTs. The direct interaction needs to be facilitated

via DT platform while the indirect interaction happens via
services running on top of DTs. For example, the incubator
DT integrates with InfluxDB on which pre-configured
dashboards are loaded. The users can interact with these
dashboards instead of directly interacting with incubator DT.
Summarised. the discussed user requirements are:

Requirement-1: Author – create different assets of the DT
on the platform itself. This step requires use of tools
whose sole purpose is to author DT assets.

Requirement-2: Consolidate – consolidate the list of
available DT assets and authoring tools so that
user can navigate the library of re-usable assets.
This functionality requires support for discovery of
available assets.

Requirement-3: Configure – support selection and con-
figuration of DTs. This functionality also requires
support for validation of a given configuration.

Requirement-4: Execute – provision computing infras-
tructure on demand to support execution of DT.

Requirement-5: Explore – interact with DT and explore
the results stored both inside and outside the platform.
Exploration may lead to analytical insights.

Requirement-6: Save – save the state of DT that is already
in the execution phase. This functionality is required
for on-demand saving and re-spawning of DTs.

Prepared using sagej.cls

12 Journal Title XX(X)

Requirement-7: What-if analysis – explore alternative
scenarios to (i) plan for an optimal next step, (ii)
re-calibrate new DT assets, (iii) automated creation
of new DTs or their assets; these newly created DT
assets may be used to perform scientifically valid
experiments.

Requirement-8: Collaborate – share DT assets with
other users of their organisation. If DTs are to be
confidential, services built on DTs can be shared.

System Components
Despite diverse requirements for different users, DTaaS
presents a unified interface to the users. This unification
is achieved by providing a gateway to consolidate the
functionality provided by internal system components.
Figure 8 shows the C4 system architecture74 of DTaaS
software platform. Users interact with the software via a
web application. The gateway is a single point of entry for
direct access to the platform services and is responsible for
controlling user access to the containers. Each container
contains a set of microservices. The term microservices
shall be used henceforth to explain the system functionality
implemented in C4 containers. The swapping of terms is to
align with the architectural description of DT platforms in the
existing literature75. The microservices are complementary
and composable; they fulfil core requirements of the system.
There are microservices for catering to store, explore,
configure, execute and scenario analysis requirements.
Dedicated user workspaces enable authoring of DT assets.
The microservices are packaged and deployed on Kubernetes
cluster to take advantage of virtualisation, scalability, and
service discovery.

Microservices
The microservices illustrated in Figure 8 provide the bulk
of the platform functionality. The security microservice
implements role-based access control (RBAC) in the
platform. The accounting microservice is responsible for
keeping track of the platform, DT asset and infrastructure
usage. Any licensing, usage restrictions need to be enforced
by the accounting microservice. Accounting is a pre-
requisite to commercialisation of the platform. Due to
significant use of external infrastructure and resources via
the platform, the accounting microservice needs to interface
with accounting systems of the external services.

The data microservice is a front-end to all the databases
integrated into the platform. A time-series database and a
graph database are essential, from multiple reported cases
in the state of the art77. These two databases store time-
series data from PT, events on PT/DT, commands sent by
DT to PT. It is possible to integrate dedicated Internet of
Things (IoT) frameworks such as Eclipse Hono38 into the
data microservices. The PTs uses these databases even when
their respective DTs are not in the execute phase.

The visualisation microservice is again a front-end to
visualisation software that are supported inside the platform.
Any visualisation software running either on external
systems or on client browsers do not need to interact with
this microservice. They can directly use the data provided by
the data microservice.

DTaaS is a collaborative platform. Users are able to
have private and shared storage space to enable controlled
sharing of either DT assets or DTs. The re-usable assets
microservice (Asset MS) provides search, explore, and select
functions over DT assets. Thus Asset MS should aid users
in performing create-read-update-delete operations on the
private and shared re-usable assets. Any ready to use DTs
are also made available via the Asset MS.

The DT life cycle microservice assists users during all life
phases of a DT. This microservice extensively uses other
microservices to provide atomic operations at the level of
DTs. This microservice acts as a controller to both the Asset
and Exec microservices.

The execution manager microservice (Exec MS) is
responsible for on-demand provisioning of virtual compute
infrastructure. To make the platform scalable, the Exec MS
must be capable of integrating with private and public cloud
providers. Users operate with these isolated workspaces.
The Exec MS receives DT configuration from DT life
cycle MS and executes DT in isolated compute environment
(ex: containers, virtual machines etc.). The Exec MS must
interpret DT configuration specified in Definition 2. The
required compute environment shall be provisioned as
specified in Ci. The Ce and Cpt are connections to external
software and PT respectively. These connections are to be
managed as network access control policies. Finally, Ca

helps with gathering of required DT assets. The data assets
managed by Asset MS are linked to the DT using access
credentials provided in Ca. The Exec MS also downloads
the required model, function and tool assets and then places
them in the compute environment. If all the above steps are
successful, DT becomes available for use. The DT life cycle
MS takes over the management of all the DTs provisioned by
Exec MS and takes them through life cycle phases as per the
events triggered on the respective DTs. The Exec MS comes
back into reckoning during the termination life cycle phase
of a DT.

Platform Implementation
The current implementation of DTaaS supports re-usable
assets, DT life cycle, user workspaces and providing
DTs as a service within the platform. Figure 9 shows
the functioning system components providing the features
mentioned here. There have been five releases of software
so far and it is actively used by researchers and engineers
from software engineering, electrical, civil, mechanical and
robotics domains. The entire DTaaS platform is available as
two containerised packages. One is for the core platform
and another is for the platform services. Users only need
configure the OAuth, asset location and network host/port
information and the application becomes installable. There
is also an DTaaS CLI python package78 to perform user
management of the platform.

The current security functionality is based on mutual
Transport Layer Security (mTLS) and OAuth2 protocols.
Users receive signed TLS certificates. The TLS certificate-
based mutual TLS (mTLS) authentication and OAuth2
provides better security than the usual username and
password combination. The mTLS authentication takes place
between the users browser and the platform gateway. The

Prepared using sagej.cls

Talasila et al. 13

Physical Twins
[Physical System]

data

and

control
[TCP/IP]

Control,

Data,

Monitor

and

Visualise
[AMQP,MQTT,

Influx, Grafana,

MongoDB]

Digital Twin as a Service (DTaaS)
[Software System]

Single Page Web
Application

[: React, GraphQL]

website
[WWW]

DT User
[Person]

Cloud Services
[Software System]

Service Router
[: Traefik]

Text

Gitlab
[Software System]

OAuth and git server

Authorise
[OAuth2]

file system
[Software System]

CRUD

on local file system

[NodeJS]

Reusable Assets
[: GraphQL,HTTP]

Manage
[HTTP, GraphQL]

Map to containers
[File System]

User Workspaces
[: Jupyter,VS

Code,Streaming
Desktops]

User Workspaces
[: Jupyter,VS

Code,Streaming
Desktops]

User Workspaces
[: docker]

Runner
Digital Twins

integrate external

software systems

[TCP/IP]

dummy
[: dummy]

[:]

Platform Services

[: HTTP, TCP]

Access
[TCP/IP]

Service
[HTTP,VNC]

Authorise
[OAuth2] CRUD operations on

gitlab repositories
[HTTP, GraphQL]

mTLS

Access
[TCP/IP]

Figure 9. The current implementation of DTaaS platform 76. It supports composable DTs and provides integrated user workspaces.
Re-usable assets microservice performs create, read, update and delete (CRUD) operations on DT assets.

Private Workspace

own

Asset
Management

Tools

has
author,

update,

delete

run inside

Platform Services
access

Internet

access
Physical Twins git, DevOps

use

include

Live

Digital Twins

Private
own

Common
share

Digital Twin Assets
access

Figure 10. A relational view of the user workspace 79. The
system components are all linked to the workspace and the DTs
run inside the workspace. The DTs are also offered as services

to internal and external users.

gateway federates all the back-end services. The service
discovery, load balancing, and health checks are carried by
the service based on a dynamic reconfiguration mechanism.
The OAuth2 integration is active for both the website and
other services accessed via the service router.

Each DTaaS software installation comes with support for
multiple platform services. These services are available to
all users, DTs running inside the platform and the PTs
linked to the DTs running within the platform. The DTs

and PTs access the platform services using the standard
network (TCP/IP) protocols. Thus any services supporting
these protocols can be integrated with DTaaS. Five services
have been integrated with the platform so far primarily
to support the case studies already implemented on the
platform. The integrated services provide communication,
data storage, monitor and visualisation functionalities.

InfluxDB80 time-series database and MongoDB81 docu-
ment database are also integrated into the platform. InfluxDB
comes with data storage, and querying and visualisation
dashboards. The incubator case study uses this platform ser-
vice for data storage and visualisation. Users are permitted to
share the dashboards. Thus DT experts can develop custom
dashboards and share them with other users. MongoDB81

Java Script Object Notation (JSON) document database is
now part of DTaaS. If DTs or users wish to operate using data
or asset configuration expressed in JSON, there is support for
such usage.

There is support for AMQP82, MQTT83 and OPC-UA84

protocol-based communication between PT and DT. These
communication-related platform services can be used for
bidirectional transfer of data and control commands between
DT-PT pairs. Thirteen exemplar case studies have been made
available publicly to showcase this support85 out of which
seven case studies have been summarised in this paper.

The Grafana86 has been integrated as another platform
service. This service is a de facto industry software to
monitor, visualise, observe and trace distributed systems.

Prepared using sagej.cls

14 Journal Title XX(X)

Given the need to support PTs deployed across multiple
physical locations, software like Grafana is a good choice
for monitoring and visualisation. These services can be
provided with data from PT in which case there is only
PT monitoring and visualisation. Digital Shadows provide
one way communication from PT to DT. Even in this case,
the Grafana and other platform services can be used to
provide monitoring and visualisation services. This same
observation is valid even for DTs. A development version
of the firefighter case study uses Grafana dashboard for
monitoring and visualisation purposes.

A re-usable assets microservice has been developed to
provide access to re-usable DT assets to the platform users.
This microservice uses GraphQL protocol for asset discovery
and HTTP protocol for file transfer. The users can store both
private DT assets and also get access to shared DT assets.
Users can synchronise their private DT assets with external
Git repositories. In addition, asset repository transparently
gets mapped to user workspaces within which users can
perform DT life cycle operations.

Many DTs do not provide API interfaces. Such a limitation
reduces the integration possibilities of DTs with other DTs,
platform services and external software systems. In order to
improve the integration possibilities, a runner microservice
has been developed to create REST API wrappers around
DTs. This microservices converts REST API calls to invoke
life cycle scripts or any other scripts that can support direct
operations on DTs. A user can create many DTs with or
without runner integration. DTs with runner integration will
be available as service to other users of DTaaS. Thus users
have the flexibility to hide proprietary/private DTs and only
provide access to them as services to other users. This feature
gives rise to the possibility of creating collaborative DTs that
are managed by multiple users.

A YAML Ain’t Markup Language (YAML)87 based
configuration format is been defined to specify the DT
configuration explained in Digital Twin Definition section.
This configuration format will be used in future by the DT
Exec MS. The users can fill the configuration template from
their workspace or via web services exposed via the single
page application.

All users have dedicated workspaces. The workspaces are
implemented as docker containers running desktop Linux
environment. These come with isolated docker containers
having streaming desktop, VSCode, Jupyter notebooks and
remote terminal access.

A relational view of user workspace is provided in
Figure 10. Each user workspace is private and is securely
available via unified interface integrated into the single page
web application. Users have access to re-usable DT assets.
Users can install asset management tools of their own in the
private workspace and use them to manage their DT assets.
Users can also update the configuration of a DT and run life
cycle scripts.

Users can run DTs within their workspace and make them
accessible to other users. Any DT capable of providing
services can be accessed by other users as services, thereby
making DTs available as services.

Users can also permit remote access to live DTs via
platform services. If a DT does not have an API interface,
runner can be used to provide one which makes the DT

becomes available as a service within and outside of user
workspace. Using the service API interfaces of DTs with
or without runner, users can treat live DTs as service
components in their own software systems.

In addition, these workspaces have Internet access. Thus,
the PT to DT bidirectional communication link is as simple
as spawning required client-server communication protocol
software. In addition, the platform services can always be
used for bidirectional PT-DT communication. It is possible
to restrict the DT-PT and DT-Internet communication. A
suitable network firewall configuration can easily enforce the
necessary restrictions. If users are well-versed in the software
management processes, DevOps related techniques can be
used from within the workspaces.

Model Management
It is important for DTs and DT platforms to support a com-
bination of models produced using different mathematical
paradigms88. DTs are heterogeneous of nature and thus when
DTs are established for CPSs this support is paramount. In
order to accommodate such integration we make use of the
functional mockup interface89 (FMI) standard but naturally
there are other alternatives as well. The DTaaS already
supports such diverse modelling paradigms. This support is
made possible in four ways.

First is the availability of user workspaces in which models
can be created and managed. Users are at liberty to use
programming languages, engineering tools and frameworks
of their choice for model creation and management. The
model generation tools such as Modelica, Gmsh90 and
Matlab can be installed and used for creation of models.
Such tools can also help with the simulation of DTs in
which these models are included. Thus models of different
formats and representations are already supported inside the
DTaaS. The examples presented in Table 3 already have
finite element method (FEM), physics, ordinary differential
equation-based models published in FMUs, Modelica, and
Python package representations. Other commercial partners
have demonstrated proprietary System of Systems and FEM
models as Matlab and Geo (by the Gmsh tool) files. These
proprietary models could not be described in this paper due
to commercial considerations.

Second is the just-in-time (JIT) compilation of models.
Sometimes users create models in one format (say in
Modelica format) and compile them to another format
(say FMUs) before the model is used inside a DT. Model
compilation scripts used in the create DT life cycle phase
(explained in Phases in Digital Twin Life Cycle) a DT
perform this kind of JIT compilation. The firefighter case
study takes advantage of this technique to compile a
Modelica representation into an FMU.

Third is the ability to use complementary and replaceable
models for a single DT. The Re-usable Digital Twin Assets
details different models in the incubator and the firefighter
case studies. The selection of the available models for a DT
is specified in the DT configuration.

Fourth is the dynamic, run-time integration of models
into DTs. In this case, model integration and/or swapping
happens during the evolve phase of a DT. This run-time
change of DT models is controlled by DT configuration and

Prepared using sagej.cls

Talasila et al. 15

data received by the DT at run-time. The Water tank model
swap example demonstrates dynamic swapping of FMUs.

While DTaaS allows the technical combination of different
kind of models, it is in the responsibility of the DT creator
to assure a semantically meaningful combination. Simulation
granularity, especially notion of time, but also to the physical
units, etc. has to be ensured when building a DT instance.

Comparison with Existing Platforms
Prior work17,44 provides qualitative comparison of DT
platforms based on Structured data, Language specification,
Co-simulation, Domain-specific, and Geospatial data DT
frameworks and platforms. In order to objectively assess
DTaaS proposed in this work, we take similar criteria
to compare DTaaS with some existing frameworks and
platforms that are used to realise DTs in the categories of
Structured data, Language specification, and Co-simulation.
The other two categories, namely, Domain-specific and
Geospatial data, are not considered since they are out of the
scope of the DTaaS platform.

Since some of the frameworks presented in previous
surveys17,44 share similar characteristics, e.g., AAS-based
implementations (Eclipse BaSyX, SAP I4.0 AAS, NOVAAS,
PYI40AAS, and AASX Package Explorer), IoT-based imple-
mentations (Eclipse Ditto, Azure DTs, and AWS IoT Green-
grass), languages (DTDL, Eclipse Vorto, and Twined), and
model-based implementations (INTO-CPS Co-simulation
Framework and CPS-Twinning), a representative sample is
taken with the most complete framework(s) per group based
on the authors’ knowledge and experience with the tools and
frameworks. Thus, the comparison considers Eclipse BaSyX
and Eclipse Ditto in the Structured DT category, DTDL and
Eclipse Vorto in the Language specification category, and
INTO-CPS Co-simulation framework in the Co-simulation
category. We compare the capabilities of DTaaS with the
selected frameworks in a range of features, such as its
capabilities regarding configuration files, which is relevant
in frameworks like DTDL36, Eclipse Vorto91, and the AAS
schema; its platform capabilities, which is relevant in frame-
works like Eclipse BaSyX41 and Eclipse Ditto39; its mod-
elling and simulation capabilities, which is relevant in frame-
works like the ones in the Structured DT and Co-simulation
categories; and finally, its capabilities to integrate services
both infrastructure- and DT optimisation-wise in comparison
with the three categories mentioned above. Table 2 provides
an overview of the comparison for the criteria Description of
DTs and structures, Composition, DT-to-DT (DT-DT) rela-
tionships, Default bi-directional synchronisation, Running
simulators, Binding to infrastructure services, Binding to
DT (optimisation) services, and Re-usability, inspired by the
existing surveys on DT platforms/frameworks17,44,92.

In comparison to the selected platforms, as detailed in
Table 2, DTaaS approach performs well in terms of the
bi-directional communication capabilities, DT description,
re-usability, binding to infrastructure services, and more
importantly, integrating running simulators. Yet, it struggles
with incorporating DT-to-DT relationships, especially for
a more semantically accurate way to compose DTs, and
with defining a more straightforward mechanism to set
up and modularly attach DT (optimisation-wise) services.
Additionally, DTaaS supports hosting external third-party

DT frameworks, such as the DT Manager 47, where such an
approach becomes a Tool in DTaaS context. This way, DTaaS
can be used as a hub converging the realisation of DTs where
multiple tools, frameworks, and design paradigms co-exist.

Digital Twin as a Service

Influx DB

Incubator DT

DT Assets

User Workspace

Incubator

DT Instance

Platform Services

dashboards

manage

ferment tempeh

Figure 11. Incubator DT in DTaaS platform.

Implementation of Case Studies
This section demonstrates use of DTaaS for working with
DTs.

Incubator
The incubator was originally developed independently from
DTaaS platform. This DT is an example of developing DTs
outside of DTaaS and deploying them on it. The DT itself is
re-usable in other DTs but does not have re-usable DT assets
included in it.

Figure 11 shows the implementation of the incubator DT
inside DTaaS. User instantiates an already available DT in
the workspace as per the configuration. The DT connects
with PT via RabbitMQ service and publishes time-series data
to InfluxDB. A dashboard has been setup on InfluxDB to
showcase analytical results produced by the DT. Please see
prior work94 for more explanation of the analytical results.

Firefighter
The firefighter DT case study implementation takes
advantage of the DT concepts supported in DTaaS. The
firefighter DT is put together from data, model, function
and tool assets as described in the Firefighter sub-section.
The DT uses MQTT, a lightweight messaging protocol, to
handle data transmission. This broker acts as the central
point for data exchange, ensuring soft real-time and reliable
communication among various system elements without
the need for synchronisation. The DT also uses data
storage (InfluxDB) and visualisation (Grafana) services
integrated into the platform. Grafana provides a Graphical

Prepared using sagej.cls

16 Journal Title XX(X)

Table 2. Summary of comparison of existing platforms. The qualitative criterion has been adopted from prior work 17,44,47.
Criterion Structured DT Language specification Co-simulation This approach

Eclipse
BaSyX (AAS)

Eclipse Ditto DTDL Eclipse Vorto INTO-CPS
Co-simulation
framework

Description of
DTs and struc-
tures

By AAS Sub-
models,
mainly
defined by
Properties and
Operations

By JSON
structures,
defined by
Attributes,
Features, and
Definitions

By DTDL-
based JSON
structures,
defined by
Commands,
Components,
Properties,
Relationships,
and
Telemetries

By Vorto
Information
Models,
composed of
object-oriented
Function
Blocks,
including
Properties,
Events, and
Operations

By the Maestro
Multi-model
configuration
file, mainly
defined
by FMUs,
Connections,
and Parameters

By the DT
configuration,
defined by Assets —
which can contain
Data, Models,
Functions,Tools
and Digital Twins
— Infrastructure,
Physical Twins, and
Services

Composition By
aggregation of
Sub-models

By
aggregation of
Features

By composing
Interfaces via
Components -
and composi-
tion via Rela-
tionships-

By aggregation
of Function
Blocks

By aggregation
of hierarchical
FMU simulators

By aggregation of
Assets

DT-DT
relationships

Implicitly
by semantic
identifiers via
References

N.A. Explicitly
by the
Relationships
field

Implicitly
by Model
References

N.A. Only applicable for
DT composition

Default bi-
directional
synchronisa-
tion

As a DT as a DT As a Digital
Model
(requires a
back-end to
set up a DT
via Telemetries
and
Commands)

As a Digital
Model (requires
a back-end to
set up a DT
via Properties,
Operations, and
Events)

As a Digital
Model (requires
RabbitMQ
FMU 93 to set
up a DT)

As a DT

Running simu-
lators

No No No No Yes (via FMUs
and Maestro)

Yes (multiple simu-
lators included as re-
usable tools)

Binding to
infrastructure
services

Provides APIs
to support
OPC UA,
MongoDB,
PostgreSQL,
Docker,
HTTP REST,
Automa-
tionML, and
IEC 61360
product
dictionaries
(e.g. ECLASS)

Provides APIs
to support
Apache Kakfa,
MongoDB,
nginx, HTTP
REST, AMQP,
MQTT, and
WebSocket

Compatible
with Microsoft
Azure DTs

Compatible
with Eclipse
Ditto and
Eclipse Hono

Dependent
on services
wrapped as
FMUs or
accessible
via the FMI
interface

Provides a set
of infrastructure
services that are
initialised from
the Infrastructure
field in the DT
configuration

Binding to DT
(optimisation)
services

Exposes
APIs that
can be used
by external
services

Exposes
APIs that
can be used
by external
services

N.A. N.A. Dependent on
pre-defined
FMUs that
include such
services (not
necessarily
generalisable to
multiple case
studies)

Can be done
through (1)
internal or external
infrastructure
services and (2)
a combination
of Functions and
Tools and the
business logic in the
corresponding life
cycle phase

Reusability Of Sub-models
and infrastruc-
ture

Of Features
and
infrastructure

Of
Components
and Interfaces

Of Function
Blocks

Of FMUs Of Data, Models,
Functions, Tools,
and infrastructure

Prepared using sagej.cls

Talasila et al. 17

User Interface (GUI) for decision making by the mission
commander. A TeSSLa monitor is implemented for real-time
monitoring of both the time needed to leave the building and
breathing time left in the SCBA. It alerts when predefined
thresholds are reached. The Telegraf-TeSSLa-connector95

integrates TeSSLa into the system.

mock
firefighter

create

IFC2Graph Graph2Path Path2Time Pressure2Time Monitor

IFC-File

Position

Pressure

Path

Graph

approx. Time to
leave building

approx. Time

left in SCBAAlarm

Figure 12. Sequence diagram of the DT for the rescue mission
scenario

Figure 12 provides an overview of the sequence of
events, facilitating efficient data exchange and integration
of different components. There are two sequences, each
of which calculates a time. A graph is generated once in
IFC2Graph with the 3D building file, in which navigation
then takes place. The Graph2Path uses the position of
the mock firefighter to calculate the path to the next exit.
This path is used in Path2Time to approximate the time
required to leave the building along a given path. The
reported pressure values of the mock firefighters SCBA
is used in Pressure2Time to approximate the time for
which oxygen is available. These two times are monitored
continuously. If there is a risk of insufficient oxygen
available to leave the building, the firefighter is warned.

The firefighter DT has been validated through simulations
and feedback from firefighter technology providers involved
in the O5G-N-IoT project as well as a few firefighters. These
stakeholders have provided valuable insights into practical
requirements and potential improvements for the system.

The firefighter DT is run in user workspace. DTaaS
supports multiple firefighters DTs for each user while still
maintaining the required isolation between all the active
firefighter DTs. A collective monitoring results for different
firefighter DTs can also be shown as one single visualisation
dashboard.

Other Exemplar Case Studies
The existing users of DTaaS have developed multiple
Digital Shadows and DTs to support their case studies.
They have also generously contributed non-proprietary
versions of their case studies as exemplars to other users
of DTaaS85. Seven of these exemplars are summarised in
Table 3. The exemplars comes from diverse applications
domains including Physics, Robotics, food industry and
water systems. The Desktop Robotti is a DT created for an
autonomous agricultural vehicle96; the Flex-Cell Robots is
a DT for flex-cell workstation97. The mass spring damper
with runtime monitor demonstrates the use of NuRV71 as
a runtime verification (RV) and monitoring tool. This RV
tool is integrated into the mass spring damper co-simulation
digital model (DM)98. There is no PT for this DM. However,
this exemplar demonstrates use of two tools, namely NuRV

and Maestro99 for creating a DM. Such use of multiple
models and tools ı́n one DT has been demonstrated again
in other exemplars.

The Water tank fault injection100 and model swap101

demonstrate the advantages of run-time fault injections and
dynamic model swapping in DT.

Direction of dependency

Service

Model

Digital Twin Tool

Legend:

Figure 13. A dependency graph of all re-usable assets
included in the case studies quoted in this paper. The
dependency arrow goes from composing asset to composed
asset.

There is a significant reuse of DT assets among the DTs
created in different application domains. For example, the
DT Robotti, Flex-Cell Robots and Water tank model swap
case studies use Maestro co-simulation engine as a DT tool
asset. There is even reuse of models among the water tank
model swap and water tank fault injection case studies. The
incubator with NuRV run-time monitor service is a DT of
incubator with integrated run-time monitoring service. This
DT is an example of reusing one DT inside another DT. The
Flex-Cell Robots is a pair of robots each of which have a
unique DT which in turn are included in the Flex-Cell Robots
DT. Thus it is possible to use more than one DT inside one
DT and DTaaS supports such use cases as well.

Quite a few of these exemplars use the platform services
integrated into DTaaS. The Desktop Robotti, Flex-Cell
Robots and incubator with NuRV monitor service use
RabbitMQ service. The Flex-Cell Robots also uses MQTT
service. The waste water treatment exemplar uses OPC-UA
communication service. Thus the advantages of integrated
platform services is evident in supporting the diverse case
studies within DTaaS.

The Figure 13 illustrates the potential for re-usability of
assets in DTs constructed using composition technique. The
composition can be applied at either model/tool/service-level
or at the DT level. There are two instances of a DT being
composed in another DT. Such reuse is completely supported
in DTaaS. Another advantage of this approach is to tailor the
platform usability to the expertise of users. The expert users
can create and manage all re-usable assets including DTs.
Each DT is specified using one DT configuration stored in
YAML format. The users of DT can create multiple instances

Prepared using sagej.cls

18 Journal Title XX(X)

Table 3. The implementation of seven more DT exemplar case studies inside DTaaS.

Exemplar Name Application
Domain

Physical Twin -
Real / Mock /
Both

Reuse of: life cycle phases

Desktop Robotti Robotics Both Model, Tool and
Service

create, execute, terminate

Flex-Cell Robots Robotics Both Models, Tool and
Services

create, prepare (configures all
assets from one DT configu-
ration), execute, save, analyse,
terminate

Incubator with NuRV run-
time monitor service

Food Safety Both Models and Ser-
vices

create, execute, analyse, termi-
nate

Mass Spring Damper with
runtime monitor

Physics None Models and Tool create, execute, analyse, termi-
nate

Water tank fault injection Water Mock Models and Tools create, execute, analyse, termi-
nate

Water tank model swap Water Mock Models and Tool create, execute, evolve (auto),
analyse, save, terminate

Waste water treatment Water Both Functions,
Services, Tool

create, execute, terminate

of DT by having multiple configurations one for each DT
instance. Thus users of DT need not concern themselves
with the internal details of DT; they can just modify the
DT configuration and instantiate a live DT which can then
support the services built on top of it. These services can
either be platform services or external services. The non-
expert and decision makers can utilise the analytical results
produced by the services.They do not need to even manage
the DT itself; access to DT-supported services is sufficient.

Performance Evaluation

Incubator
Multiple incubator DTs can be run by one user. Multiple
users can run many incubators concurrently. The only
limitation is on the capabilities of the underlying hardware to
support the number of live incubators DTs. The incubator has
a sensor that samples temperature values every 3 seconds.
Thus the network delays and packet losses below are not
observable.

Firefighter
In our performance evaluation, we conducted two experi-
ments related to the firefighter use case to assess the system’s
efficiency and robustness.

The first experiment involved comparing the performance
of platform-hosted and remote MQTT servers. To compare,
the system was configured to use either the integrated MQTT
server or remote MQTT server and the communication
times to and from a mock PT were measured with an
additional MQTT subscriber. For each experiment 500
measurements were taken. The results are summarised in
Table 4. The findings indicate that the integrated MQTT
service significantly improves the system’s performance
compared to the remote MQTT server.

Table 4. Communication times for local and remote MQTT
servers with and without network stress averaged over 500
measures each

Performance evaluation
Configuration Avg. time Std. deviation
Local MQTT (no iPerf) 1047 ms 278 ms
Remote MQTT (no iPerf) 1732 ms 465 ms
Local MQTT (with iPerf) 1795 ms 269 ms

The second experiment focused on the impact of network
stress on DTs running inside DTaaS. The network stack on
the server hosting DTaaS has been kept busy by iperf102

throughput testing tool. The TCP client and server of the
throughput test are on the same server. Thus the effective
network bandwidth available to the DTs becomes reduced.
The results are shown in Table 4. Despite the network stress,
both the DT and DTaaS continued to perform as per the
requirements, demonstrating its robustness under adverse
conditions. The firefighter DT does not have safety and
reliability system in place yet. We are currently working on a
Fault Detection Identification and Recovery (FDIR) solution
for some properties of the system. We intend to monitor the
5G configuration, possibly with some mesh network between
the User Equipment (mobile devices) and the data rate usage
of different data streams to detect faults, try to identify their
causes and recover from them.

Discussion and Future Work
DTaaS is a platform for building, using, and sharing DTs.
The reuse of DT assets is a guiding principle around
which DTs are managed within DTaaS. This approach has
been illustrated with two detailed case studies, and seven
additional exemplar case studies. Significant progress has
been made in the platform implementation, specifically

Prepared using sagej.cls

Talasila et al. 19

in developing the reusable assets microservice, enhancing
scalability. The existing data, models, and tools have been
shown to be reusable, facilitating a smooth transition for
users from their local development environments to DTaaS
hosted on the cloud.

Additionally, the DT configuration format has been
defined and mapped to the two primary case studies, aiding
new users in creating their own DTs and simplifying
the adoption of DTaaS. A performance evaluation on the
firefighter case study showcases DTaaS’s capability to handle
PTs operating both on-premise and remotely, discusses the
impact of network latency and validates the platform’s
ability to execute multiple DTs concurrently. Five versions
of DTaaS software have been released and it is being actively
used by researchers and commercial partners.

Ongoing work includes integrating semantic modules as a
DTaaS platform service, enabling the interpretation of DTs
as a knowledge graph for consistency checking and semantic
querying. Future work will focus on extending the platform’s
capabilities, enhancing the semantic module, and further
validating DTaaS approach through additional case studies
and user feedback.

Concluding Remarks

There is a strong interest in the DT community to provide
Digital Twin as a Service platform (DTaaS) to spread the
user base of DTs. A typical DT life cycle on DTaaS involves
create, execute, save, analyse, evolve and terminate phases.
Only software platforms developed with awareness of DT
life cycle can aspire to fulfil DTaaS vision. Re-usability of
DT assets, creation of meaningful DT configuration, scalable
deployment are key challenges in the development of DTaaS
platforms.

In this paper, we describe some nuances in DT
configuration that is valid in the context of re-usable assets,
shared infrastructure, and desired integration with external
world. We believe that the ability to reuse DT assets on
DTaaS will make it cheaper and easier to get started with
DTs.

Funding

This work has been partially supported by the EU Horizon 2020
projects DIGITbrain and HUBCAP and the Poul Due Jensen
foundation, as well as the RCN grants PeTWIN (294600), SIRIUS
(237898) and the German Federal Ministry for Economic Affairs
and Climate Action, due to a resolution of the German Bundestag
in the context of the project O5G-N-IoT.

Acknowledgements

We thank in no particular order the successful discussions and
feedback provided by the DIGITbrain technical coordination
committee, Daniel Lehner, Mirgita Frasheri, Martin Sachenbacher,
Gianmaria Bullegas and Omar Nachawati.

We also thank in no particular order Artin Ghalamkary, Asger
Breinholm, Astitva Sehgal, Cesar Vela, Emre Temel, Karsten
Malle, Linda Nguyen, Mads Kelberg, Mathias Brændgaard, Nicklas
Pedersen, Oliver Geneser, Omar Suleiman, and Phillip Jensen for
contributing to the development of DTaaS platform.

We thank Alberto Bonizzi, Alejandro Labarias, Henrik Ejersbo,
Lucia Royo, Mirgita Frasheri, Morten Haahr Kristensen, and
Valdemar Tang for generously contributing exemplar case studies.

Supplemental material

The source code for the Digital Twin as a Service software is
available at: https://github.com/INTO-CPS-Association/DTaaS.

Declaration of conflicting interests

The authors declare no conflict of interest.

References

1. Böttjer T, Tola D, Kakavandi F et al. A review of unit level
digital twin applications in the manufacturing industry. CIRP
Journal of Manufacturing Science and Technology 2023; 45:
162–189. DOI:10.1016/j.cirpj.2023.06.011.

2. Naseri F, Gil S, Barbu C et al. Digital twin of electric vehicle
battery systems: Comprehensive review of the use cases,
requirements, and platforms. Renewable and Sustainable
Energy Reviews 2023; 179: 113280. DOI:10.1016/j.rser.2023.
113280.

3. Tao F, Xiao B, Qi Q et al. Digital Twin Modeling. Journal
of Manufacturing Systems 2022; 64: 372–389. DOI:10.1016/
j.jmsy.2022.06.015.

4. Zambrano V, Mueller-Roemer J, Sandberg M et al. Industrial
digitalization in the industry 4.0 era: Classification, reuse and
authoring of digital models on digital twin platforms. Array
2022; : 100176.

5. Lehner D, Pfeiffer J, Tinsel E et al. Digital twin platforms:
Requirements, capabilities, and future prospects. IEEE
Software 2022; 39(02): 53–61. DOI:10.1109/MS.2021.
3133795.

6. Abburu S, Berre AJ, Jacoby M et al. Cognitwin–hybrid and
cognitive digital twins for the process industry. In 2020
IEEE International Conference on Engineering, Technology
and Innovation (ICE/ITMC). IEEE, pp. 1–8.

7. Aziz A, Chouhan SS, Schelén O et al. Distributed digital
twins as proxies-unlocking composability & flexibility for
purpose-oriented digital twins. IEEE Access 2023; .

8. Aheleroff S, Xu X, Zhong RY et al. Digital Twin as a Service
(DTaaS) in Industry 4.0: An Architecture Reference Model.
Advanced Engineering Informatics 2021; 47: 101225.

9. Feng H, Gomes C, Gil S et al. Integration Of The Mape-
K Loop In Digital Twins. In 2022 Annual Modeling and
Simulation Conference (ANNSIM). IEEE. DOI:10.23919/
annsim55834.2022.9859489.

10. [O5G-N-IoT] Campusnetzwerke für Krisenszenarien, 2024.
URL https://o5g-n-iot.de/. Last accessed 06 June
2024.

11. Talasila P, Gomes C, Mikkelsen PH et al. Digital twin as
a service (dtaas): A platform for digital twin developers and
users. In Digital Twin 2023: The 2023 IEEE International
Conference on Digital Twin. Portsmouth, UK: IEEE.

12. Grieves M and Vickers J. Digital Twin: Mitigating
Unpredictable, Undesirable Emergent Behavior in Complex
Systems. In Kahlen FJ, Flumerfelt S and Alves A (eds.)
Transdisciplinary Perspectives on Complex Systems. Springer
International Publishing Switzerland, pp. 85–113.

Prepared using sagej.cls

https://o5g-n-iot.de/

20 Journal Title XX(X)

13. Feng H, Gomes C, Gil S et al. Integration
of the mape-k loop in digital twins. doi:
10.23919/ANNSIM55834.2022.9859489: IEEE.

14. Oakes BJ, Gomes C, Larsen PG et al. Examining model
qualities and their impact on digital twins. In 2023 Annual
Modeling and Simulation Conference (ANNSIM). IEEE, pp.
220–232.

15. Kritzinger W, Karner M, Traar G et al. Digital Twin
in Manufacturing: A Categorical Literature Review and
Classification. In IFAC-PapersOnLine, volume 51. Elsevier
B.V., pp. 1016–1022. DOI:10.1016/j.ifacol.2018.08.474.

16. VanDerHorn E and Mahadevan S. Digital Twin: Generaliza-
tion, characterization and implementation. Decision Support
Systems 2021; 145. DOI:10.1016/J.DSS.2021.113524.

17. Gil S, Mikkelsen PH, Gomes C et al. Survey on open-source
digital twin frameworks–A case study approach. Software:
Practice and Experience 2024; 54(6): 929–960. DOI:10.
1002/spe.3305.

18. Oakes B, Parsai A, Mierlo SV et al. Improving digital twin
experience reports. In Proceedings of the 9th International
Conference on Model-Driven Engineering and Software
Development. SCITEPRESS - Science and Technology
Publications. DOI:10.5220/0010236101790190.

19. Lee J, Bagheri B and Kao HA. A Cyber-Physical Systems
Architecture for Industry 4.0-based Manufacturing Systems.
Manufacturing Letters 2015; 3: 18–23. DOI:10.1016/J.
MFGLET.2014.12.001.

20. Lu Y, Liu C, Kevin I et al. Digital twin-driven smart
manufacturing: Connotation, reference model, applications
and research issues. Robotics and computer-integrated
manufacturing 2020; 61: 101837.

21. Dalibor M, Heithoff M, Michael J et al. Generating
Customized Low-Code Development Platforms for Digital
Twins. Journal of Computer Languages 2022; 70: 101117.
DOI:10.1016/J.COLA.2022.101117.

22. Talasila P, Crăciunean DC, Bogdan-Constantin P et al.
Comparison Between the HUBCAP and DIGITBrain
Platforms for Model-Based Design and Evaluation of
Digital Twins. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 13230
LNCS. ISBN 9783031124280, pp. 238–244. DOI:10.1007/
978-3-031-12429-7 17.

23. DIGITbrain establishing a modular Approach to Digital
Twins for Manufacturing, 2024. URL https://

digitbrain.eu/. Last accessed 06 June 2024.
24. Mao R, Li Y and Zhang H. Digital twin-based research

in the maritime industry: A brief survey. In IECON 2023-
49th Annual Conference of the IEEE Industrial Electronics
Society. IEEE, pp. 1–6.

25. Liu C, Zheng P and Xu X. Digitalisation and servitisation
of machine tools in the era of industry 4.0: a review.
International journal of production research 2023; 61(12):
4069–4101.

26. Zhang H, Li G, Hatledal LI et al. A digital twin of the
research vessel gunnerus for lifecycle services: Outlining key
technologies. IEEE Robotics & Automation Magazine 2022; .

27. Petrova-Antonova D, Spasov I, Krasteva I et al. A digital
twin platform for diagnostics and rehabilitation of multiple
sclerosis. In Computational Science and Its Applications–
ICCSA 2020: 20th International Conference, Cagliari, Italy,

July 1–4, 2020, Proceedings, Part I 20. Springer, pp. 503–518.
28. McKee D. Platform stack architectural framework: An

introductory guide. A Digital Twin Consortium White Paper
Digital Twin Consortium 2023; .

29. Hogan A, Blomqvist E, Cochez M et al. Knowledge graphs.
ACM Comput Surv 2022; 54(4): 71:1–71:37.

30. Sahlab N, Kamm S, Müller T et al. Knowledge graphs as
enhancers of intelligent digital twins. In ICPS. IEEE, pp. 19–
24.

31. Waszak M, Lam AN, Hoffmann V et al. Let the asset decide:
Digital twins with knowledge graphs. In ICSA Companion.
IEEE, pp. 35–39.

32. Zheng X, Lu J and Kiritsis D. The emergence of cognitive
digital twin: vision, challenges and opportunities. Int J Prod
Res 2022; 60(24): 7610–7632.

33. Li Y, Chen J, Hu Z et al. Co-simulation of complex engineered
systems enabled by a cognitive twin architecture. Int J Prod
Res 2022; 60(24): 7588–7609.

34. Li H, Wang G, Lu J et al. Cognitive twin construction for
system of systems operation based on semantic integration
and high-level architecture. Integr Comput Aided Eng 2022;
29(3): 277–295.

35. Pfeiffer J, Lehner D, Wortmann A et al. Modeling Capabilities
of Digital Twin Platforms-Old Wine in New Bottles? Journal
of Object Technology 2022; 21(3). DOI:10.5381/jot.2022.21.
3.a10.

36. Digital Twins Definition Language, 2024. URL https:

//github.com/Azure/opendigitaltwins-dtdl.
Last accessed 06 June 2024.

37. Vorto Language for Digital Twins, 2024. URL
https://github.com/eclipse/vorto/blob/

development/docs/vortolang-1.0.md. Last
accessed 06 June 2024.

38. Connect, Command & Control IoT devices :: Eclipse Hono,
2024. URL https://eclipse.dev/hono. Last
accessed 06 June 2024.

39. Eclipse Ditto: open source framework for digital twins in the
IoT, 2024. URL https://eclipse.dev/ditto. Last
accessed 06 June 2024.

40. Digital Twins Made Easy — AWS IoT TwinMaker —
Amazon Web Services, 2024. URL https://aws.

amazon.com/de/iot-twinmaker/. Last accessed 06
June 2024.

41. Eclipse BaSyx, 2024. URL https://eclipse.dev/

basyx/. Last accessed 06 June 2024.
42. Plattform Industrie 40. Reference Architectural Model

Industrie 4.0 (RAMI 4.0) - An Introduction. Technical
report, ZVEI - German Electrical and Electronic
Manufacturers Association, 2016. URL https:

//web.archive.org/web/20210615073607/

https://www.plattform-i40.de/PI40/

Redaktion/EN/Downloads/Publikation/

rami40-an-introduction.pdf?{_}{_}blob=

publicationFile{&}v=7.
43. IEC. Asset Administration Shell for industrial applications

- Part 1: Asset Administration Shell structure. IEC 63278-
1:2023 ed. Geneva, Switzerland: International Electrotechni-
cal Commission, 2023. URL https://webstore.iec.

ch/publication/65628.
44. Lehner D, Pfeiffer J, Tinsel EF et al. Digital Twin

Platforms: Requirements, Capabilities, and Future Prospects.

Prepared using sagej.cls

https://digitbrain.eu/
https://digitbrain.eu/
https://github.com/Azure/opendigitaltwins-dtdl
https://github.com/Azure/opendigitaltwins-dtdl
https://github.com/eclipse/vorto/blob/development/docs/vortolang-1.0.md
https://github.com/eclipse/vorto/blob/development/docs/vortolang-1.0.md
https://eclipse.dev/hono
https://eclipse.dev/ditto
https://aws.amazon.com/de/iot-twinmaker/
https://aws.amazon.com/de/iot-twinmaker/
https://eclipse.dev/basyx/
https://eclipse.dev/basyx/
https://web.archive.org/web/20210615073607/https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf?{_}{_}blob=publicationFile{&}v=7
https://web.archive.org/web/20210615073607/https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf?{_}{_}blob=publicationFile{&}v=7
https://web.archive.org/web/20210615073607/https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf?{_}{_}blob=publicationFile{&}v=7
https://web.archive.org/web/20210615073607/https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf?{_}{_}blob=publicationFile{&}v=7
https://web.archive.org/web/20210615073607/https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf?{_}{_}blob=publicationFile{&}v=7
https://web.archive.org/web/20210615073607/https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf?{_}{_}blob=publicationFile{&}v=7
https://webstore.iec.ch/publication/65628
https://webstore.iec.ch/publication/65628

Talasila et al. 21

IEEE Software 2022; 39(2): 53–61. DOI:10.1109/MS.2021.
3133795.

45. Ferko E, Bucaioni A, Pelliccione P et al. Standardisation
in digital twin architectures in manufacturing. In 2023
IEEE 20th International Conference on Software Architecture
(ICSA). IEEE, pp. 70–81.

46. Ferko E, Bucaioni A and Behnam M. Architecting digital
twins. IEEE Access 2022; 10: 50335–50350.

47. Lehner D, Gil S, Mikkelsen PH et al. An architectural
extension for digital twin platforms to leverage behavioral
models. In 2023 IEEE 19th International Conference on
Automation Science and Engineering (CASE). pp. 1–8. DOI:
10.1109/CASE56687.2023.10260417.

48. Stojanovic L, Usländer T, Volz F et al. Methodology and tools
for digital twin management—the fa3st approach. IoT 2021;
2(4): 717–740.

49. Steindl G and Kastner W. Semantic Microservice Framework
for Digital Twins. Applied Sciences 2021; 11(12). DOI:
10.3390/app11125633.

50. Ciavotta M, Maso GD, Rovere D et al. Towards the
Digital Factory: A Microservices-based Middleware for
Real-to-Digital Synchronization. In Microservices: Science
and Engineering. Springer International Publishing. ISBN
9783030316464, 2019. pp. 273–297. DOI:10.1007/
978-3-030-31646-4 11.

51. Reiterer SH, Balci S, Fu D et al. Continuous Integration for
Vehicle Simulations. In 2020 25th IEEE International Con-
ference on Emerging Technologies and Factory Automation
(ETFA), volume 1. IEEE, pp. 1023–1026.

52. Beetz F and Harrer S. GitOps: The Evolution of DevOps?
IEEE Software 2021; 39(4): 70–75.

53. Feng H, Gomes C, Thule C et al. Introduction to Digital
Twin Engineering. In 2021 Annual Modeling and Simulation
Conference (ANNSIM). IEEE. DOI:10.23919/annsim52504.
2021.9552135.

54. Convent L, Hungerecker S, Leucker M et al. Tessla:
Temporal stream-based specification language. In Massoni
T and Mousavi MR (eds.) Formal Methods: Foundations and
Applications. Cham: Springer International Publishing. ISBN
978-3-030-03044-5, pp. 144–162.

55. TeSSLa: A Convenient Language for Specification and
Verification of Your System, 2024. URL https://www.

tessla.io/. Last accessed 06 June 2024.
56. Steinkraus KH, Hwa YB, Van Buren JP et al. Studies

on tempeh. An Indonesian fermented soybean food. Food
Research 1960; 25: 777–788.

57. Leucker M, Sachenbacher M and Vosteen LB. Digital twin
for rescue missions–a case study. In Proceedings of the
FMDT 2023 Workshop on Applications of Formal Methods
and Digital Twins. CEUR Vol-3507.

58. Esterle L, Gomes C, Frasheri M et al. Digital Twins
for Collaboration and Self-integration. In 2021 IEEE
International Conference on Autonomic Computing and Self-
Organizing Systems Companion (ACSOS-C). IEEE. DOI:
10.1109/acsos-c52956.2021.00040.

59. Functional Mock-up Interface, 2024. URL https://

fmi-standard.org/. Last accessed 06 June 2024.
60. Thule C, Lausdahl K, Gomes C et al. Maestro: The

INTO-CPS Co-simulation Framework. Simulation
Modelling Practice and Theory 2019; 92: 45 – 61.
DOI:https://doi.org/10.1016/j.simpat.2018.12.005. URL

http://www.sciencedirect.com/science/

article/pii/S1569190X1830193X.
61. OpenFOAM, 2024. URL https://www.openfoam.

com/. Last accessed 06 June 2024.
62. TensorFlow, 2024. URL https://www.tensorflow.

org/. Last accessed 06 June 2024.
63. MathWorks - Makers of MATLAB and Simulink, 2024. URL

https://www.mathworks.com. Last accessed 06 June
2024.

64. SciPy: Fundamental Algorithms for Scientific Computing
in Python, 2024. URL https://scipy.org/. Last
accessed 06 June 2024.

65. PyTorch, 2024. URL https://pytorch.org/. Last
accessed 06 June 2024.

66. Talasila P, Mikkelsen PH, Gil S et al. Realising digital twins.
In The Engineering of Digital Twins. Springer, 2024. pp. 225–
256.

67. Feng H, Gomes C, Thule C et al. The Incubator Case Study
for Digital Twin Engineering. Technical report, 2021. DOI:
10.48550/ARXIV.2102.10390. 2102.10390.

68. ISO. Automation systems and integration - Digital
twin framework for manufacturing. ISO 23247:2021(E)
ed. Geneva, Switzerland: International Organization for
Standardization, 2021. URL https://www.iso.org/

standard/78743.html.
69. Kamburjan E and Johnsen EB. Knowledge Structures Over

Simulation Units. In ANNSIM. IEEE, pp. 78–89.
70. HUBCAP, 2024. URL https://www.hubcap.eu/.

Last accessed 06 June 2024.
71. Cimatti A, Tian C and Tonetta S. Assumption-based

runtime verification of infinite-state systems. In Runtime
Verification: 21st International Conference, RV 2021, Virtual
Event, October 11–14, 2021, Proceedings 21. Springer, pp.
207–227.

72. Kiss T, Kacsuk P, Kovacs J et al. Micado—microservice-
based cloud application-level dynamic orchestrator. Future
Generation Computer Systems 2019; 94: 937–946.

73. CP-SENS - Cyber-Physical Sensing for Machinery and
Structures, 2024. URL https://digit.au.dk/

research-projects/cp-sens. Last accessed 06 June
2024.

74. The C4 model for visualising software architecture, 2024.
URL https://c4model.com/. Last accessed 06 June
2024.

75. Huang H and Xu X. Advancing digital twin implementation
using edge adapters based on containerization. In 2023 IEEE
19th International Conference on Automation Science and
Engineering (CASE). IEEE, pp. 1–6.

76. Larsen PG, Talasila P and Fitzgerald J. Towards the
composition of digital twins. In The Application of Formal
Methods: Essays Dedicated to Jim Woodcock on the Occasion
of His Retirement. Springer, 2024. pp. 103–122.

77. Böttjer T, Tola D, Kakavandi F et al. A review of unit level
digital twin applications in the manufacturing industry. CIRP
Journal of Manufacturing Science and Technology 2023; :
162–189DOI:https://doi.org/10.1016/j.cirpj.2023.06.011.

78. Digital Twin as a Service CLI, 2024. URL https://

pypi.org/project/dtaas/. Last accessed 06 June
2024.

79. Jensen AM, Schoerghofer-Queiroz A, Ulriksen MD et al.
Digital twin as a service for damage prognosis of offshore

Prepared using sagej.cls

https://www.tessla.io/
https://www.tessla.io/
https://fmi-standard.org/
https://fmi-standard.org/
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
https://www.openfoam.com/
https://www.openfoam.com/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.mathworks.com
https://scipy.org/
https://pytorch.org/
2102.10390
https://www.iso.org/standard/78743.html
https://www.iso.org/standard/78743.html
https://www.hubcap.eu/
https://digit.au.dk/research-projects/cp-sens
https://digit.au.dk/research-projects/cp-sens
https://c4model.com/
https://pypi.org/project/dtaas/
https://pypi.org/project/dtaas/

22 Journal Title XX(X)

wind turbine foundations. In 2024 International Conference
on Noise and Vibration Engineering.

80. InfluxDB Time Series Data Platform — InfluxData, 2024.
URL https://www.influxdata.com/. Last accessed
06 June 2024.

81. MongoDB: The Developer Data Platform — MongoDB,
2024. URL https://www.mongodb.com/. Last
accessed 06 June 2024.

82. RabbitMQ: One broker to queue them all — RabbitMQ, 2024.
URL https://www.rabbitmq.com/. Last accessed 06
June 2024.

83. Eclipse Mosquitto, 2024. URL https://mosquitto.

org/. Last accessed 06 June 2024.
84. OPC Foundation, 2024. URL https://

opcfoundation.org/. Last accessed 06 June 2024.
85. Examples to demonstrate the features of DTaaS

software, 2024. URL https://github.com/

INTO-CPS-Association/DTaaS-examples. Last
accessed 06 June 2024.

86. Grafana: The open observability platform, 2024. URL
https://grafana.com/. Last accessed 06 June 2024.

87. YAML Ain’t Markup Language, 2024. URL http://

yaml.org. Last accessed 06 June 2024.
88. Tekinerdogan B, Blouin D, Vangheluwe H et al. (eds.) Multi-

Paradigm Modelling Approaches for Cyber-Physical Systems.
Elsevier, 2020.

89. Junghanns A, Blochwitz T, Bertsch C et al. The Functional
Mock-up Interface 3.0 - New Features Enabling New Appli-
cations. In Proceedings of the 14th International Modelica
Conference. online: Linköping University Electronic Press,
Linköpings Universitet. DOI:10.3384/ecp2118117.

90. Gmsh: A three-dimensional finite element mesh generator
with built-in pre- and post-processing facilities, 2024. URL
https://gmsh.info/. Last accessed 23 September
2024.

91. Eclipse Vorto, 2024. URL http://yaml.org. Last
accessed 06 June 2024.

92. Gil S, Oakes BJ, Gomes C et al. Toward a systematic
reporting framework for digital twins: a cooperative robotics
case study. SIMULATION 2024; : 1–27DOI:10.1177/
00375497241261406. URL https://doi.org/10.

1177/00375497241261406.
93. Frasheri M, Ejersbo H, Thule C et al. RMQFMU: Bridging

the Real World with Co-simulation For Practitioners. In
Macedo HD, Thule C and Pierce K (eds.) Proceedings of the
19th International Overture Workshop. Overture.

94. Feng H, Gomes C, Sandberg M et al. Developing a
physical and digital twin: An example process model. In
2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-
C). IEEE. DOI:10.1109/models-c53483.2021.00050.

95. TeSSLa Telegraf Connector, 2024. URL https:

//tessla.io/blog/telegrafConnector/. Last
accessed 06 June 2024.

96. Lumer-Klabbers G, Hausted JO, Kvistgaard JL et al. Towards
a digital twin framework for autonomous robots. In 2021
IEEE 45th annual computers, software, and applications
conference (COMPSAC). IEEE, pp. 1254–1259.

97. Gil S, Mikkelsen PH, Tola D et al. A modeling approach for
composed digital twins in cooperative systems. In 2023 IEEE
28th International Conference on Emerging Technologies and

Factory Automation (ETFA). IEEE, pp. 1–8.
98. Gomes C, Thule C, Broman D et al. Co-simulation: a survey.

ACM Computing Surveys (CSUR) 2018; 51(3): 1–33.
99. Thule C, Lausdahl K, Gomes C et al. Maestro: The into-cps

co-simulation framework. Simulation Modelling Practice and
Theory 2019; 92: 45–61.

100. Larsen PG, Esterle L, Fitzgerald J et al. Fault Injection in
Co-simulation and Digital Twins for Cyber-Physical Robotic
Systems. In Applicable Formal Methods for Safe Industrial
Products: Essays Dedicated to Jan Peleska on the Occasion
of His 65th Birthday. Springer, 2023. pp. 222–236.

101. Ejersbo H, Lausdahl K, Frasheri M et al. FmiSwap: Run-time
Swapping of Models for Co-simulation and Digital Twins,
2023. 2304.07328.

102. iPerf - The ultimate speed test tool for TCP, UDP and SCTP,
2024. URL https://iperf.fr/. Last accessed 06 June
2024.

Prepared using sagej.cls

https://www.influxdata.com/
https://www.mongodb.com/
https://www.rabbitmq.com/
https://mosquitto.org/
https://mosquitto.org/
https://opcfoundation.org/
https://opcfoundation.org/
https://github.com/INTO-CPS-Association/DTaaS-examples
https://github.com/INTO-CPS-Association/DTaaS-examples
https://grafana.com/
http://yaml.org
http://yaml.org
https://gmsh.info/
http://yaml.org
https://doi.org/10.1177/00375497241261406
https://doi.org/10.1177/00375497241261406
https://tessla.io/blog/telegrafConnector/
https://tessla.io/blog/telegrafConnector/
2304.07328
https://iperf.fr/

	Introduction
	Background and Related Work
	Digital Twin Definition and Realisation
	Re-usability in Digital Twin Implementations
	Comparison with Related Work
	Monitoring of Digital Twins

	Case Studies
	Incubator
	Firefighter

	Re-usable Digital Twin Assets
	Incubator
	Firefighter

	Digital Twin Definition
	Phases in Digital Twin Life Cycle
	Incubator
	Firefighter

	System Architecture
	Requirements
	System Components
	Microservices

	Platform Implementation
	Model Management
	Comparison with Existing Platforms

	Implementation of Case Studies
	Incubator
	Firefighter
	Other Exemplar Case Studies

	Performance Evaluation
	Incubator
	Firefighter

	Discussion and Future Work
	Concluding Remarks

