
Software Quality for the Semantic Web

Eduard Kamburjan

Based on work with many collaborators: Tobias
John, Einar Broch Johnsen, Dominic Steinhöfel,
David Chaves Fraga, Romana Pernisch, Oscar Cor-
cho, . . .

onto:NEXUS Workshop 05.10.2025

What is a Knowledge Graph, and why do we care?

Berta Hay

likes

Cow

rdf:Class

Food
aa

a a

The Promise of Knowledge Graphs

A Knowledge Graph is a graph that pro-
vides high-quality semantic data to users.

• Neuro-symbolic AI: context and
taming hallucinations in GenAI, ...

• Data integration: Data of high
quality with agreed upon semantics,
...

• Engineering: Connecting system
models with data, ...

If the central promise is quality, how do we ensure it?

1/28

What is a Knowledge Graph, and why do we care?

Berta Hay

likes

Cow

rdf:Class

Food
aa

a a

The Promise of Knowledge Graphs

A Knowledge Graph is a graph that pro-
vides high-quality semantic data to users.

• Neuro-symbolic AI: context and
taming hallucinations in GenAI, ...

• Data integration: Data of high
quality with agreed upon semantics,
...

• Engineering: Connecting system
models with data, ...

If the central promise is quality, how do we ensure it?

1/28

What is a Knowledge Graph, and why do we care?

Berta Hay

likes

Cow

rdf:Class

Food
aa

a a

The Promise of Knowledge Graphs

A Knowledge Graph is a graph that pro-
vides high-quality semantic data to users.

• Neuro-symbolic AI: context and
taming hallucinations in GenAI, ...

• Data integration: Data of high
quality with agreed upon semantics,
...

• Engineering: Connecting system
models with data, ...

If the central promise is quality, how do we ensure it?

1/28

What is a Knowledge Graph really?

Data Quality

• Data engineering pipelines with
numerous tools on general data quality

• Graph specific technologies: SHACL
shapes, SPARQL queries as constraints

• Formal semantics and reasoners

• Lot of different methodologies

Software Quality

• What about all these tools?

• What about all these pipelines?

2/28

What is a Knowledge Graph really?

Data Quality

• Data engineering pipelines with
numerous tools on general data quality

• Graph specific technologies: SHACL
shapes, SPARQL queries as constraints

• Formal semantics and reasoners

• Lot of different methodologies

Software Quality

• What about all these tools?

• What about all these pipelines?

2/28

What is a Knowledge Graph really?

Data Quality

• Data engineering pipelines with
numerous tools on general data quality

• Graph specific technologies: SHACL
shapes, SPARQL queries as constraints

• Formal semantics and reasoners

• Lot of different methodologies

Software Quality

• What about all these tools?

• What about all these pipelines?

2/28

Software Turtles all the way down

Knowledge Graphs

• A KG is a data set, generated by a set of interacting software components.

• The quality of the KG is determined also by their software quality.

Software Quality is Important

• Five papers in high-impact venues (including nature) retracted after a bug in
python implementation of analysis algorithm
[Miller, Software problem leads to five retractions., 2007]

• Faulty analysis leads to wrong data basis for decision about austerity in Europe
[Herndon et al., Does High Public Debt Consistently Stifle Economic Growth? A Critique of Reinhart and Rogoff, 2013]

• “Replication crisis” w.r.t. Jupyter notebooks: less than 25% are runnable
[Pimentel et al., Understanding and improving the quality and reproducibility of Jupyter notebooks, 2021]

3/28

Software Turtles all the way down

Knowledge Graphs

• A KG is a data set, generated by a set of interacting software components.

• The quality of the KG is determined also by their software quality.

Software Quality is Important

• Five papers in high-impact venues (including nature) retracted after a bug in
python implementation of analysis algorithm
[Miller, Software problem leads to five retractions., 2007]

• Faulty analysis leads to wrong data basis for decision about austerity in Europe
[Herndon et al., Does High Public Debt Consistently Stifle Economic Growth? A Critique of Reinhart and Rogoff, 2013]

• “Replication crisis” w.r.t. Jupyter notebooks: less than 25% are runnable
[Pimentel et al., Understanding and improving the quality and reproducibility of Jupyter notebooks, 2021]

3/28

Agenda

• Testing software for knowledge graphs (x2)

• Dependency analysis for knowledge graph construction

4/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query
domain knowledge and data.

W3C Standards

RDF for data, OWL for knowledge, SPARQL for queries.

RDF:
Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

OWL:
hasChild some (hasChild some Person) subClassOf GrandParent

∃hasChild. ∃hasChild. Person ⊑ GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

5/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query
domain knowledge and data.

W3C Standards

RDF for data, OWL for knowledge, SPARQL for queries.

RDF:
Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

OWL:
hasChild some (hasChild some Person) subClassOf GrandParent

∃hasChild. ∃hasChild. Person ⊑ GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

5/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query
domain knowledge and data.

W3C Standards

RDF for data, OWL for knowledge, SPARQL for queries.

RDF:
Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

OWL:
hasChild some (hasChild some Person) subClassOf GrandParent

∃hasChild. ∃hasChild. Person ⊑ GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

5/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query
domain knowledge and data.

W3C Standards

RDF for data, OWL for knowledge, SPARQL for queries.

RDF:
Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

OWL:
hasChild some (hasChild some Person) subClassOf GrandParent

∃hasChild. ∃hasChild. Person ⊑ GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }

5/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query
domain knowledge and data.

W3C Standards

RDF for data, OWL for knowledge, SPARQL for queries.

RDF:
Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

OWL:
hasChild some (hasChild some Person) subClassOf GrandParent

∃hasChild. ∃hasChild. Person ⊑ GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }
5/28

Testing (I): Language-based
Fuzzing

Automated Testing

Problems

• How can we automatically test the general purpose tools in OE?

• How can we test the integration of ontologies with other software?

• How can we specify the integration of ontologies with other software?

• Solver and database engines are hard to test in general

• RDF has per se very little structure to constraint input generation

6/28

Automated Testing

• Language-based approach to generate random graphs and ontologies with ISLa
• Two grammars: RDF/TTL and OWL functional syntax

1 <ontology> ::= "Ontology (" <declarations> " " <axioms> ")"
2 <axioms> ::= <axiom> | <axiom> "\n" <axioms>
3 <axiom> ::= <classAxiom> | <assertion> | <dataTypeDefinition> | [...]
4 [...]
5 <literal> ::= <typedLiteral> | <stringNoLang> | <stringWithLang>
6 <stringWithLang> ::= <QuotedString> <LanguageTag>

Targets

• RDF/TTL parser and frontend utilities of Apache Jena and OWL-API

• Three OWL-EL reasoners via differential testing

[John, Kamburjan et al. Language-Based Testing of Knowledge Graphs, ESWC’25]

7/28

Automated Testing: Frontend Bugs

• First bug found in RDF 1.2 TTL standard with second generated file

<P:A> <C>.
@prefix P: <http://test.no#>

• Both parser have bugs in corner cases, despite a formal grammar in the standard!

<A> -.7 . // fails to parse literal
<A> ; ; . // fails to parse double empty list

• OWL-API profile checker rejects all OWL-EL ontologies that use language tags

<A> "test"^^xsd:String@dk_DK

8/28

Automated Testing: OWL-EL Reasoners

Test Targets

Three reasoners included by default with Protege

• HermiT (v.1.4.5.519)

• Pellet/Openllet (v.2.6.5)

• ELK (v.0.6.0)

Test Procedure

• Generate new ontology, and ask all three reasoners if it is consistent and to derive
all possible axioms

• If results are different (or exception is thrown), investigate

• Extra tool to reduce ontology by axiom pinpointing

9/28

Automated Testing: OWL-EL Reasoners

• Found and reported 15 bugs, 13 from failed logical inference, 2 from exceptions
• Language tags and corner cases in the hierarchy

10/28

Automated Testing: OWL-EL Reasoners

1 //ELK classifies as inconsistent
2 Prefix(:=<http://www.example.org/reasonerTester/>)
3 Ontology (
4 Declaration(Class(:B)) Declaration(Class(:A))
5 Declaration(DataProperty(:dr)) Declaration(NamedIndividual(:a))
6 EquivalentClasses(DataHasValue(:dr "s1"@fr) :A :B)
7 DisjointClasses(DataHasValue(:dr "s1"@en) :A)
8 ClassAssertion(:B :a))

1 //HermiT fails to derive DataPropertyAssertion(:dp :a "data")
2 Prefix(:=<http://www.example.org/reasonerTester/>)
3 Ontology (
4 Declaration(DataProperty(:dp)) Declaration(NamedIndividual(:a))
5 EquivalentClasses(ObjectOneOf(:a) DataHasValue(:dp "data")))

11/28

Automated Testing: Applicability

• Found numerous bugs in all tested tools, only with black box testing and limited
tasks/oracles

• Proves that automated testing of general purpose tools for KGs is possible and
feasible

• General purpose grammars a bit unhandy and need to be constraint by hand for
more specific applications

• ISLa not optimal for high-volume generation

12/28

Testing (II): Mutation-based
Integration Testing

Integration Testing

• Given a program, we often have an example KG it interacts with
• What exactly do we need to specify the program-KG interface?
• Mutation of KG to generate new inputs to program
• Challenges: Mutating KG depends on domain, program has implicit assumptions

[John, Kamburjan et al. Mutation-Based Integration Testing of Knowledge Graph Applications, ISSRE’24]

13/28

Integration Testing: Mutation Operators

• Prior work mutate single triples or axioms
• Too fine-grained for programs – removing one entity may change a whole sub graph

14/28

Integration Testing: Robustness Mask

Robustness Mask

• Not every consistent ontology is valid input

• Program has implicit assumptions about ontology

• Top-level ontology should probably not be mutated

• Additional SHACL shapes to constrain mutations

15/28

Domain-Specific Operators

• Defined per ontology or test suite

• Either directly implemented on KG (imported via Kotlin)

• Or by using SWRL syntax for rewriting

rdfmutate :newNode(?p) ∧ :Topping(?t) → :Pizza(?p) ∧ :hasTopping(?p, ?t)

• 59 relatively generic operators predefined

• Prototypical implementation based on rule-mining can automate initial
domain-specific operators

16/28

Integration Testing: Input Coverage

• Input feature coverage: How
many features are used?

• Measured via OWL vocabulary

• Domain-specific operators can
be used to force feature
interactions

17/28

Integration Testing: Results

Targets

• SUAVE: Simulator for self-adaptive AUV based on ROS

• GeoSimulator: Simulator for geological process based on geological ontologies

• OWL-EL reasoners: Same setup

Seed Ontologies

• Suave and GeoSimulator: Only one ontology as default example

• OWL-EL reasoners: 307 Ontologies from latest OWL reasoning competition

Results

• SUAVE: Mistakes in OWL modeling

• GeoSimulator: No bugs

• OWL-EL reasoners: 6 additional bugs related to reasoning over class hierarchies
18/28

Integration Testing: Conclusion

• Robustness mask useful for interface specification

• Even with automation, domain-specific operations require some work

• But easier to control and estimate compared to grammar-based fuzzing.

• Again, found bugs in non-trivial systems

19/28

Dependency Analysis

Dependencies for KGC

Problem

Given an KGC pipeline, can we assess the impact of a change in a component?

• Impact analysis based on a dependency analysis
• Challenge: Some used language have no formal semantics
• Challenge: Notion of dependencies not used in KGC
• First study on dependencies for impact analysis and bug detection

[Kamburjan et al. On Dependencies in Knowledge Graph Construction, KGWC@ESWC’25]
20/28

Dependencies

• Asset A1 depends on asset A2 if A1 cannot exist without some functionality of A2

• If A2 changes, so must A1.

• Explicit in programs (module systems) and software projects (gradle)

• Used for modularization, impact analysis, defect analysis

21/28

Example

Example RML:

rulecolorrulecolor rulecolor1 roles:
rulecolorrulecolor rulecolor2 sources:
rulecolorrulecolor rulecolor3 - access: ’users.csv’
rulecolorrulecolor rulecolor4 referenceFormulation: csv
rulecolorrulecolor rulecolor5 s: dep:$(role)
rulecolorrulecolor rulecolor6 po:
rulecolorrulecolor rulecolor7 - [a, dep:Role]
rulecolorrulecolor rulecolor8 - [dep:roleName, $(role)]

Example SPARQL:

rulecolorrulecolor rulecolor1 SELECT * {
rulecolorrulecolor rulecolor2

rulecolorrulecolor rulecolor3 ?x a dep:User;
rulecolorrulecolor rulecolor4 dep:name ?name;
rulecolorrulecolor rulecolor5 dep:hasRole [dep:roleName ?roleN].
rulecolorrulecolor rulecolor6

rulecolorrulecolor rulecolor7 FILTER (?roleN = "Admin")
rulecolorrulecolor rulecolor8 }

• Query depends on data output of engine driven by RML mapping

• Defect occurs, if we change URIs in the RML, but no tool can detect it!

22/28

Semantic Assets

Challenges

• Tools have no formal semantics, many domain-specific tools

• No explicit references

• Manual vs. derived assets

Internal and External Semantic Assets

• An internal semantic asset is a mapping, a graph shape or a graph query.

• An external semantic asset is input data files, ontology axioms or source code
operating on the final graph

We consider mostly RML mappings, not, e.g., python mappings

23/28

External Dependencies

• A mapping M depends on a data file D, if D is input to M

• A mapping M depends on an axiom X if M is generated from X

• A program P depends on a semantic asset A, if A occurs within P

rulecolorrulecolor rulecolor1 roles:
rulecolorrulecolor rulecolor2 sources:
rulecolorrulecolor rulecolor3 - access: ’users.csv’
rulecolorrulecolor rulecolor4 referenceFormulation: csv
rulecolorrulecolor rulecolor5 s: dep:$(role)
rulecolorrulecolor rulecolor6 po:
rulecolorrulecolor rulecolor7 - [a, dep:Role]
rulecolorrulecolor rulecolor8 - [dep:roleName, $(role)]

24/28

Internal Dependencies

• Partial order ⪯ is the order of execution in the pipeline
• Library L is used to remove dependencies due to rdf:type etc.

Let L ⊆ URI. A semantic asset A1 depends on another semantic asset A2 if either

1. A1 refers to A2 explicitly, or

2. (2a) A1 ⪯ A2, and (2b) there is some uri ∈ L that occurs in both A1 and A2.

rulecolorrulecolor rulecolor1 roles:
rulecolorrulecolor rulecolor2 ...
rulecolorrulecolor rulecolor3 s: dep:$(role)
rulecolorrulecolor rulecolor4 po:
rulecolorrulecolor rulecolor5 - [a, dep:Role]
rulecolorrulecolor rulecolor6 - [dep:roleName, $(role)]

rulecolorrulecolor rulecolor1 SELECT * {
rulecolorrulecolor rulecolor2 ?x a dep:User;
rulecolorrulecolor rulecolor3 dep:name ?name;
rulecolorrulecolor rulecolor4 dep:hasRole [dep:roleName ?roleN].
rulecolorrulecolor rulecolor5 FILTER (?roleN = "Admin")
rulecolorrulecolor rulecolor6 }

25/28

Example of a Dependency Graph

26/28

Case Study: Teaching Ontology [SWJ, under review]

• 3 CSV files, 11 RML mappings, 19 SHACL shapes, 8 SPARQL Queries
• Fully automatic
• Found two bugs

Bug 1: One query without dependencies

• Accesses data using a specific URI, but the mapping was commented out.

• Maintenance bug: Corresponds to an empty test for software.

Bug 2: One shape without dependencies

• Change of URI prefix not propagated between dependencies.

• coursesonto:Lecturer vs. a local URI from the developer

• Maintenance bug

• Undetected because shape validation does not fail!
27/28

Conclusion

Conclusion

• The Semantic Web relies on software quality

• First steps towards investigating the field from this perspective

• Big challenges on the horizon: modularity and lack of formal semantics

Thank you for your attention

28/28

Conclusion

• The Semantic Web relies on software quality

• First steps towards investigating the field from this perspective

• Big challenges on the horizon: modularity and lack of formal semantics

Thank you for your attention

28/28

	Testing (I): Language-based Fuzzing
	Testing (II): Mutation-based Integration Testing
	Dependency Analysis
	Conclusion

