A Hoare Logic for Domain Specification

Eduard Kamburjan!
Dilian Gurov?
Leiden, 04.03.24

1University of Oslo
2KTH Stockholm

Specification, huh, what is it good for?

= Abstraction of computational
details from other modules

= Intended computational
behavior of the module itself

1/9

Specification, huh, what is it good for?

= Abstraction of computational
details from other modules

= Intended computational
behavior of the module itself

= Intended behavior w.r.t.

business logic?

1/9

Specification, huh, what is it good for?

= Abstraction of computational

Domain Knowledge Modeling Computational Modeling

details from other modules
= Intended computational “ a

behavior of the module itself AT

= Intended behavior w.r.t. '%7. Scenariof %
- _ -
. . Requirements n
business logic?

1/9

Specification, huh, what is it good for?

= Abstraction of computational

Domain Knowledge Modeling Computational Modeling
details from other modules
= Intended computational “
behavior of the module itself m@
= Intended behavior w.r.t. pr—
o o Requirements
business logic?

1/9

Specification, huh, what is it good for?

= Abstraction of computational

Domain Knowledge Modeling Computational Modeling

details from other modules
= Intended computational “
behavior of the module itself m@

= Intended behavior w.r.t. Scenariof
. . Requirements
business logic?

1/9

Specification, huh, what is it good for?

= Abstraction of computational

Domain Knowledge Modeling Computational Modeling
details from other modules
» Intended computational ﬁ
behavior of the module itself '°99
= Intended behavior w.r.t. pr—
Requirements

business logic?

= Domain bugs are hard to find and express

= How can we use pragmatics of domain modeling tools inside a proof?

= How can we manage domain and computational specification during proofs?

1/9

Suppose you model the assembly process of a car

1 procedure addWheels(p) nrWheels := p end

2/9

Suppose you model the assembly process of a car

1 procedure addWheels(p) nrWheels := p end

Programmer Subject Matter Expert
This procedure sets the number of wheels | want that in the end of this step, the car
in a car to the value of p. classifies as a small car.

{T }addWheels(p){nrWheels = p} {T }addWheels(p){Small(c)}

2/9

Suppose you model the assembly process of a car

1 procedure addWheels(p) nrWheels := p end

Programmer Subject Matter Expert
This procedure sets the number of wheels | want that in the end of this step, the car
in a car to the value of p. classifies as a small car.

{T }addWheels(p){nrWheels = p} {T }addWheels(p){Small(c)}

How to enable both of them to specify their respective intent?

= SME does not know about how the car ¢ is encoded

= Programmer does not know what it means for a car to be small.

2/9

Lifted Specification

Ontologies and Description Logics

For domain modeling and specification a rich body of methodologies and tools exist.
HasFourWheels C Small Jwheels.JhasValue.4 = HasFourWheels

Can be used to give a program state a meaning in the domain, called /ifting [eswc

3/9

Lifted Specification

Ontologies and Description Logics

For domain modeling and specification a rich body of methodologies and tools exist.
HasFourWheels C Small Jwheels.JhasValue.4 = HasFourWheels

Can be used to give a program state a meaning in the domain, called /ifting [eswc

{p ; 4}addWheels(p){Sma];1(C)}

= Upper component specifies the state as interpreted in the domain

= Lower component specifies non-lifted state

3/9

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.

{ }

nrWheels :=p

{Small(c) }

4/9

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution

3. Lift pre-condition, deduce domain pre-conditions

{ }

nrWheels :=p
{Small(c), HasFourWheels(c), hasValue(wheelsVar, 4)}

4/9

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution

3. Lift pre-condition, deduce domain pre-conditions

{ }

nrWheels :=p

Small(c),HasFourWheels(c), hasValue(wheelsVar,4)
nrWheels = 4

4/9

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution

3. Lift pre-condition, deduce domain pre-conditions

{ p=4 }

nrWheels :=p

Small(c),HasFourWheels(c), hasValue(wheelsVar,4)
nrWheels = 4

4/9

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution

3. Lift pre-condition, deduce domain pre-conditions

hasValue(pVar, 4)
p=4

nrWheels :=p

Small(c),HasFourWheels(c), hasValue(wheelsVar,4)
nrWheels = 4

4/9

Keeping State and Lifted State Connected

State Lifting

Function p from runtime states to knowledge graphs.

Specification Lifting

Function i from program assertions to axioms. Must be compatible to state lifting:

0 = ¢ — p(o) = [i(e)

- o

state mll&ed state/_\ domain R

spec1ﬁcat10n- |spec1ﬁcat10n, inferences specification

recovering . ,_/ L
t' (s - i
” -

AN
.
’

’

State Logic

0130 urewo(J

5/9

/ . \/_\ Y
state mlifted state’, domain b

. . 1 . . !)
specification } |‘spec1ﬁcat10nl,' inferences specification -

\ @ N\ recovering N~ S
.
. - N . -

State Logic
2130 urewo(J

Kernel and Generator

Let X be the signature of the domain specification.

s The kernel of ji is a signature ker i C ¥.

= A core generator o« maps axioms A to axioms a(A) with o(A) = A

= Kernel generator can either implement deduction, or abduction

= In case of abduction: ABox abduction with signature abducibles
6/9

Some Rules

= First you generate the kernel

= Additional premise trivial if «
is deductive

Do X (Do)
K (5858
K'_{¢1}5{q>2}

pre-core

7/9

Some Rules

= First you generate the kernel

= Additional premise trivial if «

is deductive

pre-core

B ¥ a(82)
K {31)s(*2407)

Kk {¢1}5{¢2}

= Second you generate state assertions from the
kernel axioms

A AA
Kk {¢11}5{q>2/\ﬁ—1?A2)}

post-inv
KF{§)s (%

sig(Az) C ker 11

7/9

Some Rules

= First you generate the kernel _
= Second you generate state assertions from the

= Additional premise trivial if « .
kernel axioms

is deductive
JAD) ':K a(A») K - {Al}s{ A,)
K+ {éll}s{Az’ggAz)} post-inv e X %/\Z_AI(AQ) sig(Az) C ker [
pre-core K - {q);}s{ T~

K {o}s{s2}
= Same for precondition

= On state assertions, we can now use standard Hoare rules

7/9

= Standard Hoare calculus rules must check that specifications are consistent, and
= remove all domain knowledge, as it may have changed

var a(®) E” A skip

A q A
K {ompe)V = expr{o) K+ {5}skip{3}

8/9

= Standard Hoare calculus rules must check that specifications are consistent, and
= remove all domain knowledge, as it may have changed
i(e) EX A :

var (I;jl()li A Sklp A . (A

KHF {¢[v\expr]}v ‘= expr{g} K {o}skip{s}

But now, we can prove that our program does the right thing:

hasValue(wheelsVar,4) =K HasFourWheels(c), hasValue(wheelsVar,4)

= . _ HasFourWheels(c),hasValue(wheelsVar,4)
KF {p£4}anheels = p{ iheeiacd }

K- {p;4}anheels — p{HasFourWheels(c),ha_sValue(wheelsVarA)}

K - {p;4}nI'WheelS — p{HasFourWheels(C)}

8/9

Conclusion

= Managing description logic axioms in program verification

= No integration, retains separation of concerns

= A domain interpretation of contracts without refinement

9/9

Conclusion

= Managing description logic axioms in program verification

= No integration, retains separation of concerns

= A domain interpretation of contracts without refinement

Full details on arxiv

Eduard Kamburjan, Dilian Gurov:

A Hoare Logic for Domain Specification
https://doi.org/10.48550/arXiv.2402.00452

9/9

Conclusion

= Managing description logic axioms in program verification

= No integration, retains separation of concerns

= A domain interpretation of contracts without refinement

Full details on arxiv

Eduard Kamburjan, Dilian Gurov:

A Hoare Logic for Domain Specification
https://doi.org/10.48550/arXiv.2402.00452

Thank you for your attention
9/9

