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Digital Twins — The Hype

Digital twins are an emerging, enabling technology
for industry to transition to the next level of digitisation

Increasing traction of digital twins
1. A means to understand and control assets in nature, industry, and society
2. Companies increasingly create digital twins of their physical assets

Success stories
1. GE experienced 5–7% increase of energy production from digitizing wind farms
2. Johns Hopkins Hospital’s centre for clinical logistics reported 80% reduction of

operating theatre holds due to delays
3. For the Johan Sverdrup oil field, digital twin innovations have boosted earnings

by $216 million in one year
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Digital Twins: A Best Practice Engineering Discipline

• DTs originally conceived at NASA for
the space program.

• DTs have emerged as an engineering
discipline, based on best practices

NASA’s definition of a DT
“an integrated multi-physics, multi-
scale, probabilistic simulation of a vehi-
cle or system that uses the best avail-
able physical models, sensor updates,
fleet history, etc., to mirror the life of
its flying twin. It is ultra-realistic and
may consider one or more important and
interdependent vehicle systems”

NASA Modeling, Simulation, Information
Tech. & Processing Roadmap, 2010
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Digital Twins and Twinning

A DT connects an asset with
1. its own (simulation) models

using data streams and
commands, and

2. its historical and design
data/models.

• Digital twin must evolve in tandem with the asset
• Digital twin must consider domain knowledge during design and operations
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Lifecycle Management

Digital thread: The digital twin evolves in tandem with the asset
• Connects designs, models, logs, requirements and software that go into the system
represented by the DT
• Connects system phases to the DT: design, operation, maintenance, . . .
• Enormous business management problem

Approved by
Require-
ment Spec-
ification
Owner

Compilation
by Operator

Processing
by
Contractor
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Lifecycle Management

Digital thread: The digital twin evolves in tandem with the asset
• Connects designs, models, logs, requirements and software that go into the system
represented by the DT
• Connects system phases to the DT: Similar lifecycles for natural systems
• Digitalisation turns this into a software engineering problem
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Domain Knowledge & Asset Models

What is an asset model?
Asset models capture the knowledge of Subject Matter Experts in a framework that
can be used to answer different business questions.

• Asset characteristics: configuration, design
documents and simulations, standards, failure models
• Condition data: current state of the asset
• Operational and environmental data: loading,
duty, rate information, corrosion rates, etc
• Business risk and cost: value framework,
quantification of risk, costs of labour, equipment, etc
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Digital Twins: Conceptual Layers

Insight:
visualisation, dashboards, analyses

Information:
organised data

Data:
observations, parameters, domain model

Need for different “insights”:
• Descriptive: Insight into the past (“what happened”)
• Predictive: Understanding the future (“what may happen”)
• Prescriptive: Advise on possible outcomes (“what if”)
• Reactive: Automated decision making
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Behavioral twin
e.g., simulations

Structural twin
domain knowledge,

asset model, twin model

Data:
observations, parameters, domain model
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Programming challenges for DTs

Model-centric software
1. from business problems to software

engineering problems
2. from software engineering problems to general

programming with knowledge graphs
3. from general software to model management,

federation and configuration

. . . but how do we program that?
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Tutorial Outline

• Part I Semantic Reflection
How to connect software with the digital thread?

• Part II Self-Adaptation in Digital Twins
How to use asset models for structural self-adaptation?

• Part III Correctness
How to ensure type safety, functional correctness, and test digital twins?

• Part IV Asset Information Modeling
How to develop asset models?
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Semantic Reflection in Programs



The need for reflection

What is reflection?
“Reflection is the ability of a process to examine, introspect, and modify its own
structure and behavior (Wikipedia)”
In particular, with respect to external reference points.

• Digital twin must be able to reflect if it evolves in tandem
• Notoriously difficult programming task in itself
• How to use digital thread as external reference point?
• How to use external knowledge graphs as reference point?
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A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query
domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

RDF: Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

OWL:
hasChild some (hasChild some Person) subClassOf GrandParent

∃hasChild. ∃hasChild. Person ⊑ GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }
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Assets as Knowledge Graphs

Asset Models
Asset models contain the current, past and designed structure of a facility, plus general
knowledge for it. Aim: Use graph-based asset models to manage engineering lifecycle.
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ast:heater1 a ast:Heater. ast:heater1 ast:in ast:room1.
ast:heater2 a ast:Heater. ast:heater2 ast:in ast:room2.
ast:heater1 ast:id 13. ast:heater2 ast:id 12.
ast:room1 ast:leftOf ast:room2.

htLeftOf subPropertyOf ast :in o ast :leftOf o inverse(ast :in)
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Semantically Lifted Programs

app app

11/58



Semantically Lifted Programs

app app

11/58



Semantically Lifted Programs

app app

11/58



Semantically Lifted Programs

app app

11/58



Semantically Lifted Programs

app app

11/58



Semantically Lifted Programs

app app

11/58



Direct Mapping of Program States

SMOL: Integration of Semantics and Semantic Technologies
Map each program state to a knowledge graph and allow the
program to operate on the KG. Implemented in SMOL, library
for JVM available.

1 class C (Int i) Unit inc(){ this.i = this.i + 1; } end
2 Main C c = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:obj1 a prog:C. run:obj1 prog:i 5.
run:proc1 a prog:process. run:proc1 prog:runsOn run:obj1. ...

[Kamburjan et al., Programming and Debugging with Semantically Lifted States, ESWC’21]
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Semantic Reflection: Reasoning about oneself

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa. ?x :in %street}");
5 this.inspectAll(l);
6 end
7 end

Villa EquivalentTo : rooms o length some xsd : int [>= 3]
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Semantic Reflection: Reasoning about oneself – GeoSimulator

Case study of using SMOL for a geological simulator
• SMOL simulators describes the effects of the process
• SMOL state is interpreted through ontology
• Geological ontology describes under which conditions a geological process starts

[Qu et al., Semantically triggered qualitative simulation of a geological process, Appl. Comp. and Geosc., 2024]
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Semantic Reflection: Reasoning about oneself – GeoSimulator

Modeling of a geological shale structure in SMOL
1 class ShaleUnit extends GeoUnit
2 (Double temperature,
3 Boolean hasKerogenSource,
4 Int maturedUnits)
5 models
6 a GeoReservoirOntology_sedimentary_geological_object;
7 location_of [a domain:amount_of_organic_matter];
8 GeoCoreOntology_constituted_by [a domain:shale];
9 has_quality [domain:datavalue %temperature; a domain:temperature].

10 end
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SMOL’s Modeling Bridge

Bridging the gap
How to express what a SMOL runtime object represents in the domain?

run:obj
n

domain:obj
m

prog:C domain:D

prog:f domain:gsmol:model

a a
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Semantic Reflection: Reasoning about oneself – GeoSimulator

1 List<ShaleUnit> fs =
2 member(smol:model some (participates_in some maturation_trigger))
3 while fs != null do
4 fs.content.mature(); fs = fs.next
5 end

For Mandal-Ekofisk field, simulation gives similar results as original study (2ma steps)
SMOL Cornford’94 Time Difference

Start M. 52mya ∼50ma ∼2ma
End M. 14mya ∼23ma ∼9ma

Crit. Moment 28mya ∼30ma ∼2ma
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Self-Adaptation in Digital Twins



Structural Self-Adaptation

• We can access the sensors of the physical system,
• access the structure of the physical system, and
• simulate the digital design.

Putting it all together
• Compare simulations to sensors
• Compare digital with physical structure

How to formalize consistency?

• Self-adapt to changes in physical system

How to repair?

[Kamburjan et al., Digital Twin Reconfiguration Using Asset Models, ISoLA’22]
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SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units (FMUs). Can also
serve as interface to sensors and actuators. Tight integration as FMOs, type of FMO
directly checked against FMI model description

1 //setup
2 FMO[out Double val] shadow =
3 simulate("Sim.fmu", input=sys.val, p=1.0);
4 FMO[out Double val] sys = simulate("Realsys.fmu");
5 Monitor m = new Monitor(sys,shadow); m.run(1.0);
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SMOL and FMI

SMOL with FMOs
FMOs are objects, so they are part of the knowledge graph.

1 class Monitor(FMO[out Double val] sys,
2 FMO[out Double val] shadow)

run:monitor run:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l

[Kamburjan and Johnsen, Knowledge Structures Over Simulation Units, ANNSIM’22]
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Defect Queries

• A digital twin is consistent if it has the correct structure to operate on the current
state of the physical twin

• Uses correct models, correct configurations, adheres to current requirements
• How to formalize this in terms of reflection?
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Consistency
• Define each consistency contraint for “correct structure” as a defect query
• A defect query returns a witness for the violation of some consistency constraint
• DT is considered consistent it all defect queries return an empty set
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Example: Adding a New Room

• Consistency constraint: for each room in the house, there is a Room object in the DT
• Get all (asset) rooms and their neighboring walls
• Remove all (twinned) rooms with the same id
• Assumption: at least one new room is next to an existing one

1 class RoomAsrt(String room, String wallLt, String wallRt) end
2 ....
3 List<RoomAsrt> newRooms =
4 construct(" SELECT ?room ?wallLt ?wallRt WHERE
5 { ?x a asset:Room;
6 asset:right [asset:Wall_id ?wallRt];
7 asset:left [asset:Wall_id ?wallLt]; asset:Room_id ?room.
8 FILTER NOT EXISTS {?y a prog:Room; prog:Room_id ?room.} }");
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Lifting Software Architectures

Beyond Programs
• Lifting larger programs

does not scale up
• Instead: Software

architecture to lift only
components

• Current work on DTaaS
microservice platform

• Digital Twin lab with
Greenhouse at UiO

23/58



Lifting Software Architectures

Beyond Programs
• Lifting larger programs

does not scale up
• Instead: Software

architecture to lift only
components

• Current work on DTaaS
microservice platform

• Digital Twin lab with
Greenhouse at UiO

Kuka lbr iiwa 7
FMU

UR5e FMU

Kuka lbr iiwa 7

UR5e

DT Service Layer

DTManager

Flex-cell DT
System

Controller RabbitMQ FMU

DT Platform Layer

Flex-cell
system
config

(Maestro)

Endpoint

Flex-cell System

DT Kuka
lbr iiwa 7

DT UR5e
Controller

PT UR5e

PT Kuka
lbr iiwa 7

Flex-cell Simulation

Config
Kuka lbr

iiwa 7

Config

UR5e

availableTwins [*]availableTwinSystems [*]

endpoint [1] twin config [1]

schema [1..*]

system config [1]

Coupled
Behavior

Kuka lbr
iiwa 7

Schema

UR5e
Schema

av
ai

la
bl

eT
w

in
s 

[*
]

Semantic Lifting
ServicesOther Services

[Gil, Kamburjan, Talasila, Larsen, An Architecture for Coupled Digital Twins with Semantic Lifting, u.S.]

23/58



Lifting Software Architectures

Beyond Programs
• Lifting larger programs

does not scale up
• Instead: Software

architecture to lift only
components

• Current work on DTaaS
microservice platform

• Digital Twin lab with
Greenhouse at UiO

Physical Twins
[Physical System]




data

and 


control
[TCP/IP]

Data and Control
[AMQP,MQTT,


Influx, MongoDB]

Digital Twin as a Service (DTaaS)
[Software System]

Single Page Web
Application

[: React, GraphQL]

website
[WWW]

DT User
[Person]




Cloud Services
[Software System]

Service Router
[: Traefik]




Text

Gitlab
[Software System]



OAuth and git server

Authorise
[OAuth2]

file system
[Software System]

CRUD 

on local file system

[NodeJS]

Reusable Assets
[: GraphQL,HTTP]




Manage
[HTTP, GraphQL]

Map to containers
[File System]

User Workspaces
[: Jupyter,VS

Code,Streaming
Desktops]

User Workspaces
[: Jupyter,VS

Code,Streaming
Desktops]

User Workspaces
[: docker]

integrate external

software systems

[TCP/IP]

dummy
[: dummy]



[: ]



Platform Services

[: HTTP, TCP]



Access
[TCP/IP]

Service
[HTTP,VNC]

Authorise
[OAuth2] CRUD operations on


gitlab repositories
[HTTP, GraphQL]

mTLS

Access
[TCP/IP]

[Talasila, Kamburjan et al., Digital Twin as a Service (DTaaS): A Platform for Digital Twin Developers and Users, IEEE SWC’23]

23/58



Lifting Software Architectures

Beyond Programs
• Lifting larger programs

does not scale up
• Instead: Software

architecture to lift only
components

• Current work on DTaaS
microservice platform

• Digital Twin lab with
Greenhouse at UiO

Control

Struct. SA

Simulation 
model

Sensors

InfluxDB

Asset Model

Lifted State
Driver

Physical Twin

Actuators

updates

triggers

triggers
lifts/queries

triggers/reads

writes

reads

sends commands

E
x
p

re
s
s
e
s
 S

tr
u

c
tu

re Tw
in

s
 S

tr
u

c
tu

re

[Kamburjan et al., GreenhouseDT: An Exemplar for Digital Twins, SEAMS’24]

23/58



Lifting Software Architectures

Beyond Programs
• Lifting larger programs

does not scale up
• Instead: Software

architecture to lift only
components

• Current work on DTaaS
microservice platform

• Digital Twin lab with
Greenhouse at UiO

[Kamburjan et al., GreenhouseDT: An Exemplar for Digital Twins, SEAMS’24]

23/58



Beyond architectures: Digital Twins as Self-Adaptive Systems

Self-adaptive systems
• So far: Lifting of digital twin software and use of defect queries
• How to organize the relation between digital twin and digital thread?
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Beyond architectures: Digital Twins as Self-Adaptive Systems

Self-adaptive systems
• So far: Lifting of digital twin software and use of defect queries
• How to organize the relation between digital twin and digital thread?

MAPE-K
Standard architecture in self-adaptation

• Split system in managing system and managed system
• Monitor managed systems, Analyze its defects, Plan its repair and Execute the

plan based on Knowledge
• Where is the MAPE-K loop in digital twins?
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Beyond architectures: Digital Twins as Self-Adaptive Systems

Self-adaptive systems
• So far: Lifting of digital twin software and use of defect queries
• How to organize the relation between digital twin and digital thread?

Sensor Data

Commands
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Beyond architectures: Digital Twins as Self-Adaptive Systems

Self-adaptive systems
• So far: Lifting of digital twin software and use of defect queries
• How to organize the relation between digital twin and digital thread?

Managed System (behavior)

Monitor Analysis Planner Executor

Managing System (adapts behavior)
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Lifecycles and Structural Self-Adaptation

• Components of the physical twin have
different lifecycle stages

• Each lifecycle stage requires a different
setup, different MAPE components etc.
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Lifecycles and Structural Self-Adaptation

• Components of the physical twin have
different lifecycle stages

• Each lifecycle stage requires a different
setup, different MAPE components etc.

• May also be part of multiple lifecycles,
lifecycles may interact

• Do we really need to model the whole
transition system?
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Lifecycles and Structural Self-Adaptation

• Components of the physical twin have
different lifecycle stages

• Each lifecycle stage requires a different
setup, different MAPE components etc.

Operational vs. Declarative Lifecycles
• An operational lifecycle describes

how to change between stages
• A declarative lifecycle describes what

it means to by at a stage
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Digital Twins as Two-Layered Self-Adaptive Systems

Managed System (structure)

Monitor Analysis Planner Executor

Managing System (adapts structure)

Managed System (behavior)

Monitor Analysis Planner Executor

Managing System (adapts behavior)

• Second layer of self-adaptation
• Monitors the structure of the level-1

system
• Does also consider the state of the PT
• E.g., given a sick plant, do I have the

right components to monitor its
specific health requirements?
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Digital Twins as Two-Layered Self-Adaptive Systems

Managed System (structure)

Monitor Analysis Planner Executor

Managing System (adapts structure)

Managed System (behavior)

Monitor Analysis Planner Executor

Managing System (adapts behavior)

• Lifecycle stages are declarative, with
two elements as their definition

• membership predicate: When an asset
is considered to be in a stage

• consistency predicate: When an asset’s
assigned components are considered
consistent with its stage

• Self-adaptation is generic: Abduct an
explanation with which components as
asset would be consistent with its
detected stage
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Declarative Lifecycle Stages

Definition (Stage)

Let A be an asset class. Let C be a set of component classes.

DA,C = ⟨member , consistent⟩

• member ⊆ A are the target assets
• consistent ⊆ member × 2C are the required components

DSick = {memberSick, consistentSick}
memberSick = {a | nvdi(a) ≤ 0.5}

consistentSick = {(a, X ) | a ∈ memberSick, analyzer≤5
moisture(a) ∈ X}
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Lifecycles

Definition (Lifecycle)

Let A be an asset class and I an index set. A lifecycle LA for A is a set of declarative
stages

(
DA,C,i

)
i∈I such that every asset from A is in exactly one stage:

(1) A =
⋃

i∈I memberDA,C,i (2) ∀i , j ∈ I. i ̸= j ⇒ memberDA,C,i ∩ memberDA,C,j = ∅

DHealthy = {memberHealthy, consistentHealthy}
memberHealthy = {a | nvdi(a) > 0.5}

consistentHealthy = {(a, X ) | a ∈ memberHealthy, analyzer≤10
moisture(a) ∈ X}
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Compatible Lifecycles

Definition (Compatibility)

The stages D1 and D2 are compatible if, for all a ∈ memberD1 ∩ memberD2 there is
some X ⊆ C such that (a, X ) ∈ consistentD1 and (a, X ) ∈ consistentD2

• Two lifecycles are compatible if all their stages are compatible
• Compatible stages may restrict each other’s consistency, but not make it impossible
• Simple composition, akin to cross-product
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Algorithm (simplified)

Definition (Abduction-Based Self-adaptation)

For one asset a, with one lifecycle.
1. Retrieve assigned components X (Monitor)
2. Check if a ∈ memberD ∧ (a, X ) ̸∈ consistentD (Analyze)
3. If so, abduce for which X ′, we have (a, X ′) ∈ consistentD (Plan)
4. Remove components in X \ X ′ (Execute)
5. Add components in X ′ \ X (Execute)

• Require logical representation of asset and component information
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Example

• New sensor value indicates that plant P is sick

nvdi(P) .= 0.4, P ∈ memberSick,

analyzer≤10
moisture(P) ∈ X , P ̸∈ consistentSick

• Abduce solution
analyzer≤5

moisture(P) ∈ X

• Generate and execute plan

nvdi(P) .= 0.4, P ∈ memberSick,

analyzer≤5
moisture(P) ∈ X , P ∈ consistentSick

31/58



Correctness



Maintenance and Quality Measures

• How to ensure quality of the digital twin?
• Architectures give guidelines, can be used to analyze/generate code
• Main challenge: How to make sure that the interactions with the KG are correct?

Typing Do the queries of my program respect the object-oriented modeling?
Testing Detecting bugs in self-adaptive digital twins

Formal Specification Using ontologies to specify contracts
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Correctness – Typing



Type Safety and Interfaces

1 class Building(List<Room> rooms) ... end
2 class Inspector(List<Building> buildings)
3 Unit inspectStreet(String street)
4 List<Building> l := access("SELECT ?x WHERE {?x a Villa. ?x :in %street}");
5 this.inspectAll(l);
6 end
7 end

Villa EquivalentTo: rooms o length some xsd:int [>= 3]

Is this type safe?

• Depends on the ontology – it is safe if every villa is a building
• Requires reasoning, e.g., about the domain of rooms
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Type Safety for Semantic Reflection

Types & subject reduction
• SMOL is statically typed, . . .

even with an untyped query language
• We can guarantee safe query access if ontology K is known

Queries
• Query containment (wrt.
entailment) becomes our sub-
typing relation
• (More) tractable if query
translates into DL concept

[Kamburjan and Kostylev, Type Checking Semantically Lifted Programs via Query Containment under Entailment Regimes, DL’21]
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Type Safety for Semantic Reflection

Types & subject reduction
• SMOL is statically typed, . . . even with an untyped query language
• We can guarantee safe query access if ontology K is known

answers(Q) ⊆ members(C)
Γ ⊢ List<C> l:=access(Q); : Unit

Queries
• Query containment (wrt.
entailment) becomes our sub-
typing relation
• (More) tractable if query
translates into DL concept
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Type Safety for Semantic Reflection

Types & subject reduction
• SMOL is statically typed, . . . even with an untyped query language
• We can guarantee safe query access if ontology K is known

∃C . ∃ȳ .
(
ϕ

)
⊑KC ⊑K ClassT′ Γ ⊢ l : List<T′> Γ ⊢ ei : Ti

Γ ⊢K
er l:=access(∃ȳ . ϕ, e1, . . . ,en) : Unit

Queries
• Query containment (wrt.
entailment) becomes our sub-
typing relation
• (More) tractable if query
translates into DL concept
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Correctness – Testing



Testing

Testing Knowledge Graphs Applications
• What exactly to test? Unit testing? Integration testing?
• How to get a test oracle?
• Main challenge: Knowledge graphs are highly structured inputs

The trouble with knowledge graphs
• Generating random triples is easy
• Generating triples adhering to an ontology requires reasoning
• Mutating triples also requires reasoning
• Mutating single triples either obviously breaks system or changes too little

[John, Johnsen, and Kamburjan, Mutation-Based Integration Testing of Knowledge Graph Applications, ISSRE’24] 35/58



Testing

Approach
• Main idea 1 :

Domain-specific mutations
change bigger parts of KG

• Main idea 2: Robustness
mask to specify where
mutations are allowed

• Main idea 3: Monitoring
queries as testing oracles

mutant
generatororiginal KG

mutation
operators

validity
checker

robustness
mask

mutated KG

p

test
executor

A
software

(with oracle)

¥ / q

valid

not valid
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Testing - Domain-specific mutation operators

• Mutation testing on ontologies and knowledge graphs largely unexplored
• Existing approaches change single triples, but single triples contain little information

1 class ShaleUnit extends GeoUnit (Double temperature, ... )
2 models
3 a GeoReservoirOntology_sedimentary_geological_object;
4 location_of [a domain:amount_of_organic_matter];
5 GeoCoreOntology_constituted_by [a domain:shale];
6 has_quality [domain:datavalue %temperature; a domain:temperature].
7 end

• Domain-specific operations add or change whole subgraphs
• For example, add or remove a whole layer

37/58



Testing - Robustness Mask

• What does a program exactly need from KG?
• Large parts should be left unchanged (top-level ontology, . . . )
• Specify additional checks as SHACL shapes

1 class ShaleUnit extends GeoUnit (Double temperature, ... )
2 models
3 a GeoReservoirOntology_sedimentary_geological_object;
4 location_of [a domain:amount_of_organic_matter];
5 GeoCoreOntology_constituted_by [a domain:shale];
6 has_quality [domain:datavalue %temperature; a domain:temperature].
7 end

• For example, each new layer must be on top of the old ones
• Kerogen/organic matter cannot occur in all rocks
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Correctness – Specification



Functional Correctness

Domain Knowledge Modeling Computational Modeling

Scenario/
Requirements

Program

Can we use ontologies also for specification of behavior and static verification?

[Kamburjan and Gurov, A Hoare Logic for Domain Specification, 2024]
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What is a Car?

Suppose you model the assembly process of a car
1 procedure addWheels(p) nrWheels := p end

Programmer
This procedure sets the number of wheels
in a car to the value of p.

{⊤}addWheels(p){nrWheels .= p}

Subject-Matter Expert
I want that in the end of this step, the car
classifies as a small car.

{⊤}addWheels(p){Small(c)}

How to enable both of them to specify their respective intent?

• SME does not know about how the car c is encoded
• Programmer does not know what it means for a car to be small.
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Lifted Specification

Ontologies and Description Logics
For domain modeling and specification a rich body of methodologies and tools exist.

HasFourWheels ⊑ Small ∃wheels.∃hasValue.4 ≡ HasFourWheels

{
−

p .= 4

}
addWheels(p)

{
Small(c)

−

}

• Upper component specifies the state as interpreted in the domain
• Lower component specifies non-lifted state
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Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.

Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution
3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) ⊢
{

hasValue(pVar, 4)
p .= 4

}
nrWheels := p{
Small(c)

, HasFourWheels(c), hasValue(wheelsVar, 4)
nrWheels .= 4

}
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Asset Modelling



Modeling the Digital Thread

• So far, asset model and digital thread magical: somehow we have all this
information in a structure form

• Is this realistic?
• Is this challenge specific to Digital Twins?
• ⇒ Asset information modeling is one major field in digitalization right now
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Modeling the Digital Thread

Asset Information Models
Requirements, design and other documents for a built asset, from different perspectives
and expressing multiple assets

How to get these asset models?

• Possibility 1: Based on MBSE tooling
• For example, SysML 2.0 and a knowledge graph export
• Focuses on development and design process

• Possibility 2: Based on ontological models or reference data languages
• For example, ISO 23726 (IDO), IEC 63278 (AAS), ISO 15926-14
• Focuses on data exchange and integration

• Here: IMF, SE language developed with roots in ontological models
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IMF
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IMF - Information modelling framework

Language for identifying and describing objects of industrial assets in different aspects
with different syntaxes for different purposes

• Visual block-language for engineering
• Ontological graph-language for data integration
• Formal logic-language for precise constraints

Based on ideas from SE, IEC 81346 aspects, formal logic and knowledge graphs

Logical 
Language

Ontological
Language

Visual 
Language

Integration into IT Landscape
Toolkit builds on TPTP Axioms
Defines foundation of IMF

Integration into SE workflows
Toolikit builds on GraphML 
Used for visual interactions

Integration into data science tools
Toolkit builds on RDF knowledge graphs
Used for data processing

Internal 
compatibility
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IMF - Information modelling framework

Language for integrating across . . .
• different domain and discipline specific descriptions
• different ontologies and domain standards
• descriptions using different abstraction levels
• the complete asset lifecycle

Logical 
Language

Ontological
Language

Visual 
Language

Integration into IT Landscape
Toolkit builds on TPTP Axioms
Defines foundation of IMF

Integration into SE workflows
Toolikit builds on GraphML 
Used for visual interactions

Integration into data science tools
Toolkit builds on RDF knowledge graphs
Used for data processing

Internal 
compatibility
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What IMF is not

• A (full) replacement for established domain standards
• Keep your existing descriptions, database, diagrams, etc., but . . .
• Use IMF for integration, make these descriptions available between silos

• An upper ontology
• IMF is a simple/(r) modelling language to identify and relate asset descriptions
• IMF relies on external standards for semantic definition

• A reference data language (RDL)
• IMF is an asset description language
• IMF is designed to allow connections to existing RDLs for generic semantic

descriptions
• A language for calculation/simulation/algorithms

• IMF is a information representation language
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IMF Basics
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IMF Visual Syntax
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IMF Usage
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IMF Aspects
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IMF

Function Aspect in yellow

Product Aspect in cyan
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IMF

Product Aspect in cyan Installed Aspect in dark blue
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IMF and Self-adaptive Digital Twins

• IMF has a native export into knowledge graphs
• Can be enriched with ontological terms (e.g., IDO classes for blocks)
• Structures exactly the information we need

Consistency
Installed Aspect models heaters and their simulators in our smart house
Location Aspect models rooms and their relation to each others
Product Aspect models used requirements for lifecycles
Other Aspects can be added for digital twin specific information
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IMF and AAS

• FMI useful for integration, but our
approach is more general

• Asset Administration Shells can play
the role of simulators, or containers for
information

• Instead of managing cross-references,
user knowledge graph to model
structure

• Ongoing work: comparing AAS across
an IMF model, import/export

Block BlockConnector

Heat 
Exchanging

Increasing 
Pressure

Cooling 
medium
stream

connected_to

connected_toconnected_to

connected_to
connected_to

connected_to

Semantic Identifier Semantic Identifier
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• Ongoing work: comparing AAS across
an IMF model, import/export

IMF ID IMF ID
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IMF - Adaptation

Adaptation In Norway
• Industrial use in Norwegian companies: AIBEL, DNV, AkerBP, AkerSolutions,

Equinor
• Quasi-Standard as DNV recommended practice (DNV-RP-0670, to be published)
• Motivation: standardized asset modeling outside pure engineering with ability to

relate to external ontological standards

• Used as exchange formalism for dataspaces in EU projects SM4RTENANCE and
Tec4MaaSEs

• Completely open: toolkit and documentation available under www.imfid.org

• v1.0 release in the next months
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Conclusion



Summary

• Part I Semantic Reflection
How to connect software with the digital thread?

• Part II Self-Adaptation in Digital Twins
How to use asset models for structural self-adaptation?

• Part III Correctness
How to ensure type safety, functional correctness, and test digital twins?

• Part IV Asset Information Modeling
How to develop asset models?
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Summary

Managed System (structure)

Monitor Analysis Planner Executor

Managing System (adapts structure)

Managed System (behavior)

Monitor Analysis Planner Executor

Managing System (adapts behavior)

Semantic Lifting and Digital Twins
• Twin structure as knowledge graph

connected with digital thread.
Consistency as graph queries.

• Structural self-adaptation through
two-layer MAPE-K loop

Standard-Driven Asset Information Modeling
Describing structure, requirements and simula-
tors as aspect-oriented digital thread

• www.smolang.org

• www.imfid.org

Function Aspect in yellow

Product Aspect in cyan
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