
The ABS Simulator Toolchain

Rudolf Schlatte∗, Einar Broch Johnsen, Eduard Kamburjan,
S. Lizeth Tapia Tarifa

University of Oslo, Oslo, Norway

Abstract

ABS is a language for behavioral modeling of distributed, time- and resource-
sensitive communicating systems. ABS is based on an executable actor-based
semantics with asynchronous method calls, with method call results being
delivered via future variables. Data is modeled via a functional, side-effect-
free layer of algebraic data types and parametric functions. Actor behavior
is expressed in a sequential, imperative way, with explicit suspension points
for in-actor cooperative scheduling. A declarative time and resource model
allows modeling of time-sensitive actor behavior in a compositional way. A
software product line language layer implements model variability via code
deltas and feature models. This paper describes the toolchain that makes it
possible to simulate ABS models, and lists the most important case studies
done with ABS.

Keywords:
Distributed actor systems, executable models, time and resource behavior

1. Introduction

The ABS [1] modeling language targets the design, verification, and exe-
cutable modelling of concurrent and distributed systems. It is an actor-based,
object-oriented language with a Java-like syntax. The concurrency model of
ABS is based on active objects [2]. ABS is supported by a range of analysis
tools (see, e.g., [3]); this tool paper focuses on the simulation toolchain [4].

Section 2 introduces ABS, Section 3 describes the software architecture of
the simulator and Section 4 discusses some implementation aspects. Section 6
lists the bigger case studies that used ABS; Section 7 concludes the paper.

∗Corresponding author
Email addresses: rudi@ifi.uio.no (Rudolf Schlatte), einarj@ifi.uio.no

(Einar Broch Johnsen), eduard@ifi.uio.no (Eduard Kamburjan),
sltarifa@ifi.uio.no (S. Lizeth Tapia Tarifa)

Preprint submitted to Software Impacts August 29, 2022



2. Motivation and Background

Modeling is the process of capturing essential characteristics of a complex
system, while leaving out irrelevant details. Each model implicitly has a pur-
pose, reflected by the aspects of the real world that it regards as important.
ABS is a modeling language that captures the essential characteristics of dis-
tributed, communicating systems of independent actors. These systems can
be pure software systems, cyber-physical systems, or software-free systems.

ABS models capture the essential communication patterns, time behavior
and resource consumption aspects of the modeled systems. The internal
states of actors can be modeled at very different levels of detail, depending
on the needs of the model. The following features of ABS are used to create
such models:

Asynchronous method calls and first-class futures. The essential
feature of a distributed system is that communication (sending a method
call) and execution (scheduling an incoming call) are decoupled. The caller
can continue execution until the result of a call is needed, and the callee can
schedule calls from multiple callers as needed.

Process suspension and guarded commands. Inside an ABS actor,
multiple processes execute in a cooperative manner, with only one process
running at any given time. Processes suspend themselves when waiting for
a method call result or waiting for a boolean condition over the actor state
(e.g., waiting for a work item list to be non-empty).

Data structures and functions. Algebraic datatypes are used to
model actor state and data that is passed between actors via method calls.
Functions that calculate over such datatypes are side effect-free, which makes
static analysis of ABS models easier.

Time and resource models. A process can suspend itself for a given
amount of time, or require some amount of resources [5], which will also
cause time to advance. In this way, any ABS model can be transformed into
a timed model [6]. A short tutorial for ABS, including time and resource
modeling, can be found in [7].

3. Software Framework

The toolchain described in this paper has the task of parsing and ana-
lyzing an ABS model, and (usually) translating it into an executable form.
The compiler is used from the command line, but can be integrated into
editors and IDEs [8]. A compiled model can be executed from the com-
mand line; which requires Erlang to be installed. Both the compiler and
the required runtime components also come packaged in a docker image, so

2



no software installation is needed on the modeler’s machine. Installation
instructions are available at https://abs-models.org/getting_started/

local-install/.
Basic editor support is available for a number of editors; the list of edi-

tors and installation instructions are available at https://abs-models.org/
getting_started/editor-support/.

4. Implementation

The toolchain is implemented in Java using the antlr4 parser [9] and the
JastAdd AST (Abstract Syntax Tree) framework [10], and compiled via the
gradle build system. The binary artifact is a single self-contained .jar-file
that can run on any system with a Java runtime environment. Models are
transpiled into Erlang [11] and executed on the Erlang BEAM VM, which is
well-suited for simulations of highly-concurrent systems such as ABS models.

5. Usage Example

A minimal program in ABS that just prints Hello world! looks as
follows:

module Hello;

{

println("Hello world!");

}

When saved in a file hello.abs, this code can be compiled with the
command absc -e hello.abs, which generates a gen/ subdirectory. When
running the compiler with the -v (“verbose”) argument, some additional
information about the compilation process is printed to the terminal. After
compilation, the model is run with gen/erl/run, which prints the expected
greeting.

A slightly larger example of an ABS model can be seen at https://

abs-models.org/documentation/examples/monty-hall/. The model on
that page shows simple communication patterns between actors resulting in
a non-trivial result, and comes with extensive commentary.

6. Case Studies

Case studies that have been carried out using ABS include:

3

https://abs-models.org/getting_started/local-install/
https://abs-models.org/getting_started/local-install/
https://abs-models.org/getting_started/editor-support/
https://abs-models.org/getting_started/editor-support/
https://abs-models.org/documentation/examples/monty-hall/
https://abs-models.org/documentation/examples/monty-hall/


Fredhopper Cloud Services provide search and targeting facilities for
retailers as a service (SaaS) [12]. Their software is under constant devel-
opment and relies on automated configuration, continuous monitoring and
testing. ABS models allow changes to be analyzed before deployment, in-
cluding low-level effects such as resource consumption on virtual machines.
For this case study, a general replay tool for logs from the production system
was built [13]. The replay tool interacts with the simulator via the Model
API and enables simulating real-world scenarios from Fredhopper’s system
logs. This was used to validate the correlation between the model and the
actual system, and to predict the effects of changes in the system.

ABS-YARN [14] is a configurable ABS model for applications running
on Apache’s Hadoop YARN framework. Hadoop is a popular cloud infras-
tructure system and YARN (Yet Another Resource Negotiator) provides job
scheduling and cluster resource management for Hadoop configurations. Sim-
ulation shows that the ABS framework can accurately reflect the behavior of
YARN to efficiently compare different deployment decisions. This work was
extended to Hadoop Spark Streaming [15] and to compare instance purchas-
ing options provided by Amazon Web Services [16].

The HyVar toolchain is a framework that targets context-dependent
software upgrades for car ECUs (Electronic Control Units). The framework
collects information from a fleet of cars, analyzes this information to decide
how to update the software running on the different cars, and sends software
updates back to the cars when needed. The objective of the ABS simulations
was to efficiently analyze the scalability of the toolchain [17].

Multicore Memory Systems. This case study focused on how a model
of multicore memory systems [18], formalized in structural operational se-
mantics, could be implemented in ABS as a simulator of memory operations
on multicore architectures. The focus of this work was on correctness pre-
serving transformations of operational rules with pattern matching synchro-
nization conditions at the SOS level to a decentralized and asynchronous
actor model [19]. The cooperative scheduling of ABS was crucial to ensure
a granularity of process interleaving which corresponded to the SOS model.

Kubernetes. This case study develops an ABS model of a container-
ized orchestration system for cloud-native microservices, which are loosely-
coupled collections of services designed to adapt to traffic in very fine-grained
and flexible ways. The model focused on resource consumption and scaling
of microservices deployed and managed by Kubernetes [20]. This work per-
formed experiments on HPC4AI, a cluster for deploying high-performance
applications, in order to compare the observed behavior of real systems to
corresponding observations of instances of the model [21].

Compugene is a case study that models transcription of mRNA in com-

4



putational biology1. The time model of ABS was crucial to model biological
processes, in particular to capture the effect of different rates of degradation
in neighboring cells. The simulation is used to compare the mathematical
model (expressed in ABS) with experimental results, with the aim to reduce
the need for the more time-consuming experiments.

FormbaR is a case study that models the railway operations rulebooks of
the main German railway infrastructure company [22]. Using an executable
model, changes in the rulebooks can be prototyped with quick feedback cycles
for their maintenance. The time model is needed to faithfully mirror train
driving. The simulator was leveraged for analyzing the effects of rule changes.
A special visualization tool is used to interact with the simulation without
modifying the ABS code and to summarize the results of the execution [23].

7. Conclusions

ABS has been used for nearly 10 years by academic and industrial re-
searchers to model and analyze real-world systems. In this paper, we dis-
cussed the ABS language and the simulator toolchain that enables the simu-
lation of ABS models. ABS continues to be used and developed for research
into language features and semantics, as a modeling language for real-world
distributed systems, and as a basis for research into distributed systems.

Acknowledgments

The development of the ABS language and toolchain was supported by
the EU projects HATS (FP7 ICT 231620), Envisage (FP7 610582), and Hy-
Var (H2020 644298), and by the Research Council of Norway via the Sirius
Centre for Research-based Innovation. We also wish to thank all individual
developers for their contributions, large and small.

[1] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS:
A core language for abstract behavioral specification, in: B. Aich-
ernig, F. S. de Boer, M. M. Bonsangue (Eds.), Proc. FMCO 2010,
Vol. 6957 of LNCS, Springer, 2011, pp. 142–164. doi:10.1007/

978-3-642-25271-6_8.

[2] F. S. de Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C.
Din, E. B. Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes,
A. M. Yang, A survey of active object languages, ACM Comput. Surv.
50 (5) (2017) 76:1–76:39. doi:10.1145/3122848.

1https://www.compugene.tu-darmstadt.de

5

http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1145/3122848
https://www.compugene.tu-darmstadt.de


[3] R. Hähnle, The abstract behavioral specification language: A tutorial
introduction, in: Proc. FMCO 2012, Vol. 7866 of LNCS, Springer, 2012,
pp. 1–37. doi:10.1007/978-3-642-40615-7_1.

[4] R. Schlatte, V. Stolz, L. Tveito, ABS Tools, version 1.9.3 (May 2021).
doi:10.5281/zenodo.6867529.

[5] E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa, Integrating deployment
architectures and resource consumption in timed object-oriented models,
Journal of Logical and Algebraic Methods in Programming 84 (1) (2015)
67–91. doi:10.1016/j.jlamp.2014.07.001.

[6] J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa,
User-defined schedulers for real-time concurrent objects, Innovations in
Systems and Software Engineering 9 (1) (2013) 29–43. doi:10.1007/

s11334-012-0184-5.

[7] R. Schlatte, E. B. Johnsen, E. Kamburjan, S. L. T. Tarifa, Modeling and
analyzing resource-sensitive actors: A tutorial introduction, in: CO-
ORDINATION 2021, Vol. 12717 of LNCS, Springer, 2021, pp. 3–19.
doi:10.1007/978-3-030-78142-2_1.

[8] J. Doménech, S. Genaim, E. B. Johnsen, R. Schlatte, EasyInterface:
A toolkit for rapid development of guis for research prototype tools,
in: FASE, Vol. 10202 of LNCS, Springer, 2017, pp. 379–383. doi:

10.1007/978-3-662-54494-5_22.

[9] T. J. Parr, R. W. Quong, ANTLR: A predicated-LL(k) parser gener-
ator, Softw. Pract. Exp. 25 (7) (1995) 789–810. doi:10.1002/spe.

4380250705.

[10] T. Ekman, G. Hedin, The JastAdd system - modular extensible compiler
construction, Sci. Comput. Program. 69 (1-3) (2007) 14–26. doi:10.

1016/j.scico.2007.02.003.

[11] J. Armstrong, Erlang, Commun. ACM 53 (9) (2010) 68–75. doi:10.

1145/1810891.1810910.

[12] E. Albert, F. S. de Boer, R. Hähnle, E. B. Johnsen, R. Schlatte, S. L.
Tapia Tarifa, P. Y. H. Wong, Formal modeling and analysis of resource
management for cloud architectures: an industrial case study using Real-
Time ABS, Service Oriented Computing and Applications 8 (4) (2014)
323–339. doi:10.1007/s11761-013-0148-0.

6

http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.5281/zenodo.6867529
http://dx.doi.org/10.1016/j.jlamp.2014.07.001
http://dx.doi.org/10.1007/s11334-012-0184-5
http://dx.doi.org/10.1007/s11334-012-0184-5
http://dx.doi.org/10.1007/978-3-030-78142-2_1
http://dx.doi.org/10.1007/978-3-662-54494-5_22
http://dx.doi.org/10.1007/978-3-662-54494-5_22
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1016/j.scico.2007.02.003
http://dx.doi.org/10.1016/j.scico.2007.02.003
http://dx.doi.org/10.1145/1810891.1810910
http://dx.doi.org/10.1145/1810891.1810910
http://dx.doi.org/10.1007/s11761-013-0148-0


[13] N. Bezirgiannis, F. S. de Boer, S. de Gouw, Human-in-the-loop simula-
tion of cloud services, in: ESOCC, Vol. 10465 of LNCS, Springer, 2017,
pp. 143–158. doi:10.1007/978-3-319-67262-5_11.

[14] J.-C. Lin, I. C. Yu, E. B. Johnsen, M.-C. Lee, ABS-YARN: A formal
framework for modeling Hadoop YARN clusters, in: FASE, Vol. 9633 of
LNCS, Springer, 2016, pp. 49–65. doi:10.1007/978-3-662-49665-7_

4.

[15] J.-C. Lin, M. Lee, I. C. Yu, E. B. Johnsen, A configurable and executable
model of Spark Streaming on Apache YARN, Int. J. Grid Util. Comput.
11 (2) (2020) 185–195. doi:10.1504/IJGUC.2020.105531.

[16] E. B. Johnsen, J.-C. Lin, I. C. Yu, Comparing AWS deployments using
model-based predictions, in: ISoLA (2), Vol. 9953 of LNCS, 2016, pp.
482–496. doi:10.1007/978-3-319-47169-3_39.

[17] J.-C. Lin, J. Mauro, T. B. Røst, I. C. Yu, A Model-Based Scalability
Optimization Methodology for Cloud Applications, in: IEEE SC2, IEEE
Computer Society, 2017, pp. 163–170. doi:10.1109/SC2.2017.32.

[18] S. Bijo, E. B. Johnsen, K. I. Pun, S. L. Tapia Tarifa, A formal model
of data access for multicore architectures with multilevel caches, Sci.
Comput. Program. 179 (2019) 24–53. doi:10.1016/j.scico.2019.04.
003.

[19] N. Bezirgiannis, F. S. de Boer, E. B. Johnsen, K. I. Pun, S. L. Tapia Tar-
ifa, Implementing SOS with active objects: A case study of a multicore
memory system, in: FASE, Vol. 11424 of LNCS, Springer, 2019, pp.
332–350. doi:10.1007/978-3-030-16722-6_20.

[20] K. Hightower, B. Burns, J. Beda, Kubernetes: Up and Running,
O’Reilly, 2017.

[21] G. Turin, A. Borgarelli, S. Donetti, E. B. Johnsen, S. L. Tapia Tarifa,
F. Damiani, A formal model of the Kubernetes container framework,
in: ISoLA, Vol. 12476 of LNCS, Springer, 2020, pp. 558–577. doi:

10.1007/978-3-030-61362-4_32.

[22] E. Kamburjan, R. Hähnle, S. Schön, Formal modeling and analysis
of railway operations with active objects, Sci. Comput. Program. 166
(2018) 167–193. doi:10.1016/j.scico.2018.07.001.

7

http://dx.doi.org/10.1007/978-3-319-67262-5_11
http://dx.doi.org/10.1007/978-3-662-49665-7_4
http://dx.doi.org/10.1007/978-3-662-49665-7_4
http://dx.doi.org/10.1504/IJGUC.2020.105531
http://dx.doi.org/10.1007/978-3-319-47169-3_39
http://dx.doi.org/10.1109/SC2.2017.32
http://dx.doi.org/10.1016/j.scico.2019.04.003
http://dx.doi.org/10.1016/j.scico.2019.04.003
http://dx.doi.org/10.1007/978-3-030-16722-6_20
http://dx.doi.org/10.1007/978-3-030-61362-4_32
http://dx.doi.org/10.1007/978-3-030-61362-4_32
http://dx.doi.org/10.1016/j.scico.2018.07.001


[23] E. Kamburjan, J. Stromberg, Tool support for validation of formal
system models: Interactive visualization and requirements traceabil-
ity, in: F-IDE@FM, Vol. 310 of EPTCS, 2019, pp. 70–85. doi:

10.4204/EPTCS.310.8.

Required Metadata

Current code version

Nr. Code metadata description
C1 Current code version v1.9.3
C2 Permanent link to code/repository

used for this code version
https://github.com/abstools/

abstools/releases/tag/v1.9.3

C3 Permanent link to Reproducible
Capsule

https://hub.docker.com/

repository/docker/abslang/

absc

C4 Legal Code License BSD-3-Clause License
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Java 11, Erlang ≥ 23

C7 Compilation requirements, operat-
ing environments & dependencies

MacOS, Linux, Windows

C8 Link to developer documentation/-
manual

https://abs-models.org/

C9 Support email for questions abs-info@abs-models.org

Table 1: Code metadata (mandatory)

8

http://dx.doi.org/10.4204/EPTCS.310.8
http://dx.doi.org/10.4204/EPTCS.310.8
https://github.com/abstools/abstools/releases/tag/v1.9.3
https://github.com/abstools/abstools/releases/tag/v1.9.3
https://hub.docker.com/repository/docker/abslang/absc
https://hub.docker.com/repository/docker/abslang/absc
https://hub.docker.com/repository/docker/abslang/absc
https://abs-models.org/
mailto:abs-info@abs-models.org

	Introduction
	Motivation and Background
	Software Framework
	Implementation
	Usage Example
	Case Studies
	Conclusions

