
Deductive Verification of Railway Operations

Eduard Kamburjan and Reiner Hähnle
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Abstract. We use deductive verification to show safety properties for
the railway operations of Deutsche Bahn. We formalize and verify safety
properties for a precise, comprehensive model of operational procedures
as specified in the rule books, independently of the shape and size of the
actual network layout and the number or schedule of trains. We decom-
pose a global safety property into local properties as well as composition-
ality and well-formedness assumptions. Then we map local state-based
safety properties into history-based properties that can be proven with
a high degree of automation using deductive verification. We illustrate
our methodology with the proof that for any well-formed infrastructure
operating according to the regulations of Deutsche Bahn the following
safety property holds: whenever a train leaves a station, the next section
is free and no other train on the same line runs in the opposite direction.

1 Introduction

In the paper [14] we reported on our ongoing effort to create a formal and highly
comprehensive model of the regulations described in the rulebooks [4,5] that
govern railway operations of Deutsche Bahn. This executable model is expressed
in terms of the Abstract Behavioral Specification (ABS) language [12], a formal,
concurrent modeling language that follows the active objects paradigm. ABS is
equipped with a program logic that supports specification and verification of
properties expressed over first-order event histories. The program verification
system KeY-ABS [6] allows users to perform mechanical proofs of safety prop-
erties for ABS models by means of deductive verification [1]. In [14] we gave a
proof-of-concept that deductive verification of safety properties for our ABS rail-
way model is possible. The main contribution of the present paper is to extend
that approach into a full-fledged verification methodology for railway operations.

Rulebooks are long and complex documents that—at their core—describe
those communication protocols between train drivers, controllers, track elements,
etc., that are supposed to guarantee safe operation. Their complexity stems
mainly from the requirement to ensure continuing and safe train operation even
in the case of failure of individual components. Moreover, at any time the system
must guarantee that any safety-critical action cannot be inadvertently revoked or
compromised. Changing a rulebook and having it re-certified is a complex, time-
consuming, and expensive procedure, for which at the moment only minimal tool
support and no formal analysis is available. For this reason, a methodology for



the formalization and tool-supported verification of safety properties pertaining
to rulebooks is highly desirable.

Rulebooks of railway operators state operational rules that are valid for any
track layout that satisfies certain regulations [5], well-formed infrastructures, as
we call them. The rules are also valid independent of the number of trains or
schedules, as long as these satisfy a valid initial state (for example, not more than
one train is placed in each segment). This means that model checking is ruled
out as a technique for verification of global, system-wide properties. Instead, we
use deductive verification in the program logic of ABS, as outlined in Fig. 1.
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Fig. 1: Decomposition of global safety properties. Loc are local guarantees,
Comp composition guarantees, Glob a global safety property. Si are stations.

Assume we want to prove that a global safety property Glob holds in a
given ABS model for any well-formed infrastructure, any number of trains and
any number of stations S. First, we decompose the proof of this property into
proofs for a local guarantee Loc at each station and composition guarantees
Comp. For local composition guarantees (for example, aspects of the interlocking
system), established model checking techniques may be used. Our approach is
not intended to replace established and well-working verification technology, but
to extend it so as to be able to prove global properties of a highly precise model.
Local guarantees Loc only hold under assumption of a well-formed infrastructure,
expressed in Comp.

In this paper we make two contributions: first, a systematic methodological
approach to decompose global system properties for any well-formed infrastruc-
ture into local guarantees that are then proven by a combination of deductive
verification and model checking. As detailed in Sect. 5.1, we prove state-based
global properties expressed over actions by transforming them into history-based
properties of processes. The latter can then be expressed and proved as local
method invariants in KeY-ABS. Second, we demonstrate the viability of our ap-
proach with an ABS model of a part of the actual Deutsche Bahn rulebooks and
a typical safety property. Contrary to prior work [14] we prove (1) the procedures



used in current operations and (2) show a global safety property, rather than
only one of its fractions.

The paper is organized as follows: In Sect. 2 we explain very briefly those
elements of the ABS language needed to understand the paper. In Sect. 3 we give
a short account of the program logic of ABS. Sect. 4 explains how we modeled
railway operations and rules in ABS. Sect. 5 is the core of the paper where
we explain our methodology in detail and sketch the proof of one of the safety
properties. We conclude, and give related as well as future work, in Sect. 6.

2 The Abstract Behavioral Specification Language (ABS)

We give a very brief introduction to the Abstract Behavioral Specification lan-
guage (ABS), for a full account and the formal semantics we refer to [10,12].

ABS is a modeling language for distributed systems, which has been designed
with a focus on analyzability. Its syntax and semantics are similar to Java to
maximize usability. We list the main language features (slightly simplified) and
the statements associated with them.

Strictly encapsulated objects. Communication between different objects is
only possible via method calls. All fields of an object are private and in-
accessible even to other instances of the same class and there are no static
fields. This ensures that the heap of an object is only accessed by its own
processes.

Asynchronous communication with futures. Asynchronous calls are dis-
patched with the statement Fut<T> f = o!m(e), where method m is called on
the object stored in o with parameters e. Upon making this call, the caller
obtains the future f and continues execution without interrupt . A future is a
handle to the called process and may be passed around. Once the called pro-
cess terminates, its return value may be accessed via the associated future.
To read a value from a future, the statement T i = f.get; is used.

Cooperative scheduling. In ABS at most one process is active per object.
Running processes cannot be preempted, but give up control only when they
suspend or terminate. Hence the ABS modeler has explicit control over in-
terleaving. The active process suspends itself by waiting for a guard. A guard
can be a future—then the suspension statement has the form await f?; and
the process may become active again once f was resolved (i.e., its process ter-
minated). Otherwise, a guard can be a side-effect-free Boolean expression—
then the suspension statement has the form await e; and the process may
become active again if e evaluates to true. If a future is accessed with f.get

before it was resolved, then the whole object blocks until f is resolved. When
blocked, an object may still receive method calls, but it will not execute them.

Cooperative scheduling enables one to reason about code between the start
and end of a method, as well as suspension statements, as if it were executed
sequentially, because the process is guaranteed to have exclusive access to the
memory of its object. ABS is not completely object-oriented, as the enforced



asynchronous communication leads to overhead for simple look-up operations.
To avoid the overhead, ABS uses Algebraic Data Types (ADT) to abstract from
data values which have no internal state. Figure 4 shows an ABS class using the
ADT SignalState.

3 The ABS Program Logic

The calculus used for reasoning about concurrency in ABS uses a history of
communication events [6,7], modeled as finite first-order sequences. A commu-
nication event is an action on a future: either an invocation event modeling an
asynchronous method call, an invocation reaction event, modeling the start of
the corresponding process, a completion event modeling the termination of a
process, and a completion reaction event modeling the read access to a future.

Definition 1 (Events). Let o, o′ range over object IDs, f over futures, e over
values and m over method names. The symbol e∗ denotes a possibly empty se-
quence of values and represents the parameters of a method call. Events Ev are
defined by the following grammar:

Ev ::= invEv(o, o′,m, f, e∗) (Invocation Event)

| invREv(o, o′,m, f, e∗) (Invocation Reaction Event)

| futEv(o′,m, f, e) (Completion Event)

| futREv(o, f, e) (Completion Reaction Event)

Histories are used for a compact representation and specification of commu-
nication behavior. They abstract away from computations and allow to reason
directly about communication on futures.

Figure 2 illustrates the connection of events to processes and futures. Ev-
ery history h, which an ABS system produces is well-formed, satisfying cer-
tain conditions on the ordering of events. For example, if there is an i ∈ N
with h[i] = invREv(o, o′, f,m, e∗), then there must be a j < i with h[j] =
invEv(o, o′, f,m, e∗). This condition expresses that every process starts its ex-
ecution only after it was called. The well-formedness conditions for all event
types are listed in [7].

ABS uses invariant reasoning: Safety and consistency properties are formu-
lated as first-order formulas and are shown to hold at the beginning of each
method execution and at every suspension point. First-order properties are ex-
pressed in the ABS Dynamic Logic (ABSDL) [6], a program logic over statements
from the ABS language. Matching the ABS concurrency model, formulas can
only access the fields of a single class, hence only reason about a single object.
Heap memory is modeled with a dedicated program variable heap, which can
be accessed and changed with select and store functions, respectively. While
every object has its own heap, multiple heap may be used for technical reasons,
e.g., to refer to the state before the method starts.
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Fig. 2: Events on futures, diagram taken from [6].

Example 1. The following formula φ expresses that the field l on an object self
is a list containing only positive values:

φ ≡ ∀ Int k.
(
0 ≤ k < length(select(heap, self , l))→ select(heap, self , l)[k] > 0

)
ABSDL formulas may reference the history visible to the object in question.

Whether an ABSDL formula is an invariant for the methods declared in a class
can be mechanically checked with the KeY-ABS theorem prover [6].

Example 2. The following ABSDL formula expresses that if the last element of
the history h is a completion event on m, then φ holds

∀ Fut f. ∀ Object e. last(h)
.
= futEv(self , m, f, e)→ φ

ABSDL formulas are inherently local. To specify global properties we use an
extension of ABSDL, called ABSDL∗, that lifts the restriction to reason about
only one object. Therefore, KeY-ABS cannot be used to reason about ABSDL∗

formulas. To express that the state σ of an object o satisfies the formula ψ at
the moment when the i-th event was added to the history we use the notation
σ[i](o) |= ψ.

Example 3. The following ABSDL∗ formula expresses that whenever object o
reads from a future f , then its field k is positive:

∀ Object o. ∀m, f, e, i.
(
h[i] = futREv(o, f, e)→

(
σ[i](o) |= select(heap, o, k) > 0

))
4 Modeling Railway Operations

We give a brief summary of our ABS model for railway operations. Here we are
concerned with communication between stations, so we introduce only the most
important concepts needed for our safety analysis. In particular, we refrain from
describing our train model. The description of the full ABS model is in [14].



4.1 Infrastructure

The concurrency model of ABS is a good match for railway operations: All
elements are encapsulated and have no shared memory. Thus all communica-
tion can be reduced to message passing, which in turn can be mapped to ABS
asynchronous method calls. This unifies the treatment of communication, as we
abstract away from the means of communication and only consider the commu-
nicated information.

The railway infrastructure is modeled as a graph, centered around the concept
of point of information flow (PIF).

Definition 2 (Point of Information Flow). A point of information flow
(PIF) is an object at a fixed position on a track that participates in informa-
tion flow, if one of the following criteria applies:

– It is a structural element allowing a train to receive information, for example,
a signal or a data transmission point of a train protection system.

– It has a critical distance before another PIF, where its information is trans-
mitted at the latest. E.g., at the point where a signal is seen at the latest.

– It is a structural element allowing a train to send information, for example,
a track clearance detection device (axle counter), or the endpoints of switches
that may transfer information when passed over.

A PIF is a position at a track and an object that describes the information
to be transmitted or relayed. Instead of modeling all features of a PIF in one
object, we use a model of four layers to organize and separate its structure:

1. Graph Layer. The lowest layer is an undirected graph, where edges corre-
spond to tracks and nodes correspond to the position on a track of a PIF.
We refer to the set of tracks between two signals as a section and to the
set of sections between the exit signal of one station and the entry signal of
another as a line. There may be multiple lines between two stations.

2. Physical Element Layer. The second layer corresponds to track elements.
Each track element is either a physical device that allows information flow
either from or to a virtual element that is responsible to model information
flow at a specific distance from a physical element. Each element of this
layer is assigned to one node of the graph layer. In case several devices are
at the same position, a node at the graph layer has multiple track elements
assigned.

3. Logical Element Layer. The third layer groups physical elements from
the second layer, e.g., a pre-signal and a main signal (an exhaustive list
of physical elements belonging to a logical object is in [14]). Each physical
element can be assigned to multiple logical elements, e.g., a pre-signal can
be assigned to two logical signals with two different main signals, or to no
logical element, if the physical element never changes its state.

4. Interlocking Layer. This layer models the interlocking logic and the com-
munication between stations. Each logical element is assigned to one station.



Fig. 3: Illustration of the lower three layers of a station entry in the layer model.

1 class SignalImpl(...) implements Signal {

2 SignalState state = STOP;

3 ...

4 Train observedBy = null;
5 Unit triggered() { if (resp != null) resp!triggered(this); }

6 Unit setObserver(Train obs) { observedBy = obs; }

7 Unit setGo() {

8 // ... notify physical elements
9 state = FAHRT;

10 if (observedBy != null) { observedBy!notify(Info(FAHRT),now()); }

11 }

12 }

Fig. 4: Simplified implementation of a logical signal.

The lower three layers of a station entry are illustrated in Figure 3. The
(simplified) implementation of a logical signal is shown in Figure 4.

The lower three layers only communicate up or down. This means that log-
ical objects only communicate to assigned physical objects and to the assigned
station at the interlocking layer. Every global property is established by com-
munication on the interlocking layer.

4.2 Communication

The German railway system has different modes of operation for driving trains
outside and inside of stations. Here, we focus on operation outside of stations
and do not model, e.g., intermediate signals inside of a station. The rulebooks
differentiate between two kinds of stations: Blockstellen which operate block
signals and only divide a track line into two parts to increase the possible number
of trains on the line and Zugmeldestellen (Zmst) which are able to “store” trains
and rearrange their sequence. The generalization of both is Zugfolgestelle (Zfst).
In the following, we use the term “station” for Zmst.



A Zfst is responsible for safety on the next section, a Zmst is additionally
responsible for establishing safety on a whole line. To let a train drive from
Zmst A to Zmst B on a line L, the following conditions must be fulfilled:

– It is possible to set the signal at A covering the first section S of L to “Go”,
i.e., S is not locked by A and A has the permit token for S.

– B accepted the train and is thus notified about its departure.

There are three communication protocols that ensure safety:

Locking sections. Each Zfst is responsible for several logical elements such as
switches and signals. In addition to the internal state of the signals, the in-
terlocking system itself has a state that depends on the neighboring Zfst.
Each section has an additional Boolean state locked. Consider a signal cov-
ering a section leading out of the Zfst. After a signal is set to “Go” and a
train passes it, the section it covers is automatically locked and the electronic
message “preblock” is sent to the subsequent signal. A signal cannot be set
to “Go” again, as long as the section it covers is locked. It must be unlocked
by receiving the “backlock” message from the subsequent signal. That signal
in turn can only send “backlock” after the train passed.

Permit token. For each line there is exactly one token that allows a station to
admit trains on this line. Without the token the signal that covers the track
cannot be set to “Go”.

Accepting and reporting back trains. Before a train leaves a stationA with
destination B, A offers the train and waits for B to accept. This ensures
that B has (or will have) a track to park the train. Before the train de-
parts, the departure is announced to B. The offering, announcement and
acceptance of trains are modeled as methods—the current state of a Zmst is
not encoded only in its fields, but also in the currently active (but possible
suspended) processes.

4.3 Well-Formedness

The interlocking layer in Section 4.1 only communicates to logical objects, it
has neither direct control nor knowledge about the layers below it. Every Zmst
is assuming that its knowledge about the train network is correct and that its
fields reflect its state correctly. Consider, e.g., an entrance signal: A station is
only notified that the train detection device covering the danger point of this
signal was triggered. It relies on the guarantees that (1) the train detection
device is set up at the correct position and in the correct direction, (2) the train
detection device is assigned to the correct signal and (3) the line covered by the
signal is indeed the one which is listed as covered inside the station. The most
critical point for this to work is the correct encoding of tracks: The other field
must realize the mapping between the endparts of a line correctly and the line
must correspond to a path in the graph layer.

Definition 3 (Well-Formed Infrastructure). We say that an ABS railway
model is well-formed, when its initialization block fulfills the following conditions:



Correct Encoding of Lines. Every line corresponds to a path through the
graph of the lowest layer and is partitioned correctly into sections accord-
ing to the intermediate signals. The other field of the Zmst implementation
realizes lines correctly: If a line L has starting sections S, S′ then for the
neighbouring stations map the section on each other: S = other(S′) and
S′ = other(S). Formally, if L is a line between two stations A and B with
starting sections S, S′ then the following holds:

S = A.other(S′) = B.other(S′) S′ = A.other(S) = B.other(S)

A.other(S′′) = S → S′′ = S′ B.other(S′′) = S → S′′ = S′

A.other(S′′) = S′ → S′′ = S B.other(S′′) = S′ → S′′ = S

Additionally, for each line L, the method forcePermit, which initializes the
permit token, is called exactly once.

Correct Encoding of Zfst. For each section S bordering a Zfst, the field next

encodes sections correctly. I.e., next(S) is the signal at the end of S. For
each signal S′, we denote its covered section with S′.covers.

This definition of well-formedness is suitable for our verification methodol-
ogy and can be extended. For example, we do not reason about safety inside
the stations here, but a fitting well-formedness condition would be the classical
notion of safety for interlocking systems. Well-formedness is decidable, but here
we are not concerned with checking an initialization block for well-formedness.

5 Deductive Verification

5.1 Methodology

Safety properties in technical documents, e.g. [18] are given as informal descrip-
tions. A system state is considered safe if it fulfills a property. ABS is verified
with invariants, which state that the history, i.e., the past states have a certain
property. To express safety properties of railways we connect state invariants
with history invariants. As described in Section 4, we map railway concepts
partly to methods instead of fields. E.g., the dispatching of a train is modeled by
the method process. In a well-formed infrastructure, we can connect events of
methods with the state of the whole system. To model informally stated safety
notions in ABSDL we use the following schema:

1. We formulate the safety notion informally as a property of the global state.
2. We reformulate the safety notion informally as a property of past actions.
3. Using the model in Section 4, we map actions to methods and states to fields,

thus deriving a formal, global invariant of histories in ABSDL∗.
4. Finally, we prove the global invariant by splitting it into local invariants by

using well-formedness of histories and infrastructure. To connect histories
and state, we formulate and prove local invariants with KeY-ABS.



Well-formedness of the infrastructure is needed at two points: In step 3 it is
used to connect model and reality: E.g., only in a well-formed infrastructure we
can assume that the termination of process(t) models a dispatch of train t and
does not set the route and signal for some other train: we need well-formedness to
translate the informal property “A train t was dispatched.” to “Method process

(t) terminated.”. In step 4 well-formedness is used to reason about consistency
of the model: E.g., only in a well-formed infrastructure we can assume that a
signal S covering line L is indeed unlocked by the signal at the end of L.

We illustrate deductive reasoning with two safety properties. Each of the
property establishes (partial) safety on one of the described layers for train
departure: The first property establishes that the permit token is exchanged
correctly and the second property establishes that a signal is set to “Go” only
when the covered section is free. Together with the obvious property that for
every line at any given point in time only one station has the token 1, we regard
these properties as the safety notion for departure of trains from A to B: the
next section is free and the whole line is free of trains going from B to A. For
presentation’s sake, we only present the proof of the first property in detail.

5.2 Permission

Recall the description of the permit token from Section 4: Each line L has an
associated token. This token models the permission to dispatch trains on this
line. The token is implemented as a field permit in the Zmst class that maps
the first section of the line to a Boolean value modeling the token. A Zmst has
the token for a section st if permit[st] is set to True. When a station plans to
dispatch a train, it must first acquire the token for line L. The exchange is not
only secured by the station having the token, but also by the station requesting
it: The requesting station knows which trains are on the line in its direction, as
all the trains are announced and saved as expected. It only requests the token
if it is known that no trains are on the line in its direction. The station having
the token only checks that the token is not locked, i.e., it is not in the process
of dispatching a train using this token.

We examined the case where only the station having the token secures it
in [14], however, that protocol is not in use in modern railway operations of
Deutsche Bahn. Here we show the following, more complex, property. This prop-
erty corresponds to Step 1 in the verification scheme.

“If station A acquires the permit token for line L from station B, then
there is no train on L with arrival station A.”

Station A acquires the permit token when the call on B.rqPerm from method
setPreconditions terminates. If we assume that all stations are connected cor-
rectly, the condition that there are no trains on L with arrival station A can

1 We do not give a proof for this, as this property follows directly from well-formed
infrastructure and that the adding of the token at one end is synchronized to happen
after its removal at the other end.



be expressed as A.expectIn[st] == Nil, where st is the first section of L from A.
We can rewrite the above property into the following property. This property
corresponds to Step 2 in the verification scheme.

“If station A reads from the future for B.rqPerm, then at this moment
the following holds: A.expectIn[st] == Nil.”

The formulations differ, as the first condition describes a state, but the second
one additionally the history. We can now formalize the property in ABSDL. This
property corresponds to Step 3 in the verification scheme. Step 4 is performed
in the proof itself.

Lemma 1. The following formula holds for all histories generated by the model
in Section 4 with a well-formed infrastructure. Let A be a Zmst and L a line
bordering A with st being the first section of L from A and A.other(st) the last.

φ1(A, st) ≡
∀i, f. h[i] = futREv(A, rqPerm, f, [True, st])→

σ[i](A) |= expectIn(A.other(st)) = Nil

Proof. To show that claim expectIn(A.other(st)) = Nil holds at the point where
rqPerm is read it must be shown that expectIn is not extended while the process
executing setPreconditions is suspended. The method that can do so is offer

. So we have to show that between calling and reading True from rqPerm, no
process that is executing offer terminates. We distinguish two cases:

1. rqPerm is scheduled after offer is called. In this case the station having the
token has locked its token—rqPerm would return False.

2. rqPerm is scheduled before offer is called. In this case the station requesting
the token has locked acceptance—offer will not terminate.

The cases correspond to two, intuitively wrong, situations: (1) the token is
released by B while it is in the process of dispatching a train (2) a train is
accepted by A while it is in the process of requesting the token.

The formal argument is as follows (we mark all properties that were proven
mechanically with KeY-ABS with K).2 First, by the well-formedness axioms
there are indices i′′′, i′′, i′ with i′ < i′′ < i′′′ < i and

h[i′] = invEv(A,B, rqPerm, f, [A, st])

h[i′′] = invREv(A,B, rqPerm, f, [A, st])

h[i′′′] = futEv(B, rqPerm, f, [True, B.other(st)])

Position i′ corresponds to a call on rqPerm: the only call is in setPreconditions at
line 458. We have the following property, because the statement directly before
the call has this condition as its guard.

σ[i′](A) |= expectIn(st) = Nil ∧ allowed[st] = False

2 The model, invariants and KeY-ABS and instructions to compile are available under
http://formbar.raillab.de/en/publications-and-tools/latest/

http://formbar.raillab.de/en/publications-and-tools/latest/


It remains to show that expectIn is not modified between the read and the
mentioned guard at line 460. The only method adding to expectIn is offer. I.e,
we show that there is no position k with i′ < k < i and

h[k] = futEv(B,A, offer, f ′, [T, st]))

for any Train T. Assume there is such a k. Then, by the well-formedness axioms,
there are indices k′′, k′ with k′′ < k′ and

h[k′] = invEv(B,A, offer, f ′, [T, st, B])

h[k′′] = invREv(B,A, offer, f ′, [T, st, B])

We have k′ < k′′ < k < i and make a case distinction

– Case 1: i′ < k′′, i.e. the process for offer is scheduled after the call on
rqPerm is made. However, when A.offer terminates, A.allowed[A.other(st)]
is set to True. This is proven by the following invariant in KeY-ABS:

∀ Train T. ∀ Section st. (K)

last(h) = futEv(self , offer, f, [T, st])→ self .allowed[st] = True

Thus σ[k](A) |= allowed[st] = True. But as σ[i′](A) |= allowed[st] = False holds,
it must be set to True at some point between i′ and k′. The only method setting
any key of allowed to True is setPreconditions. Only one such process is active
at any one time, thus there cannot be such a modification, and hence no such k′

or i′.
– Case 2: k′′ < i′, i.e. the process for offer is scheduled before the call on rqPerm is

made. In this case we cannot rely on the allowed field of A. But, B.unlocked[st]
is set to False at the moment the call is made, i.e.,

σ[k′](B) |= unlocked[st] = False

This is proven by the following invariant in KeY-ABS:

∀ Train T. ∀ Section st. ∀ Station B. (K)

last(h) = invEv(self , B, offer, f, [T, st, self ])→ self .unlocked[st] = False

But when rqPerm terminates and returns True, then the line must be unlocked.
This is proven by the following invariant in KeY-ABS:

∀ Section st. (K)

last(h) = futEv(self , rqPerm, f, [True, st])→ self .unlocked[st] = True

Thus there cannot be such k′ or i′.

5.3 Train Involvement

Railway signals are managed by interlocking systems, but are not detached from
the actual movement of the trains: Zugmitwirkung (“Train Involvement”) is an
established concept in German railway operations and states that certain actions



Fig. 5: Zugmitwirkung (“Train Involvement”): The train has to trigger the sec-
ond signal before the first can be set to “Go” again.

of the dispatcher are linked to actions of the train and their detection by the
infrastructure. We show the following property, taken from [18]: A signal can
only be set to “Go”, if the train that passed it the last time has left the covered
track. To ensure this, when a signal is set to “Halt”, after a train passed it, the
used line is locked. A signal can no longer be set to “Go” when the route is set to
the line while the signal is locked. A signal can only be unlocked when the signal
at the end of the covered section sends a backlock message. Figure 5 illustrates
the situation. The desired property, expressed as a statement over states (Step 1
in the verification scheme):

“If a non-entry signal S is set to “Go”, then the covered section is free
of trains going away from it.”

Given the procedure described above, we can again rephrase this into a
history-oriented version. For presentation’s sake, we do not consider the case
that a signal may cover multiple sections. Especially we do not deal with the
special requirements for entry signals (Step 2 in the verification scheme).

“If a signal S is set to “Go” twice, then a train triggered the point of
danger of the next signal at some time in between.”

Using our assumption of well-formed infrastructure (in particular that the
next field encodes the lines correctly), we can rephrase it more formally with
methods and fields as:

“If there are two position i, j with j < i, such that h[i] and h[j] are
invocation reaction events on setGo on some Signal S covering section
S′, then there is a k with j < k < i such that h[k] is an invocation
reaction event on trigger on next(S′).”

We can now formalize the property in ABSDL as an invariant (Step 3 in the
verification scheme, Step 4 is again performed in the proof):

Lemma 2. The following formula holds for all histories generated by the model in
Section 4 with a well-formed infrastructure. Let A be a Zmst and S a signal.

φ2(A,S) ≡ ∀i.
(
h[i] = invREv(A,S, setGo, f, [])→

∀j.
(
j < i ∧ h[j] = invREv(A,S, setGo, f ′, [])→

∃ DangerPt P.∃k. j < k < i ∧ h[k] = invREv(P, next(S.covers), trigger, f ′′, [])
))



Proof sketch. W.l.o.g we only look at the last such position j. Let S be an exit signal
managed by Zfst A and covering section st. Whenever S.setGo is called, the managing
Zfst has outLocked[st] set to False. But after a train passed signal S, outLocked[st]
is set to True. In a well-formed infrastructure, before a train passed a signal, no other
train is dispatched on the same section, thus outLocked[st] must have been set to
False. The only such method is backlock which is only called by the next Zfst once a
signal has been triggered. In a well-formed infrastructure, this can only be S.next.

5.4 Discussion

We have shown the following (informal) theorem:

Theorem 1. Every train departure is safe: when the exit signal S in station A is set
to “Go” for train T on a line L to station B, then the first section of L is free, no
train is on L in direction of A.

Formally, this theorem states that the following is an invariant for all histories
produced by the model when executed on a well-formed infrastructure.

∀ Zmst A. ∀ Section st. (φ1(A, st) ∧ ∀Signal S. φ2(A,S))

As Lemma 2 also reasons about block signals, we can also state the following:

Corollary 1. Every train run from station A to station B is safe: during the run, no
train will enter the line in the direction of A and whenever a signal is set to “Go”, the
next section is free.

Proof sketch. Induction on n, the number of Zfst between A and B.

– Case n = 0: In this case this is Theorem 1.

– Case n = n′ + 1: By induction hypothesis, the train passed the first n′ Zfst. By
Lemma 1 the permit token cannot be exchanged when the next signal is set to
“Go”, as the train is still on the line. By Lemma 2 the next section is free, as a
Zfst has no entry signals.

Formally, Corollary 1 states that the following is an invariant for all histories pro-
duced by the model when executed on a well-formed infrastructure.

∀ Zmst A. ∀ Section st. φ1(A, st) ∧ ∀ Zfst Z. ∀Signal S. φ2(Z, S)

We do not discuss entry signal and entrance into stations. German regulations differ
between rules inside and outside of stations and in this work we only reason about
the outside rules. The shown properties involve multiple communicating parties. More
simple properties can be verified directly by reformulation in ABSDL.

Lemma 3. If a station A accepts a train t, then there is a track reserved for t. I.e.,
the following is an ABSDL invariant for the ZugMelde class:

∀ Train T. ∀ Section st. ∀ Station B. (K)

last(h) = futEv(self , B, offer, f, [T, st, B])→ ∃ Signal S. self .reserved[S] = T



6 Conclusion

Following the feasibility study [14], the present work is the first time deductive verifi-
cation is applied to railway operations. Prior verification approaches concentrated on
single components, not on the communication structure, and they mainly used model
checking. Our method is not intended to replace model checking of interlocking ta-
bles and of consistency properties of the infrastructure. On the contrary, we rely on
those results by assuming a well-formed infrastructure while reasoning about safety at
a higher abstraction level. This allows us to reason globally about systems, however,
at the cost of full automation.

Our schema for verifying safety properties with active objects and deductive veri-
fication is not limited to the safety properties discussed above. It is as well applicable
to other domains than railways, as long as state changes can be associated with events
visible in the history. The proofs presented here are a combination of mechanized and
pen-and-paper proofs. It would have been possible to formalize and mechanize the
whole theory and all proofs. The reasons for the decision to refrain from doing so are
twofold: (1) the pen-and-paper approach allows to relate the structure of the proof
to informal concepts from the modeled domain, for example, the case distinction in
Lemma 1. This strengthens confidence in the model. (2) While the theory of local his-
tories is formalized in KeY-ABS, arguments on the level of multiple objects require
a more general logic. KeY-ABS was designed and optimized with the verification of
single methods in mind—we conjecture that a formalization of stateful global histories
is possible, but the required amount of effort does not correlate with the benefits of
having more confidence in the proof.

Possibly, an other approach than a purely logical approach to compositional rea-
soning may be a better fit, however, we do not know of any. The automation of decom-
position and localization of safety properties in distributed systems is an open research
question.

6.1 Related Work

This is the first full-fledged case study on deductive verification of railway operations,
but verification of other aspects of railways has a long tradition which is surveyed in [8].

Verifying railway operations so far has been mostly based on model checking, where
the state explosion problem prohibits the reasoning about microscopic models with a
large number of participants. To mitigate state explosion, several approaches were pro-
posed. Macedo et al. [16,17] describe a topological decomposition that allows to check
the monolithic model of the whole network by checking sub-models. They propose two
different cuts to split the monolithic model and corresponding criteria for stations, that
ensure that composition is sound. Similarly to our approach, composition guarantees
are shown outside of the tool. However, they are still restricted to checking scenarios
with a fixed number of model elements, no general infrastructure. Their approach has
tool support for OCRA [15,3], a refinement-based approach which models component-
based infrastructure with LTL contracts. Cappart et al. [2] verify by simulating the
most likely runs in a train station. However, their approach is not exhaustive.

A systematic comparison of the differences between our modeling of railway oper-
ations and previous approaches to model components can be found in [14].



6.2 Future Work

The split of global invariants into local invariants was performed manually. We plan
to formulate safety properties as session types [11], which were recently extended to
the ABS concurrency model [13]. This will further automate the verification, while
the additional structure of session types allows to relate the strucutre of the proof to
real world concepts. We are also interested in the verification of non-functional safety
properties, especially deadlock-freedom. We plan to extend the DECO tool [9] with
all features needed to handle our model. Furthermore, we plan to model all faults
described in [4], fully formalizing and verifying the notion of safety provided there and
in related technical documents.
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10. R. Hähnle. The abstract behavioral specification language: A tutorial introduction.
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12. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In B. K. Aichernig, F. S. de Boer,
and M. M. Bonsangue, editors, Proc. Formal Methods for Components and Objects
FMCO, volume 6957 of LNCS. Springer, 2010.



13. E. Kamburjan, C. C. Din, and T.-C. Chen. Session-based compositional analysis
for actor-based languages using futures. In Proc. of the 18th Intl. Conference on
Formal Engineering Methods (ICFEM), volume 10009 of LNCS. Springer, 2016.
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