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Specification, huh, what is it good for?

• Abstraction of computational
details from other modules

• Intended computational
behavior of the module itself

• Intended behavior w.r.t.
business logic?

• Domain bugs are hard to find and express
• How can we use pragmatics of domain modeling tools inside a proof?
• How can we manage domain and computational specification during proofs?
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What is a Car?

Suppose you model the assembly process of a car
1 procedure addWheels(p) nrWheels := p end

Programmer
This procedure sets the number of wheels
in a car to the value of p.

{⊤}addWheels(p){nrWheels .= p}

Subject Matter Expert
I want that in the end of this step, the car
classifies as a small car.

{⊤}addWheels(p){Small(c)}

How to enable both of them to specify their respective intent?

• SME does not know about how the car c is encoded
• Programmer does not know what it means for a car to be small.
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Lifted Specification

Ontologies and Description Logics
For domain modeling and specification a rich body of methodologies and tools exist.

HasFourWheels ⊑ Small ∃wheels.∃hasValue.4 ≡ HasFourWheels

Can be used to give a program state a meaning in the domain, called lifting [ESWC’21]

{
−

p .= 4

}
addWheels(p)

{
Small(c)

−

}

• Upper component specifies the state as interpreted in the domain
• Lower component specifies non-lifted state
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Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.

Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution
3. Lift pre-condition, deduce domain pre-conditions

{

hasValue(pVar, 4)
p .= 4

}
nrWheels := p{
Small(c)

, HasFourWheels(c), hasValue(wheelsVar, 4)
nrWheels .= 4

}
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Keeping State and Lifted State Connected

State Lifting
Function µ from runtime states to knowledge graphs.

Specification Lifting
Function µ̂ from program assertions to axioms. Must be compatible to state lifting:

σ |= ϕ → µ(σ) |= µ̂(ϕ)

lifting

recovering

    state
specification
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L
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 lifted state
specification

   domain
specificationinferences
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A Signature Perspective
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Kernel and Generator
Let Σ be the signature of the domain specification.

• The kernel of µ̂ is a signature ker µ̂ ⊆ Σ.
• A core generator α maps axioms ∆ to axioms α(∆) with α(∆) |= ∆

• Kernel generator can either implement deduction, or abduction
• In case of abduction: ABox abduction with signature abducibles
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Some Rules

• First you generate the kernel
• Additional premise trivial if α

is deductive

∆2 |=K α(∆2)
K ⊢

{∆1
Φ1

}
s
{∆2,α(∆2)

Φ2

}
pre-core

K ⊢
{∆1

Φ1

}
s
{∆2

Φ2

}

• Second you generate state assertions from the
kernel axioms

K ⊢
{∆1

Φ1

}
s
{ ∆,∆2

Φ2∧µ̂−1(∆2)
}

post-inv sig(∆2) ⊆ ker µ̂
K ⊢

{∆1
Φ1

}
s
{∆,∆2

Φ2

}
• Same for precondition
• On state assertions, we can now use standard Hoare rules
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A Car is a Car

• Standard Hoare calculus rules must check that specifications are consistent, and
• remove all domain knowledge, as it may have changed

µ̂(Φ) |=K ∆var
K ⊢

{ ∅
Φ[v\expr]

}
v := expr

{∆
Φ

} skip
K ⊢

{∆
Φ

}
skip

{∆
Φ

}

But now, we can prove that our program does the right thing:

hasValue(wheelsVar, 4) |=K HasFourWheels(c), hasValue(wheelsVar, 4)
K ⊢

{ −
p
.=4

}
nrWheels := p

{HasFourWheels(c),hasValue(wheelsVar,4)
nrWheels

.=4
}

K ⊢
{ −

p
.=4

}
nrWheels := p

{HasFourWheels(c),hasValue(wheelsVar,4)
−

}
K ⊢

{ −
p
.=4

}
nrWheels := p

{HasFourWheels(c)
−

}
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Conclusion

Summary
• Managing description logic axioms in program verification
• No integration, retains separation of concerns
• A domain interpretation of contracts without refinement

Full details on arxiv
Eduard Kamburjan, Dilian Gurov:
A Hoare Logic for Domain Specification
https://doi.org/10.48550/arXiv.2402.00452

Thank you for your attention
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