Software Quality for the Semantic Web

Eduard Kamburjan

Based on work with many collaborators: Tobias

Johr‘1, Einar Broch Johnsen, Dom‘inic Steinhdofel,
Zja;rc‘ifhaves Fraga, Romana Pernisch, Oscar Cor- |T U N I\/E RS ITY OF C O P E N HAG E N

onto:NEXUS Workshop 05.10.2025

What is a Knowledge Graph, and why do we care?

rdf:Class

2"
Q
3

[\5)
-
o
(@]
o

likes
O 10

Berta Hay

1/28

What is a Knowledge Graph, and why do we care?

rdf:Class The Promise of Knowledge Graphs

O A Knowledge Graph is a graph that pro-

vides high-quality semantic data to users.
a a e Neuro-symbolic Al: context and

taming hallucinations in GenAl, ...

Cow T Food e Data integration: Data of high
a a

likes
> e Engineering: Connecting system

Berta Hay | models with data, ...

quality with agreed upon semantics,

O

1/28

What is a Knowledge Graph, and why do we care?

The Promise of Knowledge Graphs

rdf:Class

S
o

Q..
Ta 00

O likes

Berta

O

Hay

A Knowledge Graph is a graph that pro-
vides high-quality semantic data to users.

e Neuro-symbolic Al: context and
taming hallucinations in GenAl, ...

e Data integration: Data of high
quality with agreed upon semantics,

e Engineering: Connecting system

models with data, ...

If the central promise is quality, how do we ensure it?

1/28

What is a Knowledge Graph really?

[Data Quality] [Software Quality]

2/28

What is a Knowledge Graph really?

[Data Quality] [Software Quality]

e Data engineering pipelines with
numerous tools on general data quality

e Graph specific technologies: SHACL
shapes, SPARQL queries as constraints

e Formal semantics and reasoners

e Lot of different methodologies

2/28

What is a Knowledge Graph really?

Data Quality] [Software Quality
e Data engineering pipelines with e What about all these tools?
numerous tools on general data quality e What about all these pipelines?

e Graph specific technologies: SHACL
shapes, SPARQL queries as constraints

e Formal semantics and reasoners

e Lot of different methodologies

2/28

Software Turtles all the way down

Knowledge Graphs

e A KG is a data set, generated by a set of interacting software components.

e The quality of the KG is determined also by their software quality.

3/28

Software Turtles all the way down

Knowledge Graphs

e A KG is a data set, generated by a set of interacting software components.

e The quality of the KG is determined also by their software quality.

Software Quality is Important

e Five papers in high-impact venues (including nature) retracted after a bug in

python implementation of analysis algorithm

[Miller, Software problem leads to five retractions., 2007]

e Faulty analysis leads to wrong data basis for decision about austerity in Europe

[Herndon et al., Does High Public Debt Consistently Stifle Economic Growth? A Critique of Reinhart and Rogoff, 2013]

e “Replication crisis” w.r.t. Jupyter notebooks: less than 25% are runnable

[Pimentel et al., Understanding and improving the quality and reproducibility of Jupyter notebooks, 2021]

3/28

e Testing software for knowledge graphs (x2)

e Dependency analysis for knowledge graph construction

4/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query
domain knowledge and data.

5/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query

domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

5/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query

domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

RDF:

5/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query

domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

RDF:

hasChild some (hasChild some Person) subClassOf GrandParent
L:
JhasChild. JhasChild. Person L GrandParent

5/28

A very short primer on knowledge graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to (a) represent, (b) reason over, and (c) query

domain knowledge and data.

W3C Standards
RDF for data, OWL for knowledge, SPARQL for queries.

Paul a Person. Peter a Person. Maria a Person.
Paul hasChild Peter. Peter hasChild Maria.

RDF:

hasChild some (hasChild some Person) subClassOf GrandParent
L:
JhasChild. JhasChild. Person L GrandParent

SPARQL: SELECT ?x WHERE { ?x a GrandParent }
5/28

Testing (1): Language-based
Fuzzing

Automated Testing

Problems

e How can we automatically test the general purpose tools in OE?
e How can we test the integration of ontologies with other software?

e How can we specify the integration of ontologies with other software?

e Solver and database engines are hard to test in general

e RDF has per se very little structure to constraint input generation

6/28

Automated Testing

e Language-based approach to generate random graphs and ontologies with ISLa
e Two grammars: RDF/TTL and OWL functional syntax

1 <ontology> ::= "Ontology (" <declarations> " " <axioms> ")"

2 <axioms> = <axiom> | <axiom> "\n" <axioms>

3 <axiom> ::= <classAxiom> | <assertion> | <dataTypeDefinition> | [...]
4 [...]

5 <literal> 1:= <typedLiteral> | <stringNoLang> | <stringWithLang>

6 <stringWithLang> ::= <QuotedString> <LanguageTag>

Targets

e RDF/TTL parser and frontend utilities of Apache Jena and OWL-API
e Three OWL-EL reasoners via differential testing

[John, Kamburjan et al. Language-Based Testing of Knowledge Graphs, ESWC'25]
7/28

Automated Testing: Frontend Bugs

e First bug found in RDF 1.2 TTL standard with second generated file

<P:A> <C>.
@prefix P: <http://test.no#>

e Both parser have bugs in corner cases, despite a formal grammar in the standard!

<A> -.7 . // fails to parse literal
<A> ; ; . // fails to parse double empty list

e OWL-API profile checker rejects all OWL-EL ontologies that use language tags
<A> "test"~"xsd:String@dk_DK

8/28

Automated Testing: OWL-EL Reasoners

Three reasoners included by default with Protege
e HermiT (v.1.4.5.519)
e Pellet/Openllet (v.2.6.5)
e ELK (v.0.6.0)

Test Procedure

e Generate new ontology, and ask all three reasoners if it is consistent and to derive

all possible axioms

e If results are different (or exception is thrown), investigate

e Extra tool to reduce ontology by axiom pinpointing

9/28

Automated Testing: OWL-EL Reasoners

e Found and reported 15 bugs, 13 from failed logical inference, 2 from exceptions

e Language tags and corner cases in the hierarchy

77 ELK* | 62 .
“HermiT* =T = (05 Hs
Openllet* =5 = (4

consistency

310 Hy
HermiT* , A 29
/4 other == § =
inference / 02
Openllet* :254: 8;
—2- 0}
ELK* 7277 11— 04
£4 other =—4
~ - [45] other == 7 == o
exception 3
“~ HermiT [42] H6 s B 8
not BL — 5 Openllet — 3 — 06 21

other — 1 — F7 10/28

Automated Testing: OWL-EL Reasoners

1 //ELK classifies as inconsistent

2 Prefix(:=<http://www.example.org/reasonerTester/>)

3 Ontology (

4 Declaration(Class(:B)) Declaration(Class(:A))

5 Declaration(DataProperty(:dr)) Declaration(NamedIndividual(:a))
6 EquivalentClasses(DataHasValue(:dr "s1"@fr) A :B)

7 DisjointClasses(DataHasValue(:dr "s1"Q@en) tA)
8

ClassAssertion(:B :a))

//HermiT fails to derive DataPropertyAssertion(:dp :a "data")
Prefix(:=<http://www.example.org/reasonerTester/>)
Ontology (
Declaration(DataProperty(:dp)) Declaration(NamedIndividual(:a))
EquivalentClasses(ObjectOneOf(:a) DataHasValue(:dp "data")))

g W N

11/28

Automated Testing: Applicability

e Found numerous bugs in all tested tools, only with black box testing and limited
tasks/oracles

e Proves that automated testing of general purpose tools for KGs is possible and
feasible

e General purpose grammars a bit unhandy and need to be constraint by hand for

more specific applications

e |SLa not optimal for high-volume generation

12/28

Testing (I1): Mutation-based
Integration Testing

Integration Testing

e Given a program, we often have an example KG it interacts with

e What exactly do we need to specify the program-KG interface?

e Mutation of KG to generate new inputs to program

e Challenges: Mutating KG depends on domain, program has implicit assumptions

53 S

software

original KG ';‘)\'\6 x (with oracle)

| o> @

mutant validity | valid ﬁ
{ generator]_’ checker | executor |
mutated KG ®

T T -
- - P-A
| mutation robustness | test case Q _~" developer
' operators mask . minimizer
L J

minimal KG
test profile

[John, Kamburjan et al. Mutation-Based Integration Testing of Knowledge Graph Applications, ISSRE’24]

13/28

Integration Testing: Mutation Operators

e Prior work mutate single triples or axioms
e Too fine-grained for programs — removing one entity may change a whole sub graph

rdf:type

rdf:type

rdf :type

(d) Scenario with corresponding KG representation after mutating.

14/28

Integration Testing: Robustness Mask

Robustness Mask

e Not every consistent ontology is valid input

e Program has implicit assumptions about ontology

e Top-level ontology should probably not be mutated

e Additional SHACL shapes to constrain mutations

\.

p = query(“:isAt(:auv, 7p)”) AuvAtPipeline
inspect(p) a sh:NodeShape ;
S := query(*“:nextTo(p, 7s)”) sh:targetNode :auv ;
while S # () do sh:property [
p = S.pop() sh:path :isAt ;
if —inspected(p) then sh:minCount 1 ;
moveTo(p) sh:maxCount 1 ;
inspect(p) sh:class :Pipe ;
S := query(“:nextTo(p, 7s)”) 1.
end if
end while

15/28

Domain-Specific Operators

Defined per ontology or test suite

Either directly implemented on KG (imported via Kotlin)

Or by using SWRL syntax for rewriting

rdfmutate:newNode(?p) A :Topping(?t) — :Pizza(?p) A :hasTopping(?p, 7t)

59 relatively generic operators predefined

Prototypical implementation based on rule-mining can automate initial

domain-specific operators

16/28

Integration Testing: Input Coverage

—d— 100 mutated KGs
—— 10 mutated KGs

o L mtated KG e Input feature coverage: How

1020030 4050 7 100 many features are used?
#mutations
(a) Domain-specific mutation operators e Measu red via OWL vVOCa bulary

—d— 100 mutated KGs
—#— 10 mutated KGs
—8— 1 mutated KG

e Domain-specific operators can

be used to force feature

" N) interactions
L
50 75 100

#mutations

(b) Learned operators

17/28

Integration Testing: Results

Targets
e SUAVE: Simulator for self-adaptive AUV based on ROS
e GeoSimulator: Simulator for geological process based on geological ontologies

e OWL-EL reasoners: Same setup

Seed Ontologies

e Suave and GeoSimulator: Only one ontology as default example

e OWL-EL reasoners: 307 Ontologies from latest OWL reasoning competition

e SUAVE: Mistakes in OWL modeling

e GeoSimulator: No bugs

e OWL-EL reasoners: 6 additional bugs related to reasoning over class hierarchies

18/28

Integration Testing: Conclusion

Robustness mask useful for interface specification

Even with automation, domain-specific operations require some work

But easier to control and estimate compared to grammar-based fuzzing.

Again, found bugs in non-trivial systems

19/28

Dependency Analysis

Dependencies for KGC

Problem

Given an KGC pipeline, can we assess the impact of a change in a component?

Impact analysis based on a dependency analysis
Challenge: Some used language have no formal semantics

Challenge: Notion of dependencies not used in KGC

First study on dependencies for impact analysis and bug detection

Input Construction Access

owL RML | |SHAC|_ | |SPARO|_|<_| Python |
cas

CSV RDF

generates chacks queries

[Kamburjan et al. On Dependencies in Knowledge Graph Construction, KGWCQ@ESWC'25] /
20/28

Input Construction Access
= FPARGL}e—{Fyion
cals
csv RDF RDF
chacks auenes

Asset A; depends on asset A, if Ay cannot exist without some functionality of A

If Ay changes, so must A;.

Explicit in programs (module systems) and software projects (gradle)

Used for modularization, impact analysis, defect analysis

21/28

Example RML: Example SPARQL:
1 roles: 1 SELECT = {
2 sources: 2
3 - access: ’users.csv’ 3 ?7x a dep:User;
4 referenceFormulation: csv 4 dep:name 7name;
5 s: dep:$(role) 5 dep:hasRole [dep:roleName 7roleN].
6 po: 6
7 - [a, dep:Rolel 7 FILTER (?roleN = "Admin")
8 - [dep:roleName, $(role)] 8}

e Query depends on data output of engine driven by RML mapping
e Defect occurs, if we change URIs in the RML, but no tool can detect it!

22/28

Semantic Assets

Challenges

e Tools have no formal semantics, many domain-specific tools

e No explicit references

e Manual vs. derived assets

| \

Internal and External Semantic Assets
e An internal semantic asset is a mapping, a graph shape or a graph query.

e An external semantic asset is input data files, ontology axioms or source code
operating on the final graph

We consider mostly RML mappings, not, e.g., python mappings

23/28

External Dependencies

e A mapping M depends on a data file D, if D is input to M

e A mapping M depends on an axiom X if M is generated from X

e A program P depends on a semantic asset A, if A occurs within P

1

2 sources:

3 - access: ’users.csv’
4 referenceFormulation: csv
5 s: dep:$(role)
6 po:

7 - [a, dep:Rolel

8 - [dep:roleName, $(role)]

24/28

Internal Dependencies

e Partial order < is the order of execution in the pipeline
e Library L is used to remove dependencies due to rdf:type etc.

Let L C URI. A semantic asset A; depends on another semantic asset A, if either

1. A;p refers to A explicitly, or
2. (2a) A; < Az, and (2b) there is some uri € L that occurs in both A; and Ay.

1 roles: 1 SELECT =* {

20553 2 ?x a dep:User;

3 s: dep:$(role) 3 dep:name ?7name;

4 po: 4 dep:hasRole [dep:roleName ?7roleN].
5 - [a, dep:Role] 5 FILTER (?roleN = "Admin")

6 - [dep:roleName, $(role)] 6 }

25/28

Example of a Dependency Graph

A2 roles.ml |« - qt.sparql
4 % .-""

USEers.csy

Ad o

persons.rml S
A5 e | users.shacl |

systems.csv

I

system.rml [*
A3

aCCesses.c5v

el = -,
accesses.mi|¢ —|access.shacly ™.
AT — T .

- | a3.sparg

26/28

Case Study: Teaching Ontology [SWJ, under review]

e 3 CSV files, 11 RML mappings, 19 SHACL shapes, 8 SPARQL Queries
e Fully automatic
e Found two bugs

Bug 1: One query without dependencies

e Accesses data using a specific URI, but the mapping was commented out.

e Maintenance bug: Corresponds to an empty test for software.

Bug 2: One shape without dependencies

e Change of URI prefix not propagated between dependencies.

e coursesonto:Lecturer vs. a local URI from the developer

e Maintenance bug

e Undetected because shape validation does not fail!

27/28

Conclusion

Conclusion

e The Semantic Web relies on software quality
e First steps towards investigating the field from this perspective

e Big challenges on the horizon: modularity and lack of formal semantics

2 B P
T
m
[personsim | P
A [personsmi]isersonac |
sysems.cov g .
Zsparai
nfere [Systemum 1< (it
A L—T
accssses v /
s 2]

" ¥
cesses i« [aecess shac

o [

28/28

Conclusion

e The Semantic Web relies on software quality
e First steps towards investigating the field from this perspective

e Big challenges on the horizon: modularity and lack of formal semantics

2 B P
T
m
[personsim | P
A [personsmi]isersonac |
@ Systems.csv - .
Zsparai
[sysammi < CLIr)
A
® ° accssses v /
- - : [
_ developer “ %
o facoasses ik« |acoess shacl

imal KG [

Thank you for your attention

28/28

	Testing (I): Language-based Fuzzing
	Testing (II): Mutation-based Integration Testing
	Dependency Analysis
	Conclusion

