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Abstract. Formal speci�cation of multi-threaded programs is notori-
ously hard, because thread execution may be preempted at any point. In
contrast, abstract concurrency models such as actors seriously restrict
concurrency to obtain race-free programs. Languages with cooperative
scheduling occupy a middle ground between these extremes by explicit
scheduling points. We introduce cooperative contracts, a contract-based
speci�cation approach designed for cooperative scheduling. It permits to
specify complex concurrent behavior succinctly. Cooperative contracts
are formalized as behavioral contracts in a compositional behavioral pro-
gram logic in which they can be formally veri�ed.

1 Introduction

Speci�cation contracts for methods are the pivotal concept that makes deductive
veri�cation of non-trivial programs feasible [33]. The main idea is simple: the be-
havior of each method of a program is described (precisely or approximately) by
a declarative contract, consisting of (i) logical formulas characterizing its pre-
and poststates and (ii) a set of memory locations that limit the method's frame
(assignable locations). This allows a deductive veri�cation system to replace a
method call with a declarative description obtained from its contract. Veri�ca-
tion of a large program is thus broken down into tasks of manageable size that
consist in verifying that each method satis�es its contract. Formal speci�cation
languages based on contracts exist, for example, for the industrial languages
Java [51] and C [11].

The contract-based approach works well for sequential programs and is sup-
ported in industrial-strength veri�cation tools [4,40,50,52], but it is notoriously
di�cult to specify concurrent programs. The reason is that in the sequential
case speci�cation and execution are based on the same unit of computation: a
method. In standard concurrency models (such as in C, Java, or Scala) this is
not the case: method execution can be interrupted (�preempted�) at any time
by another method with a possibly overlapping frame. To combat the myriad of
possible interleavings with accordingly complex data races, it becomes necessary
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to encode program-wide assumptions about permitted scheduling sequences into
method contracts. This in turn leads to contracts becoming bulky, hard to write,
and even harder to understand, because their local nature is lost [12].

An extreme solution to this problem is to restrict the permitted form of
concurrency radically, as in actor-based, distributed programming [8], where
methods are executed atomically and concurrency only occurs among actors
with disjoint heaps. In this setting, behavior�like in the sequential case�can
be completely speci�ed at the level of interfaces, typically in terms of behavioral
invariants jointly maintained by an object's methods [22, 28]. However, this re-
stricted concurrency enforces that systems are modeled and speci�ed at a high
level of abstraction, essentially as protocols. It precludes realistic modeling of
concurrent behavior, such as waiting for results computed asynchronously on
the same processor and heap.

Cooperative scheduling, as realized in active object (AO) languages [21], oc-
cupies a middle ground between preemption and full distribution. It is based on
an actor-like model of concurrency [3] and futures to handle return values from
asynchronous calls [10, 18, 22, 30, 34, 54, 61]. Programs voluntarily and in a syn-
tactically explicit manner suspend their execution, such that a required result
may be provided by another task: Method activations on the same processor
and heap cooperate to achieve a common goal. The crucial point is that code
locations where suspension may occur are explicitly marked and only at those
locations preemption may occur. At the same time, strong encapsulation is en-
forced: an object may only access its own �elds. In consequence, data races can
only occur between tasks executing on the same object.

It was demonstrated in several case studies that cooperative scheduling per-
mits realistic modeling of concurrent behavior of industrial software, allowing,
for example, precise runtime prediction [6, 53] or the exhibition of performance
bugs [60]. A still open problem is deductive veri�cation of non-trivial programs
with cooperative concurrency. The research question is: Is there a generaliza-
tion of sequential speci�cation contracts to the cooperative setting that permits
succinct, intelligible speci�cations and a compositional calculus for deductive ver-
i�cation? In this paper we give an a�rmative answer. We de�ne a speci�cation
language called behavioral contracts for cooperative scheduling, �cooperative con-
tracts� in short, that addresses fundamental problems encountered when gener-
alizing sequential to cooperative concurrent behavior:

1. Due to strong object encapsulation, the speci�cation of interfaces and of
implementations diverges. The latter know implementation aspects that the
former have no access to.

2. In the time gap between method invocation and activation or between a
method's termination and reading the returned result, as well as at suspen-
sion points, it is possible that di�erent tasks on the same object interleave.
It must be possible to specify locally at such points which tasks can be relied
upon to have �nished and which might overlap.
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3. As futures can be passed around as parameters and thus may be read in
arbitrary code locations, it is not possible to determine statically the method
that computes a future's value. Again, this information must be speci�ed.

In addition, cooperative contracts must permit to specify frames, similar to
sequential contracts.

The second main contribution of this paper is a program logic in which
active object programs together with their speci�cation can be expressed. The
third contribution is a compositional deductive veri�cation system that permits
to formally prove the validity of logically rendered contracts. That calculus is
sound relative to a formal semantics which is supplied as well.

To present our framework we need to �x a concrete AO language. We chose a
subset3 of ABS (�abstract behavioral speci�cation�) [41], because it has a stable
and well-maintained ecosystem and its sequential fragment is similar to Java so
that cooperative contracts can be presented as an extension of JML [51].

The following section introduces and explains the usage of cooperative con-
tracts by way of a case study: we formally specify a concurrent publisher-sub-
scriber model with dynamic allocation of proxy servers. Sect. 3 formally de�nes
syntax and semantics of our active object language. Sect. 4 de�nes behavioral
program logic (BPL) [43], a �rst-order dynamic logic that can represent active
object programs together with their behavioral speci�cation. Cooperative con-
tracts are then rendered in BPL, the details are given in Sect. 5. We close with
related work (Sect. 6) and a conclusion (Sect. 7).

The main ideas for speci�cation and veri�cation with cooperative contracts
were �rst presented in [48]. Their encoding into BPL was �rst explored in [45].
The present account is rewritten from scratch. The publisher-subscriber case
study is completely new, as is the formal semantics of the active object language.
In contrast to the prior publications, frames are added and handled uniformly
with method contracts. The program logic and, as a result the deductive ver-
i�cation system and the proof sketches, is simpli�ed in contrast to both prior
publications.

2 Cooperative Contracts for Active Objects

We introduce the main concepts of the active object (AO) language ABS [2,41]
as well as the methodology of our speci�cation framework by way of a case study.

2.1 Case Study

Consider a publisherâ��subscriber model, where clients may subscribe to a ser-
vice, while the service object is responsible for generating news and publishes
each news update to the subscribing clients. To avoid bottlenecks when pub-
lishing, the service delegates publishing to a chain of proxy objects, where each
proxy handles a bounded number of clients, as illustrated in Fig. 1.
3 The restriction to a subset is purely for presentation purposes. A forthcoming im-
plementation will support full ABS.
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Fig. 1. A publisher-subscriber model with proxies handling at most three clients each

The interfaces and implementations of service and proxies are shown in
Fig. 2. The ABS code is fully executable and the complete model is found at
abs-models.org. The publish() method of the Proxy class takes advantage of
asynchronous method calls with futures: a proxy object �rst initiates publica-
tion down the chain of proxies via asynchronous, recursive calls on the nextProxy
pointer, before it retrieves the news item ns and forwards that to its client list. If
the current proxy object is the last in the chain, then the next news production
cycle is initiated via a call to the produce() method of Service.

On the other hand, the recursive call in add() of Proxy is blocking: We use
r = o.m() as a shorthand for Fut<T> fut = o!m(); r = fut.get. This is harmless
since the implementation of add() does not deadlock and terminates after at
most limit many calls.

Among several relevant properties one would like to specify for the publish()
method are that the future passed to it is not null and that all clients of the
current proxy object received the news update upon termination. In the following
we illustrate that such properties can be easily and succinctly stated in our
framework.

Recall that in the AO language ABS a task cannot be preempted, unless it
is at a suspension point. The latter is marked explicitly by an await statement.
Hence, the code between method activation, await statements, and method ter-
mination, respectively, runs uninterrupted. We speak of atomic segments. The
scope of each atomic segment has a unique name, which is speci�ed by the an-
notation [atom: "name"] at the await statement that closes it. The syntactic end
of a method declares an implicit atomic segment whose name defaults to the
method name. Therefore, a method without await statement has exactly one
atomic segment named after the method. In addition, sync labels identify state-
ments, where the value of a future is read. For example, the publish() method
can be annotated as follows:

Unit publish(Fut<NewsI> fut) {
NewsI ns = null;
if (nextProxy != null) {
nextProxy!publish(fut);

}
[sync: "getNews"] ns = fut.get;
[atom: "notifyClients"] await this!toClients(ns);
if (nextProxy == null) {
service!produce();

}
}
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1 interface ServiceI {
2 Unit setup(Int lm, ProducerI prod);
3 Unit subscribe(ClientI cl);
4 Unit produce();
5 }
6
7 class Service implements ServiceI {
8 ProducerI producer = null;
9 ProxyI proxy = null;
10 ProxyI lastProxy = null;
11 Int limit = 0;
12
13 Unit setup(Int lm, ProducerI prod) {
14 limit = lm;
15 producer = prod;
16 proxy = new Proxy();
17 proxy.setup(lm, this);
18 lastProxy = proxy;
19 this!produce();
20 }
21
22 Unit subscribe(ClientI cl) {
23 lastProxy = lastProxy.add(cl);
24 }
25
26 Unit produce() {
27 Fut<NewsI> f_news =
28 producer!detectNews();
29 await f_news?;
30 proxy!publish(f_news);
31 }
32 }
33
34 interface ProxyI {
35 Unit setup(Int lm, ServiceI s);
36 ProxyI add(ClientI cl);
37 Unit publish(Fut<NewsI> fut);
38 }
39
40 class Proxy implements ProxyI {
41 Int limit = 0;
42 List<ClientI> myClients = Nil;
43 ProxyI nextProxy = null;
44 ServiceI service = null;

45 Unit setup(Int lm, ServiceI s) {
46 limit = lm;
47 service = s;
48 }
49
50 ProxyI add(ClientI cl) {
51 ProxyI lastProxy = this;
52 if (length(myClients) < limit) {
53 myClients = append(myClients, cl);
54 } else {
55 if (nextProxy == null) {
56 nextProxy = new Proxy();
57 nextProxy.setup(limit, service);
58 }
59 lastProxy = nextProxy.add(cl);
60 }
61 return lastProxy;
62 }
63
64 Unit publish(Fut<NewsI> fut) {
65 NewsI ns = null;
66 if (nextProxy != null) {
67 nextProxy!publish(fut);
68 }
69 ns = fut.get;
70 await this!toClients(ns);
71 if (nextProxy == null) {
72 service!produce();
73 }
74 }
75
76 Unit toClients(NewsI ns) {
77 Int cnt = 0;
78 while (cnt < length(myClients)) {
79 ClientI cl = nth(myClients, cnt);
80 cl!signal(ns);
81 cnt = cnt + 1;
82 }
83 }
84 }

Fig. 2. Implementation of service and proxy interfaces and classes

2.2 Specifying State in an Asynchronous Setting

During the time gap between method invocation and activation, method param-
eters stay invariant (they are immutable in ABS), but the object's heap (value
of �elds) may change. This motivates to split the precondition of asynchronous
method contracts into an interface part relating to method parameters and an
implementation part that speci�es heap values. The parameter precondition is
guaranteed by the caller who knows the appropriate synchronization pattern.
It is part of the calleeâ��s interface declaration and exposed to clients. (For
parameterless methods the parameter precondition is True and can be omitted.)
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Vice versa, the callee guarantees the heap precondition. This is so, because only
the callee's implementation has su�cient knowledge of the internal state, There-
fore, the heap precondition is declared in the class implementing an interface
and not exposed to clients. Preconditions follow JML [51] convention and are
marked by the requires keyword.

Postconditions (keyword ensures) work analogously. Like in JML, postcon-
ditions are evaluated in the poststate of a method. To access the value of a �eld
at activation time of a method, the keyword \old is used.

In addition, like in JML, the implementation contract of a method speci�es
its assignable heap locations. This speci�es either a set of memory locations or
the shortcuts \nothing, \everything with obvious semantics. It is advisable to
specify assignable locations, because their (safe) default is \everything.

Example 1. Parameters of Proxy.setup() must ful�ll the precondition that the
capacity lm of a proxy is larger than zero and the service object s is not null.
The heap precondition expresses that �eld limit is zero and service is null. The
heap postcondition expresses that after termination of setup() the value of limit
is larger than zero and service is not null.

interface ProxyI {
/∗@ requires lm > 0 & s != null @∗/
Unit setup(Int lm, ServiceI s);

}

class Proxy implements ProxyI {
/∗@ requires limit == 0 && service == null;

ensures limit > 0 && service != null;
assignable {limit, service}; @∗/

Unit setup(Int lm, ServiceI s) {
limit = lm;
service = s;

}
}

2.3 Concurrency Context

A caller must ful�ll the calleeâ��s parameter precondition, but the most recently
completed process running on the callee object establishes its heap precondition.
In other words, whether the callee's heap precondition holds, depends on the
postconditions of the (atomic segments of) methods that run concurrently or
that have just terminated. To express this, one speci�es the concurrency context
of a method, in addition to its memory context given by the heap precondition.
The concurrency context is part of the interface contract and consists of two
context sets, i.e. sets of atomic segment names:

� succeeds: Each atomic segment in this set must ensure the heap precondi-
tion when it terminates and at least one of them must have run before the
speci�ed method starts execution.

� overlaps: Each atomic segment in this set must preserve the heap precon-
dition. Between the termination of the last atomic segment from succeeds
and the start of the execution of the speci�ed atomic segment, only atomic
segments from overlaps are allowed to run.

Context sets are part of the interface speci�cation, but a class may extend
context sets with private atomic segment names and methods. It is the obli-
gation of that class to ensure that private methods do not disrupt correct call
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sequences from the outside. From an analysis point of view, private methods are
no di�erent than public ones. Observe that context sets represent global infor-
mation unavailable when a method is analyzed in isolation. If context sets are
not speci�ed in the code, they default to the set of all atomic segments in the
class, whence the heap precondition degenerates into a class invariant and must
be guaranteed by each process at each suspension point [27].

Method implementation contracts need to know their expected context, but
the global protocol at the object level can be speci�ed and exposed in a separate
coordination language, such as session types [38]. This enforces a separation
of concerns in speci�cations: method contracts are local and specify a single
method and its context; the coordination language speci�es a global view on the
whole protocol. Of course, local method contracts and global protocols expressed
with session types [46, 47] must be proven consistent. Context sets can also be
veri�ed by static analysis once the whole program is available, see Sect. 2.6 for
an example.

Example 2. Consider the interface and implementation speci�cation of add() in
Fig. 3. The heap precondition of add() is established by setup() which it must
succeed. Between setup() and (re-)activation of add() only add() or publish()

may run. This is expressed by the speci�ed context sets (recall that method
names label the �nal atomic segment of a method body).

The heap postcondition speci�es that add() may increase the length of �eld
myClients, but it will never exceed limit. It preserves the contents of myClients.
If the limit was not reached at the beginning of method execution, then client
cl is indeed in myClients upon method termination. In addition, we extend the
context set of the interface speci�cation with atomic segment notifyClients

in the publish() method and the private method toClients() which also may
interleave with add().

The speci�ed concurrency context is used to enrich existing method con-
tracts: the heap precondition of a method speci�ed with context sets is implicitly
propagated to the postcondition of all atomic segments it succeeds as well as to
pre- and postconditions of all atomic segments it overlaps with.

Example 3. Continuing Expl. 2, after propagation, contracts of setup(), add()
and toClients() are as follows4 (redundant expressions not shown, for example,
limit > 0 && service != null in add()'s postcondition are preserved from its
precondition, because of the assignable clause):

/∗@ ensures <as before> && len(myClients)<=limit @∗/
Unit setup(Int lm, ServiceI s) { ... }
/∗@ ensures <as before> && len(myClients)<=limit @∗/
ProxyI add(ClientI cl) { ... }
/∗@ requires <as before> && limit > 0 && len(myClients) <= limit && service != null;

ensures <as before> && limit > 0 && len(myClients) <= limit && service != null
@∗/
Unit toClients(NewsI ns) { ... }

4 The speci�cations of publish() and notifyClients are shown in the next subsection
in connection with speci�cation of suspension points.



8 Kamburjan, Din, Hähnle, Johnsen

interface ProxyI {
/∗@ requires cl != null;

succeeds {setup};
overlaps {add, publish} @∗/

ProxyI add(ClientI cl);
}

class Proxy implements ProxyI {
/∗@ requires limit > 0 && len(myClients) <= limit && service != null;

ensures 0 < len(myClients) && len(myClients) >= len(\old(myClients)) &&
∀ ClientI c; hasElement(\old{myClients}, c); hasElement(myClients, c) &&
(len(\old(myClients)) < limit −> hasElement(myClients, cl)) &&
(len(\old(myClients)) == limit −> len(myClients) == len(\old(myClients));

overlaps {notifyClients, toClients};
assignable {myClients, nextProxy} @∗/

ProxyI add(ClientI cl) {
ProxyI lastProxy = this;
if (length(myClients) < limit){

myClients = append(myClients, cl);
} else {

if (nextProxy == null) {
nextProxy = new Proxy();
nextProxy.setup(limit, service);

}
lastProxy = nextProxy.add(cl);

}
return lastProxy;

}
}

Fig. 3. Interface and implementation of add() in proxy

2.4 Resolve Contracts

Consider the get statement in Line 69 of Fig. 2. It is important to be able to prove
properties about its resolved future, for example, ns != null. Such a property can
be ensured by the postcondition of the method that computed the future, but
(like in the example) it is not obvious which methods that could be. For this
reason we attach a resolve contract to each get statement. It consists simply of
the keyword resolvedby, followed by the set of methods that resolve its future.

The client accessing a future might not be its creator, so properties of method
parameters and class �elds in the postcondition of the method associated to
the future should be hidden. The heap postcondition of a method may contain
properties of �elds, parameters and results upon termination. We abstract that
postcondition into a postcondition for the corresponding method at the inter-
face level, which only reads the result at the client side. In analogy to the split
of precondition the latter is called interface postcondition. Only if the call con-
text is known, the heap postcondition may be used in addition to the interface
postcondition.

Example 4. The get statement in Line 69 of Fig. 2 is resolved by Producer.

detectNews(), the resolve contract is displayed in Fig. 4. Assuming that the
interface postcondition of Producer.detectNews() contains \result != null, we
can ensure that ns != null holds at this point.
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2.5 Suspension Contracts

Each await statement introduces a scheduling point, where task execution may
be suspended and possibly interleaved. From a local perspective, an await state-
ment is a suspension point where information about heap memory is lost. This
is similar to heap preconditions and can be addressed in the same manner: By
specifying what is guaranteed at release of control, what can be assumed upon
reactivation, and who has the obligation to guarantee the heap property. Accord-
ingly, each suspension point is annotated by a suspension contract containing
the same elements as a method contract: An ensures clause for the condition
that is guaranteed upon suspension, a requires clause for the condition that
must hold upon reactivation5, a succeeds context set for the atomic segments
that must have run before reactivation and an overlaps context set for atomic
segments whose execution may interleave. The assignable clause always relates
to the atomic segment whose suspension contract it is part of.

interface ProxyI {
/∗@ requires fut != null;

succeeds {setup};
overlaps {add, publish} @∗/

Unit publish(Fut<NewsI> fut);
}

class Proxy implements ProxyI {

/∗@ ensures len(myClients) <= limit ;

assignable \nothing; @∗/
Unit publish(Fut<NewsI> fut) {
NewsI ns = null;
if (nextProxy != null) { nextProxy!publish(fut); }
/∗@ resolvedby {Producer.detectNews}; @∗/
[sync: "getNews"] ns = fut.get;

/∗@ ensures ns != null && len(myClients) <= limit ;

requires this.service != null;
succeeds {toClients};
overlaps {add, publish};
assignable \nothing; @∗/

[atom: "notifyClients"] await this!toClients(ns);
if (nextProxy == null) { service!produce(); }

}
}

Fig. 4. Suspension and resolve contracts of publish() in proxy

Example 5. In Fig. 4 we specify the behavior of the suspension point at the await

statement "notifyClients": Upon suspension, the news ns passed to toClients()

must not be null which can be derived from the resolve contract (see Sect. 2.4).

5 The execution pattern is inverse to method execution: on suspension execution stops
and is later reactivated. Therefore, it is intuitive to specify ensures before requires.
Observe that the ensures clause of the top-level method contract speci�es the �nal
state upon method termination, i.e. the postcondition of the �nal atomic segment.
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During suspension, only methods add(), publish() can interleave. By adding the
method toClients() to the succeeds set, we ensure that the news will have been
delivered to the clients upon reactivation.

Propagation from context sets into pre- and postconditions of suspension con-
tracts is analogous to the procedure for method contracts. Fig. 4 highlights the
propagated speci�cation for publish() from the heap precondition of add(). The
name �publish� represents the �nal atomic segment of the publish() method, so
the postcondition of publish() is also the postcondition of that atomic segment.
After propagation, the contracts express that both atomic blocks preserve the
heap precondition of add().

2.6 Service Composition

The speci�cation above is modular in the following sense: To prove that a method
adheres to the pre- and postcondition of its own contract and respects the pre-
and postconditions of called methods, it is su�cient to analyze its owner class.

However, the correctness of context sets in the cooperation contracts clearly
depends on the sequence in which methods are called by client classes. In other
words, to verify that a program respects all context sets, requires global, system-
wide information. This constitutes a separation of concerns between functional
speci�cation (state) and non-functional speci�cation (call sequence). That makes
it possible to decompose concurrent system veri�cation into two phases: In the
�rst phase, deductive veri�cation [24] is used to locally show that each individual
method implements its pre- and postconditions correctly. In the second phase,
a global light-weight, fully automatic dependence analysis [7] is used to approxi-
mate possible call sequences. This approach has two advantages: �rst, the global
analysis need not be done by expensive deduction; second, it is often possible to
reuse contracts: if a method is changed with only local e�ects it is su�cient to
re-prove its contract and re-run the dependence analysis. The proofs of all other
method contracts remain unchanged.

The dependence analysis of context sets is detailed in the technical report
[49]; we only give an example for rejected and accepted call sequences here.

Example 6. Consider the code fragments interacting with a Proxy instance p

given below (use await o!m(); as shorthand for Fut<T> f = o!m(); await f?;).
The left fragment fails to verify the context sets speci�ed above: even though
called after setup(), publish() can be executed �rst due to reordering, failing
its succeeds clause. The right fragment veri�es, because of the await guard and
the fact that publish() is included in its overlaps context set.

p!setup(3,s);

p!publish(f);

await p!setup(3,s);

p!publish(f1);

p!publish(f2);
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3 Active Object Programs

We de�ne formally the simple active object language Async, based on ABS [41],
�rst the syntax, then the formal semantics.

3.1 Syntax

The Async syntax is shown in Fig. 5. The language has been informally explained
with an extensive example in the previous section, so we keep this brief and
focus on language features related to communication and synchronization�other
features are standard.

Objects communicate by asynchronous method calls, written e!m(e), with an
associated future f . A future's value can be accessed by the statement x = f.get
once it is resolved, i.e. when the task associated with f terminated. Futures
can be shared among objects. Field access between di�erent objects is indirect
through (getter/setter) method calls, amounting to strong encapsulation. Co-
operative scheduling is realized as follows: at most one process is active on an
object at any time and all scheduling points are explicit in the code using await

statements. Execution inside atomic segments is sequential and cannot be pre-
empted. For the set Exp of pure expressions we assume the valuation function to
be known, where e ∈ Exp is a value of Exp. We assume programs are well-typed.

P ::= I C {T x = e; s}
I ::= interface I {S}
C ::= class C(T x) {M T x = e}
M ::= S{T x = e; s; return e}
S ::= T m(T x)
x ::= v | this.f

s ::= x = rhs | skip
|
[
sync : “string”

]
x = e.get

|
[
atom : “string”

]
await g

| if (e) {s} else {s} | while (e) {s}
rhs ::= e!m(e) | e | new C(e)
g ::= e | e?

Fig. 5. Syntax of the Async language

Compared to ABS, Async features optional atom annotations for atomic seg-
ments as discussed in Sect. 2. A synchronize annotation sync associates a label
with each assignment which has a get right-hand side. We assume all names to
be unique in a program.

3.2 Trace Semantics

We de�ne a layered denotational semantics for Async, inspired by locally abstract
globally concrete (LAGC) trace semantics [26]. The purpose of the local layer
is to associate with each initial state and each Async statement a set of traces
that record not only each possible evolution of computation states, but also syn-
chronization events (call, suspension, future resolution, etc.). A set of traces is
needed, because, locally, the value of, for example, a resolved future cannot be
known. The global layer combines for a given program the local traces into all
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possible traces such that the involved events and states correspond to a permit-
ted task interleaving in Async. Main advantages of this semantics include (a) a
modular separation between sequential and concurrent execution and (b) close
correspondence to the rules of the veri�cation calculus for Async.

3.2.1 States and Traces. Let Object and Future denote the sets of possible
object and future identi�ers in the semantics, with values o and f , respectively.
Let Var denote the set of program variables (�elds, local variables), Val the set
of expression values v in Async and State the states, i.e., the mappings from Var

to Val. Traces combine states σ ∈ State with the following events, which capture
synchronization and communication between active objects:

ev(e) ::= invEv(o1, o2, f, m, v) | invREv(o1, o2, f, m, v)
| futEv(o, f, m, v) | futREv(o, f, v, i)
| suspBoolEv(o, f, m, i) | reacBoolEv(o, f, m, i)
| suspFutEv(o, f, m, f ′, i) | reacFutEv(o, f, m, f ′, i)
| blkEv(o) | blkREv(o)
| newEv(o1, o2, C, v)

Most events are organized as duals above, with one pair in each line. The
event invEv(o1, o2, f, m, v) captures the asynchronous invocation of a method by
an object o1 to a method m of object o2 with actual parameters v; the future f
is the identi�er of the future to which the return value from the method will be
sent. The dual event invREv(o1, o2, f, m, v) represents the activation of the called
method. The event futEv(o, f, m, v) captures the resolution of the future with iden-
ti�er f ; here, o is the called object, m the called method and v the return value
from the call which is passed to the future f . The dual event futREv(o, f, v, i) rep-
resents the synchronization on this future by object o; note that i here captures
the sync annotation on get-statements. The event suspBoolEv(o, f, m, i) captures
the suspension of the active method m identi�ed by the future f in object o
on a Boolean condition; i captures the atom annotation on await-statements.
The dual event reacBoolEv(o, f, m, i) represents the scheduling (or reactivation)
of the method after suspension. Similarly, event suspFutEv(o, f, m, f ′, i) captures
suspension while waiting for a future f ′ to be resolved, with the dual event
reacFutEv(o, f, m, f ′, i). The event newEv(o1, o2, C, v) captures the creation by an
object o1 of a new object o2 of class C with actual parameters v.

The semantics ultimately maps programs into sets of traces over states and
events, but in the local layer synchronization points are not yet resolved. For
this reason, local traces may contain the symbol # which indicates points where
interleaving or blocking can take place. Accordingly, we de�ne another pair of
events blkEv(o) and blkREv(o) to capture the blocking of an object o at a get-
statement while global interleaving happens.

De�nition 1 (Traces, Local Traces). Let σ ∈ State be a mapping from vari-
ables to values and ev(e) be an event. A trace τ is de�ned by the following
productions:
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τ ::= ε | τ y t
t ::= σ | ev(e)

A local trace π is de�ned by the following production:

π ::= τ | τ # π

Here, ε denotes the empty trace. We only consider �nite traces in this work.
Let 〈σ〉 denote the singleton trace ε y σ. Concatenation of two traces τ1, τ2 is
written as τ1 ·τ2 and only de�ned when τ1 is �nite. The �nal state of a non-empty,
�nite trace τ is obtained by last(τ), and the �rst state of a non-empty trace τ is
first(τ); we lift these operations to local traces π in the obvious manner.

Since we use (local) traces to give a semantics to compound program state-
ments, it is convenient to have an operator on (local) traces that re�ects sequen-
tial composition. The technical issue it solves is as follows: Assume that τ1 is a
trace of a statement s1 and τ2 a trace of another statement s2. To obtain the
trace corresponding to the sequential composition of s1, s2, the last state of τ1
and the �rst state of τ2 must be identical, but the resulting trace should not
contain a repeated state. This motivates the semantic chop operator ∗∗ on local
traces (inspired by [55]):

De�nition 2 (Chop on Traces). Let τ1, τ2 be non-empty traces, π1, π2 non-
empty local traces and assume that τ1, π, π1 are �nite. The semantic chop on
traces is de�ned inductively as follows:

τ1 ∗∗ τ2 = τ1 · τ ′ where last(τ1) = σ, τ2 = 〈σ〉 · τ ′
(π # τ1) ∗∗ τ2 = π # (τ1 ∗∗ τ2)
(π1 # τ1) ∗∗ (τ2 # π2) = ((π1 # τ1) ∗∗ τ2) # π2

3.2.2 Local Semantics. We de�ne the semantics of methods bottom-up,
starting with individual statements, by a validation function valX,m,f,σ(s) that
returns a set of the possible traces when executing a statement s on the current
object X, where the future f is associated with the current instance of method
m, starting in initial state σ. We assume that a standard valuation function
valX,m,f,σ(e) for side e�ect-free expressions e is given. Let the function Ĉ(C, o, v)
return the initial state of an object o of class C with constructor parameters v, let
M̂(C, m, v) the initial local state of a method m of class C with actual parameters
v, and M(C, m) the body of a method m of class C.

The local trace semantics for statements is given in Fig. 6. The semantics of
skip in state σ is the singleton trace 〈σ〉. An assignment results in a trace with two
states where the latter updates σ with the new binding for the assigned variable.
Conditionals and while-loops introduce two sets of local traces depending on
whether the condition evaluates to true or false; here, only one of these sets can
be non-empty.

Object creation introduces an event to re�ect the creation of the new object
and extends the state with the �elds of the new object. We don't know the object
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valX,m,f,σ(skip) = {〈σ〉}

valX,m,f,σ(x = e) = {〈σ〉y σ[x 7→ valX,m,f,σ(e)]}

valX,m,f,σ(if (e) {s1} else {s2})
= {π ∈ valX,m,f,σ(s1) | valX,m,f,σ(e)} ∪ {π ∈ valX,m,f,σ(s2) | ¬valX,m,f,σ(e)}

valX,m,f,σ(while (e) {s})
= {〈σ〉 | ¬valX,m,f,σ(e)} ∪ {π ∈ valX,m,f,σ(s;while (e) {s}) | valX,m,f,σ(e)}

valX,m,f,σ(x = new C(e))

= {〈σ〉y newEv(X, o, C, v′) y σ ◦ Ĉ(C, o, v′) | o ∈ Object ∧ v′ = valX,m,f,σ(e)}

valX,m,f,σ(x = e!m(e))
= {〈σ〉y invEv(X, valX,m,f,σ(e), f

′, m, valX,m,f,σ(e)) y σ[x 7→ f ′] | f ′ ∈ Future}

valX,m,f,σ(return e) = {〈σ〉y futEv(X, f, m, valX,m,f,σ(e)) y σ}

valX,m,f,σ(
[
sync : “i”

]
x = e.get)

= {〈σ〉y blkEv(X) y σ #
〈σ′〉y blkREv(X) y σ′ y futREv(X, valX,m,f,σ′(e), v, i) y σ′[x 7→ v]
| v ∈ Val ∧ σ′ ∈ State ∧ ∀X.x · σ(X.x) = σ′(X.x) ∧ ∀f.x · σ(f.x) = σ′(f.x)}

valX,m,f,σ(
[
atom : “i”

]
await e)

= {〈σ〉y suspBoolEv(X, f, m, i) y σ # 〈σ′〉y reacBoolEv(X, f, m, i) y σ′

| σ′ ∈ State ∧ ∀f.x · σ(f.x) = σ′(f.x) ∧ valX,m,f,σ′(e)}

valX,m,f,σ(
[
atom : “i”

]
await e?)

= {〈σ〉y suspFutEv(X, f, m, f ′, i) y σ # 〈σ′〉y reacFutEv(X, f, m, f ′, i) y σ′

| σ′ ∈ State ∧ ∀f.x · σ(f.x) = σ′(f.x) ∧ f ′ = valX,m,f,σ(e)}

valX,m,f,σ(C.m)
= {(〈σ〉y invREv(X′,X, f, m, v) y σ) ∗∗ π

| X′ ∈ Object ∧ v ∈ Val ∧ π ∈ valX,m,f,σ◦M̂(m,f,v)(M(C, m))}

valX,m,f,σ(s1; s2) = {π1 ∗∗ π2|π1 ∈ valX,m,f,σ(s1) ∧ π2 ∈ valX,m,f,last(π1)(s2)}

Fig. 6. Local trace semantics for Async.

identi�er o in the local semantics, hence it ranges over Object. Asynchronous
method calls introduce an event to re�ect method invocation, where f ′ ranges
over Future, and return introduces a future resolution event into the trace.

The trace corresponding to the get-statement introduces a future reaction
event and assigns the return value v to the corresponding variable. Since the
value v fetched from the future is unknown, the traces range over the possible
value for v. Observe that the �elds of the object and the local variables of the
method are unchanged when the statement is executed but that the state may
otherwise change, re�ecting that get is blocking on the object until it can execute,
but other objects may execute in the meantime. We use o.x to denote a �eld x of
object o and likewise f.x to denote a local variable of the method identi�ed by
the future f . In the semantics of the await e statement, the local traces are split
between the suspension and reactivation events, with the corresponding state
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change to σ′ ∈ State; here, local variables are unchanged between these events,
re�ecting that the process is suspended. The condition valX,m,f,σ′(e) expresses
that the guard must hold in state σ′ for the process to be rescheduled. The
await e? statement has a similar semantics, but the condition for reactivating the
process will be captured in the well-formedness condition on traces.

The semantics of a method m of class C is given by an invocation reaction
event for that method, composed with the semantics of its method body (in
the state extended with the local variables). The calling object X′ cannot be
known and ranges over Object. Sequential composition is directly captured by
the semantic chop operator.

3.2.3 Initial Con�guration and Global Semantics. For a given program
Pr in Async with main block {T1 x1 = e2. . . . , Tn xn = en; s}, let classes(Pr) de-
note the set of class names in Pr, methods(C) the set of method names declared
in class C and σmain ∈ State a mapping from the program variables x1, . . . , xn
to some concrete (default) values of the corresponding types T1, . . . , Tn. For a
future f ∈ Future, de�ne the possible local traces of a program Pr to compute
f by the following set:

traces(f, Pr) = {π | π ∈ valo,m,f,σ(C.m) ∧ o ∈ Object ∧ σ ∈ State

∧ C ∈ classes(Pr) ∧ m ∈ methods(C)}

Let T denote a set of sets of local traces. One such set is the set of all possible
local trace sets for any future for a program Pr, de�ned by

TPr = {traces(f, Pr) | f ∈ Future}
∪{valomain,mmain,fmain,σmain(x1 = e1; . . . ;xn = en; s)} .

The initial con�guration of a program Pr is de�ned as the pair 〈σmain〉, TPr.
Let sh denote a global trace, i.e. a trace without synchronization markers �#�.

Global traces are produced by a transition system on con�gurations sh, T by
means of the following rule:

(Global)
τ # π ∈ Ω Ω ∈ T last(sh) = first(τ)

wf (sh ∗∗ τ) Ω′ = {π′ | τ # π′ ∈ Ω} T ′ = (T \Ω) ∪Ω′
sh, T → sh ∗∗ τ, T ′

The intuition behind rule (Global) is that only a local trace that happens
to match the last state of the global trace sh can be selected to extend sh. The
selection applies to the �rst segment of the local trace, after which all possible
successor segments from traces(f, Pr) are kept and all other possibilities for f
are rejected in T ′. Whereas trace semantics for active objects which take a local
perspective [5, 25] require the composition rule to enforce that local variables
remain invariant over processor release points, our work takes a global perspective
by letting the local trace sets range over all possible states. As a consequence,
trace composition in (Global) can be captured directly by the semantic chop
operator, which matches the states when composing two traces.
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In addition to this matching on states, only those local traces can be se-
lected that conform to the well-formedness predicate wf (sh ∗∗ τ) over traces.
Well-formedness imposes constraints on the ordering of events, expressing le-
gal scheduling and synchronization during execution. For a global trace sh, let
Objects(sh) and Futures(sh) denote the sets of objects and futures that are in-
troduced by the events re�ecting object creation and asynchronous method calls
in the semantics (including omain and fmain). Let sh|f denote the projection of
sh to the trace of events involving the process with future f . Let sh|o denote the
projection of sh to the trace of events of object o and sh ew ev that ev is the �-
nal event occurring in sh (�ends with�). These functions all have straightforward
inductive de�nitions. The well-formedness predicate wf (sh) itself is de�ned in-
ductively in Fig. 7. We abbreviate existentially quanti�ed variables whose value
is irrelevant with �_�. One can assume a trace to end with an event, because the
states after the last event in a trace do not a�ect well-formedness.

wf (σmain) = true

wf (shy invEv(o1, o2, f, m, e)) = {o1, o2} ⊆ Objects(sh) ∧ f 6∈ Futures(sh) ∧ wf (sh)

wf (shy invREv(o1, o2, f, m, e)) = sh|f ew invEv(o1, o2, f, m, e) ∧ wf (sh)

wf (shy futEv(o2, f, m, e)) = invREv(_, o2, f, m,_) ∈ sh
∧ futEv(o2, f, m,_) 6∈ sh ∧ wf (sh)

wf (shy futREv(_, f, e,_)) = futEv(_, f,_, e) ∈ sh ∧ wf (sh)

wf (shy suspBoolEv(o2, f, m, i)) = sh|f ew ev
∧ ev ∈ {invREv(_, o2, f, m,_), reacBoolEv(o2, f, m,_), reacFutEv(o2, f, m,_,_)}
∧ wf (sh)

wf (shy reacBoolEv(o, f, m, i)) = sh|f ew suspBoolEv(o, f, m, i) ∧ wf (sh)

wf (shy suspFutEv(o2, f, m, f
′, i)) = sh|f ew ev

∧ ev ∈ {invREv(_, o2, f, m,_), reacBoolEv(o2, f, m,_), reacFutEv(o2, f, m,_,_)}
∧ wf (sh)

wf (shy reacFutEv(o2, f, m, f
′, i)) =

futEv(_, f ′,_,_) ∈ sh ∧ sh|f ew suspFutEv(o2, f, m, f
′, i) ∧ wf (sh)

wf (shy blkREv(o)) = sh|o ew blkEv(o) ∧ wf (sh)

wf (shy newEv(o1, o2, C, x, e)) = o1 ∈ Objects(sh) ∧ o2 6∈ Objects(sh) ∧ wf (sh)

Fig. 7. Well-formedness predicate over traces

It is easy to see that the well-formedness predicate enforces that only the
main block can be selected initially, as all other local traces are excluded by
the well-formedness condition, that methods can only start after they have been
called, that suspension events can only occur on executing processes, etc.
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3.3 Semantic Logic

In the following, we aim to state and prove properties about all possible local
traces of a method or a statement in a method. To formalize this, it is convenient
to allow some re�ection of the trace semantics into a logical language. We call
this a semantic logic, its models are traces. In such a logic it is natural to relate
indices in traces to states and events. The construct to relate traces and states
has the form [k] ` ϕ, where k is an index term, denoting the k-th element of
the trace that is the current model, and ϕ is a �rst-order formula over states.
Here �`� is a symbol of the logic. The meaning is that in the k-th state of a
model trace the predicate ϕ holds. Similarly, traces and events are related by
[k]

.
= t which says that the k-th element of the model trace is equal to the event

modeled by term t.

Example 7. The following formula in semantic logic expresses that there is a
future resolve event that returns Unit and in the preceding state the �eld fl was
positive. The type I models trace indices, Method is the set of all method names.

∃ k ∈ I. ∃ m ∈ Method. ∃ o ∈ Object. ∃f ∈ Future.

[k]
.
= futEv(o, f, m, Unit) ∧ [k − 1] ` this.fl > 0

The formal de�nition of semantic logic is straightforward, for a full treatment,
we refer to [44]. Given a statement s, we assume from now on to implicitly know
the method that contains it, the object it is executed on and the future is resolves.
Thus we abstract the evaluation function valX,m,f,σ(s) de�ned Sect. 3.2.2 and
write JsKσ for the set of all local traces starting in σ.

4 Behavioral Program Logic

We state the veri�cation system as behavioral contracts in Behavioral Program
Logic (BPL) [43]. This simpli�es the calculus compared to [48], as well as inter-
action with external static analyses.

BPL is a �rst-order dynamic logic with a state-based semantics: Its models
are single states inside a Kripke structure, as in standard dynamic logics such as
JavaDL [14]. Nonetheless BPL allows to verify trace properties of statements. To
enable this, the representation and semantics of trace properties are separated
and encapsulated in behavioral modalities. A behavioral modality can either be
handled by a validity calculus, ensuring that every trace of a given statement
follows the speci�cation, or it can be passed to an external analysis. Hence, a BPL
behavioral speci�cation consists of at least two elements: syntax and semantics.
If it also has a validity calculus and an obligation schema that assigns proof
obligations to methods, then it is a behavioral type. We �rst de�ne behavioral
speci�cations. The semantics of terms in the behavioral language θ maps elements
of the language into formulas of the semantic logic de�ned Sect. 3.3. We call
elements of the behavioral language behavioral words.
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De�nition 3 (Behavioral Speci�cation). A behavioral speci�cation T is a
pair (θT, αT), where θT is a non-empty behavioral language and αT maps elements
of θT into formulas of semantic logic.

It is straightforward to de�ne, for example, postconditions as behavioral spec-
i�cations, because they are already a trace property, where only the �nal element
of a trace is relevant, but we aim for more complex properties, for example:

Example 8 (Points-To Behavioral Speci�cation). The behavioral speci�cation of
a points-to (p2) analysis speci�es that the next statement reads a future resolved
by a method from a set M . The constant 1 refers to the index of the �rst event.

Tp2 = (P(M), p2) with

p2(M) = ∃X ∈ Object. ∃f ∈ Future. ∃m ∈ Method. ∃v ∈ Val. ∃i ∈ N.(
[1]

.
= futREv(X, f, m, v, i) ∧

∨
m′∈M

m
.
= m′

)
Intuitively, a behavioral language is a representation of a fragment of seman-

tic logic. Such fragments are embedded into BPL with behavioral modalities of
the form [s
αT θT]. Following JavaDL, BPL uses updates [13] to keep track of
state changes.

De�nition 4 (Syntax of BPL). Let prd range over predicate symbols, fct
over function symbols, x over �rst-order variable names and S over sorts. As
sorts we take all data types D, all interfaces, all class names and additionally
Field, Future, Val, and Object. Formulas ϕ, updates U and terms t are de�ned
by the following grammar, where v ranges over program variables, consisting of
local variables and the special variables heap, heapOld, heapLast and result. Let
fl range over all �eld names and eh range over expressions without direct �eld
access, but with the extra program variable heap. Let s range over statements and
(θT, αT) over behavioral speci�cations.

ϕ ::= prd(t) | t
.
= t | ϕ ∨ ϕ | ¬ϕ | ∃x ∈ S. ϕ | [s

αT


 θT] | {U}ϕ
t ::= x | v | fl | fct(t) | eh | if ϕ then t else t | {U}t
U ::= ε | U ||U | {U}U | v := t

A behavioral modality says that all traces of s starting in the current state
are models of αT(θT). An update describes a speci�c state change. Updates
are delayed substitutions: During the proof procedure, the state changes of the
statement in question (inside a behavioral modality) are accumulated in updates
and simpli�ed. The resulting substitution is then applied once per proof path on
the modality-free veri�cation conditions resulting from the behavioral modality.

Example 9. The following BPL formula expresses that the get statement reads
from a future that is resolved by Producer.detectNews() (see Expl. 4).

[
ns = fut.get

p2


{Producer.detectNews}
]
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De�nition 5 (Semantics of BPL). Let I be a �rst-order model, i.e. a mapping
from function names to functions and from predicate names to predicates. Let β
be a variable assignment from �rst-order variables to semantic values.

� The evaluation of terms in a state σ is a function JtKσ,β,I that maps terms
to domain elements.

� The evaluation of updates in a state σ is a function JUKσ,β,I that maps
updates to functions from states to states.

� The evaluation of formulas in a state σ is given as a satis�ability relation
σ, β, I |= ϕ.

Semantic evaluation is standard as in �rst-order logic, except for updates and
behavioral modalities which are given in Fig. 8.

Jv := tKσ,β,I
(
σ′
)
:= σ′[v 7→ JtKσ,β,I ]

JεKσ,β,I (x) := x JU1||U2Kσ,β,I (x) := JU2Kσ,β,I
(
JU1Kσ,β,I (x)

)
J{U1}U2Kσ,β,I := JU2KJU1Kσ,β,Iβ,I

J{U}tKσ,β,I := JtKJUKσ,β,I ,β,I

σ, β, I |= {U}ϕ ⇐⇒ JUKσ,β,I , β, I |= ϕ

σ, β, I |= [s
αT


 θT] ⇐⇒ ∀θ ∈ JsKσ . θ, β, I |= αT(θT)

Fig. 8. Semantics of updates and behavioral modalities.

We only consider models I that map each function symbol to its natural se-
mantics. For example, heap functions and the heap program variable are mapped
to the theory of arrays extended for objects [59]. Central is the following con-
nection axiom, for all heaps h, �elds fl, and terms t:

I
(
select

)(
I(store)(h, fl, t), fl

)
= t

For the full axiomatization we refer to Beckert et al. [14]. We further assume
that all �rst-order variables are unique (no overloading) and that the type and
number of parameters for functions and predicates is well-formed. We use com-
mon abbreviations such as ∀x ∈ S. ϕ for ¬∃x ∈ S. ¬ϕ. We shorten comparison
expressions for terms of Bool type by writing, e.g., i > j instead of i > j

.
= True

and we render select(heap, f) as this.f. We use a sequent calculus to reason about
validity of BPL-formulas.

De�nition 6 (Sequent). Let Γ, ∆ be �nite sets of BPL-formulas. A sequent
Γ ⇒ ∆ has the semantics

∧
Γ →

∨
∆. Γ is called the antecedent and ∆ the

succedent. A sequent {γ1, . . . , γn} ⇒ {δ1, . . . , δm} is also written γ1, . . . , γn ⇒
δ1, . . . , δm.
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De�nition 7 (Rules). Let C,Pi be sequents. A rule has the form

P1 · · · Pn
(name) cond

C

Where C is called the conclusion and Pi premises, while �cond� is a decidable
side condition. Rules with zero premises are admissible and called axiom.

De�nition 8 (Validity, Soundness, Calculus). A BPL formula is valid if
it is satis�ed for all states σ, all variable assignments β and all models I (�xed
as above). A rule is sound if validity of all premises implies validity of the con-
clusion. A calculus is a set of sound sequent rules.

A behavioral type is a behavioral speci�cation extended with (i) a proof obli-
gation schema mapping every method in a given program to a behavioral word
(its speci�cation) and (ii) a set of sound validity rules for behavioral modalities
containing the extended behavioral speci�cation.

De�nition 9 (Behavioral Type). Let T = (θT, αT) be a behavioral speci�ca-
tion. A behavioral type extending T is a quadruple (θT, αT, ιT, κT). The calculus
κT consists of rules over θT (i.e. the conclusion must contain a behavioral modal-
ity with a behavioral word from θT). The obligation schema ιT is a map from
method names m to pairs (ϕ, θmT), where ϕ is a �rst-order formula that may only
contain �eld and local variables accessible by m.

Not every behavioral speci�cation needs to be extended to a behavioral type,
for example, Tp2 serves as an interface to an external analysis. To evaluate the
formula in Expl. 9, the modalities can be compared against the result of a pointer
analysis for futures [31]. For examples of other BPL behavioral types and a
discussion on the notion of �Behavioral Type� we refer to [43].

5 Cooperative Contracts in BPL

We formulate cooperative contracts as a behavioral type in BPL, called be-
havioral contract6. We also de�ne the extraction of annotated speci�cations to
behavioral contracts and formulate the propagation of speci�cations described
in Sect. 2.3 in terms of behavioral contracts.

Context sets are not part of behavioral contracts, but can be expressed anal-
ogously as (global) trace properties.

Compared to our previous account [48], the use of BPL vastly simpli�es
the veri�cation system: First, the propagation does not require an additional
intermediate representation. Second, the validity calculus operates directly on
behavioral contracts and not on an encoding of contracts in postconditions and
dedicated rules. In contrast to postcondition-based approaches [24], the calculus
also does not have implicit parameters, such as call conditions.

6 Due to their nature as contracts and behavioral types, not due to a relation to
behavioral contracts as a subset of behavioral types as in [39].
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In addition to the speci�cation elements introduced in previous sections, we
use class preconditions, which are essentially preconditions on the �elds passed
to the constructor.

Example 10. The following speci�es that class C is initialized with a positive
value for param.

/∗@ requires this.param > 0; @∗/
class C(Int param) { ... }

5.1 Cooperative Contracts as Behavioral Speci�cations

We �rst de�ne suspension and resolve speci�cations. A suspension speci�cation
follows the structure of a suspension contract (without context sets) and consists
of the frame, suspension assumption and suspension guarantee. Similarly, a re-
solve speci�cation is a pair of the expected guarantee and the set of responsible
methods.

De�nition 10 (Suspension, Resolve Speci�cation). A suspension speci-
�cation Susp is a triple (W, ens, req), where W ⊆ Field is a set of �elds and
ens, req ∈ FOL are FOL formulas. A resolve speci�cation Res ∈ P(M)× FOL is
a pair (mtds, cond) of a set of method names and a FOL formula.

Example 11. The suspension speci�cation for notifyClients in Expl. 5 is shown
below, with the pretti�ed syntax for heap access.(

W = ∅,
ens = ns 6 .= null ∧ len(this.myClients) ≤ this.limit

req = this.service
.
= null

)
A behavioral contract itself mirrors the structure of the cooperative contract

for a method. To identify speci�c statements inside a method, we use program
point identi�ers (PPI), a generalization of the annotated names. The PPI for
await and get statements is their name annotation, recorded as i in Sect. 3.2.1,
the PPI for return statements is implicit and not exposed.

De�nition 11 (Syntax for Behavioral Contracts). The behavioral language
met for contracts is a tuple (W, post)S,C with the following components:

S : PPI 7→ (Susp ∪ Res ∪ FOL) Program Point Speci�cations

C : Classes ∪Methods 7→ FOL Call Conditions

W ⊆ Field Assignable �elds

post ∈ FOL Postcondition

A program-point speci�cation S maps (i) every PPI of a suspension to a sus-
pension speci�cation, (ii) every PPI of a reading statement to a resolve contract,
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(iii) every PPI of a terminating statement to a method postcondition. Call con-
ditions C map method names to the call precondition of the called method and
class names to the class precondition.

The pair (S,C) does not change during symbolic execution: with top-down
contract generation it can be seen as a lookup table for global properties. The set
W is the currently active dynamic frame. Finally, post is the current statement
postcondition. It is not necessarily the postcondition of the method, but used
to establish postconditions of arbitrary statements not ending in suspension or
termination. This is needed to express loop invariants.

We say (W, post) is the active part of the contract and (S,C) the passive part:
The active part must be adhered to by the currently active statement, while the
passive part serves as a speci�cation repository for program points encountered
during symbolic execution.

Example 12. Consider the following behavioral modality

[
this.f = this.g+1; [atom: "a"] await this.f > 0; s;

met



(
{f}, this.g .

= 1
)

S,C

]
The behavioral contract expresses that before the next suspension (or termi-
nation), only writes to f are allowed. The formula this.g

.
= 1 is the statement

postcondition. It does not need to hold at the suspension point.

5.2 Extraction and Propagation

Given a speci�ed program P, the veri�cation work�ow consists of the following
steps:

1. For each method a speci�cation triple is extracted. Such a triple contains
heap and parameter preconditions, as well as behavioral contracts. Context
sets are recorded globally.

2. The behavioral contracts are propagated according to the context sets and
the context sets are passed to external analyses to check whether the program
adheres to them.

3. Each methods of the program is veri�ed against its propagated behavioral
contract.

5.2.1 Speci�cation Extraction All abbreviations (such as await o!m()) are
expanded before extraction. Syntactically, the formulas in the speci�cation are
an extension of the �rst-order fragment of BPL that only uses heap and the
local variables as program variables. These may contain functions old(·), last(·)
that allow its argument (either a term or a formula) to be evaluated in the heap
at the prestate of the current method call and at the most recent suspension,
respectively. These constructs are removed by substitutions

ϕ[heap \ heapOld] and ϕ[heap \ heapLast]
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that replace occurrences of heap in the argument of old(·), last(·) with ghost
variables.

Given a program P, we de�ne the extracted passive speci�cation SP,CP:

CP(I.m) = requires clause of m in interface I

CP(C) = requires clause of class C

SP(p) =

 res(p) if p is the PPI of a get statement
susp(p) if p is the PPI of a await statement
term(p) if p is the PPI of a return statement

For brevity, write SW(p) for the W component of S(p) (if de�ned) and similar
for the other possible components and C. The postcondition of a return statement
with PPI p is accessed simply with S(p). The functions res, susp and term are
generated as follows. For a resolve contract (the read statement possibly pre�xed
by an assignment) of the form

/∗@ resolvedBy M ; @∗/
[atom: "name"] e.get;

we extract the resolve speci�cation res(name) =
(
M, true

)
. If no resolve contract

is given, M defaults to set of all method names.
Given a suspense contract, where A1, A2 are sets of method and atomic

segment names,

/∗@ ensures ens;
requires req;
succeeds A1;
overlaps A2;
assignable W; @∗/

[sync: "name"] await g;

we extract the suspension speci�cation. susp(name) =
(
W, ens, req

)
. The default

for state clauses is true, the default for context sets is the set of all method names
and atomic block names in the class containing the speci�ed statement, the
default for the frame is the set of all �elds of the class containing the statement.

Given a return statement with PPI p, we set its speci�cation term(p) to the
conjunction of the ensures clauses of (i) the contract annotated to the contain-
ing method implementation in the class and (ii) the contract annotated to the
method signature declared in an interface (if such a declaration exists and true
otherwise). The following is the speci�cation of a method C.m with contracts in
its class and interface I:

interface I {
/∗@ requires preparam;

ensures postparam;
succeeds A1;
overlaps A2; @∗/

T m(...);
}

class C implements I {

/∗@ requires preheap;

ensures postheap;
assignable W; @∗/

T m(...) {...}
}

The overall behavioral contract is the following triple, where the default of
formulas is true and the default for sets is the set of all names (�elds):(

preheap, preparam,
(
W, true

)
SP,CP

)
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In addition to the behavioral contract we also extract a global speci�cation:

De�nition 12 (Extraction of Global Speci�cation). From a program P
we extract the global speci�cation G that maps each atomic segment name and
each method name to a pair of sets of atomic segment and method names. Each
method name is mapped to the context set pair of its method contract and each
atomic segment name is mapped to the context set pair of its suspension contract.
For a name a we denote the �rst element of such a pair with GSucc(a) and the
second with GOver(a).

5.2.2 Speci�cation Propagation Propagation uses the global speci�cation
to propagate heap preconditions. It is, however, frame-aware: if the propagated
formula cannot possibly change its evaluation during executing an atomic seg-
ment, because it does not share any �elds with the assignable clause, then the
atomic segment needs not prove that it preserves the formula. It is ignored in the
overlaps speci�cation for propagation. It must, however, be taken into account
when it is part of the succeeds set.

De�nition 13 (Propagated Speci�cation). Let P be a program, C, S the
passive speci�cation of the extracted behavioral contracts, G the extracted global
speci�cation. The propagated passive speci�cation C, Sprop is generated as fol-
lows. Let a be any atomic segment name.

� For each m ∈ GSucc(m′), let p be the PPI of the return statement of m and ψ
the heap precondition of m′. Then set Sprop(p) = S(p) ∧ ψ.

� For each m ∈ GSucc(a), let p be the PPI of the return statement of m and ψ the
requires clause of S(a). Then set Sprop(p) = S(p) ∧ ψ.

� For each m ∈ GOver(m′), let p be the PPI of the return statement of m, W its
assignable set and ψ the postcondition of m′, if fields(ψ) ∩W 6= ∅, we set

Sprop(p) = S(p) ∧
(
({heap := oldHeap}ψ)→ ψ

)
� For each m ∈ GOver(a), let p be the PPI of the return statement of m, W its

assignable set and ψ the postcondition of S(a), if fields(ψ) ∩W 6= ∅, we set

Sprop(p) = S(p) ∧
(
({heap := oldHeap}ψ)→ ψ

)
� Analogously for atomic segment names a′ ∈ GOver(a) and a′ ∈ GOver(m′),

where the ensures clause instead of the postcondition is manipulated.

This construction is applied recursively for all atomic segment and method
names. Afterwards, the postconditions of the interface contract are made avail-
able in the resolve contracts. Let rC.m be the PPI of the return statement of C.m
and Sparam

prop (rC.m) its conjunct from the interface contract. Then set

Scond
prop (p) =

∨
rC.m

C.m implements m∈Smtds(p)

Sparam
prop (rC.m) .
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5.3 Semantics of Behavioral Contracts

We require a few auxiliary de�nitions to locate events in traces. For each event
type ev, for example, futEv, there is a predicate isEv(i) that holds i� the i-th
element of the current trace is an event of type ev. Also predicate isInvEv(i, m)
holds i� the i-th element of the current trace is an invEv on method m, and anal-
ogously for isNewEv. Similar de�nitions include predicate isSuspEv(i) that holds
i� the i-th element of the current trace is an SuspBoolEv or SuspFutEv; predicate
isSuspEv(i, p) holds i� the i-th element of the current trace is an SuspBoolEv
or SuspFutEv at PPI p; predicate isInvEvW(i, m, e) holds i� the i-th element of
the current trace is an invEv on method m with value e, and analogously for
isNewEvW, isFutEvW and isFutREvW.

Given a speci�cation ϕ with parameters (for example, method parameters),
write ϕ(e) for the substitution of the parameters with the corresponding terms
from e. Given a �eld f, we denote the declared type of its values with Tf. Pred-
icate isLast(i, j) holds i� j is either the �nal state of the current trace after i or
the state before the �rst suspension event after i:

isLast(i, j) ≡ j > i∧((
isSuspEv(j + 1) ∧ ∀k ∈ I. (i < k < j → ¬isSuspEv(k))

)
∨(

∀k ∈ I. k ≤ j ∧ (i < k < j → ¬isSuspEv(k))
))

De�nition 14 (Semantics of Behavioral Contracts). The semantics α of
a frame W starting at trace position i ∈ I is that the trace has the same value in
all �elds not in W at the subsequent suspension event (or �nal state, if the trace
has no suspension):

α(W, i) =

∃j ∈ I. isLast(i, j) ∧
∧
f6∈W

∃tf ∈ Tf.
((

[i] ` this.f
.
= tf

)
∧
(
[j] ` this.f

.
= tf

))
The semantics α of a postcondition ϕ is that the �nal state is a model for ϕ,
unless the last event is a resolve event:

α(ϕ) = ∃max ∈ I.
(
∀i ∈ I.i ≤ max

)
∧ ¬isFutEv(max − 1)→ [max ] ` ϕ

The semantics α of the call conditions C is that each call and each object creation
has parameter values that are a model for the call (creation) precondition. The
instantiation of the precondition contains no variable or �eld of the callee, but
is evaluated in a state:

α(C) =
∧

m∈dom(C)

∀i ∈ I. isInvEv(i, m)→(
∃e ∈ List<Any>. isInvEvW(i, m, e) ∧ [i+ 1] ` C(m)(e)

)∧
C∈dom(C)

∀i ∈ I. isNewEv(i, m)→(
∃e ∈ List<Any>. isNewEvW(i, m, e) ∧ [i+ 1] ` C(C)(e)

)
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The semantics α of the suspension speci�cation is that at every suspension (i) the
frame semantics holds until the subsequent suspension point, (ii) the ensures
clause is established, and (iii) the requires clause holds. Additionally, at every
return statement the corresponding postcondition holds and at every future read
the correct method has been read and the conditions on the read value hold:

α(S) =
∧

p∈dom(S)

∀i ∈ I. isSuspEv(i, p)→ [i+ 1] ` Sens(p) ∧ [i+ 3] ` Sreq(p)

∧ α(SW(p, i+ 4)

∧
∧

p∈dom(S)
p is at return

∀i ∈ I. ∀e ∈ Any. isFutEvW(i, p, e)→ [i− 1] |= S(p)(e)

∧
∧

p∈dom(S)
p is at get

∀i ∈ I. ∀e ∈ Any. isFutREvW(i, p, e)→ [i− 1] |= Scond(p)(e)

The complete semantics is

met
(
(W, ϕ)S,C

)
= ∃mi ∈ I.

(
∀i ∈ I. i ≥ mi

)
∧ α(W,mi) ∧ α(ϕ) ∧ α(S) ∧ α(C) .

The formula is �nite, as for any speci�cation the domains of C, S are �nite.

5.4 Method Contracts as Behavioral Types

We proceed to proof obligation generation and proof calculus. The proof obliga-
tion schema is straightforward. In particular, it requires neither an encoding of
frames in the postcondition like JavaDL [59] nor statements involving the event
history like ABDSL [27].

De�nition 15 (Proof Obligation Schema). Let P be a speci�ed program and

MtdP the set of its methods. Let
(
preparamm , preheapm , θm

)
m∈MtdP

be the extracted and

propagated set of behavioral contract triples from P. Further, given a method m,
let sm be the method body of m. The proof obligation schema is

ι(m) =
(
preparamm ∧ preheapm , θm

)
which characterizes the following proof obligations:

{lastHeap := heap}{oldHeap := heap}
((
preparamm ∧ preheapm

)
→ [sm

met


 θm]
)
.

The two updates save the prior state for the speci�cations connecting two dif-
ferent heaps: oldHeap is the heap at the beginning of method execution, lastHeap
is the heap from the last (re-)activation. In the beginning, all heaps (heap,

lastHeap, oldHeap) coincide.
To formulate the proof system we need the auxiliary de�nitions stated in

Fig. 9:

� Applying the update UA removes (�anonymizes�) all state information from
the heap variable and saves the old state in lastHeap.
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� Similarly, UW
F removes all information from all program variables in W and

all heaps except oldHeap.
� W′s is the intersection of the currently active frame W and all frame speci�-
cations in s. This is needed for loops, because the loop body s has to be in
the frame from before the loop, as well as in the frame at the end of every
iteration. These sets may di�er when the loop body contains an await.

� �elds extracts all �eld accesses from a set of expressions.

UA ={lastHeap := heap}{heap := anon(heap)}

UW
F ={lastHeap := anon(lastHeap)}{heap := anon(heap)}{v1 := v1} . . . {vn := vn}

for each non-heap program variable vi ∈ W and fresh symbols vi.

W′s =

{
W if s contains no await

W ∩
⋂

PPI i in s SW(i) otherwise

fields(e1, . . . , en) = �elds within expressions e1, . . . , en

Fig. 9. Auxiliary de�nitions.

De�nition 16 (Proof Calculus). The proof system for contracts is in Fig. 10.
The rules for writes to variables are similar to those for �eld writes to f: the
generated update x := t changes to heap := store(heap, f, t). Additionally f ∈ W is
added, see (assignF). In the remaining rules we only give the version for variables.

The rules for all statements except return and skip are given with an active
statement and a continuation s. The rules for skip ensure that if the statement
has no continuation, a skip can be added.

� Rule (assign) turns an assignment to a variable into an update and (assignF)

does the same for a �eld.
� The rule (skI) introduces skip as discussed above, (skF) removes a skip as the
active statement, (sk) terminates symbolic execution evaluates the statement
postcondition when skip is the sole remaining statement.

� Rule (return) proves the method postcondition at (the implicit) PPI i of the
return statement. The statement postcondition needs not to hold here.

� Rule (get) has two premises: the �rst checks with a global points-to anal-
ysis that the correct method is synchronized. There are no rules for this
modality�the branch is closed by an external analysis. The second premise
generates a fresh symbol v and adds the propagated knowledge about it
when symbolic execution is continued.

� Rule (await) checks �rst that the correct predicate holds before termination,
and continues symbolic execution according to the speci�cation of the sus-
pension point. The statement postcondition needs not to hold here.
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Γ =⇒
{
U
}{

x := e
}[
s

met


 (W, ϕ)S,C
]
,∆

(assign)

Γ =⇒
{
U
}[
x = e; s

met


 (W, ϕ)S,C
]
,∆

Γ =⇒
{
U
}{

heap := store(heap, f, e)
}[
s

met


 (W, ϕ)S,C
]
,∆

(assignF) f ∈ W
Γ =⇒

{
U
}[
f = e; s

met


 (W, ϕ)S,C
]
,∆

Γ =⇒
{
U
}[
s; skip

met


 (W, ϕ)S,C
]
,∆

(skI) s is neither skip nor composed

Γ =⇒
{
U
}[
s

met


 (W, ϕ)S,C
]
,∆

Γ =⇒
{
U
}[
s

met


 (W, ϕ)S,C
]
,∆

(skF)

Γ =⇒
{
U
}[

skip; s
met


 (W, ϕ)S,C
]
,∆

Γ =⇒
{
U
}
ϕ,∆

(sk)

Γ =⇒
{
U
}[

skip
met


 (W, ϕ)S,C
]
,∆

Γ =⇒ {U}{result := e}S(i),∆
(return) i is the PPI of this return

Γ =⇒
{
U
}[

return e;
met


 (W, ϕ)S,C
]
,∆

=⇒
[
[sync: "i"] x = e.get; s

p2


Smtds(i)
]

Γ, {U}{result := v}Scond(i) =⇒ {U}{x := v}
[
s

met


 (W, ϕ)S,C
]
,∆

(get) v fresh

Γ =⇒
{
U
}[
[sync: "i"] x = e.get; s

met


 (W, ϕ)S,C
]
,∆

Γ =⇒
{
U
}

Sens(i),∆

Γ, {U}UA(Sreq(i) ∧ g) =⇒ Γ, {U}UA
[
s

met


 (SR(i),SW(i), ϕ)S,C
]
,∆

(await)

Γ =⇒
{
U
}[
[atom: "i"] await g; s

met


 (W, ϕ)S,C
]
,∆

Γ =⇒ {U}C(C)(e),∆ Γ =⇒ {U}{x := o}
[
s

met


 (W, ϕ)S,C
]
,∆

(create) o fresh

Γ =⇒
{
U
}[
x = e.new C(e); s

met


 (W, ϕ)S,C
]
,∆

Γ =⇒ {U}
(
e 6 .= null ∧ C(m)(e)

)
,∆ Γ =⇒ {U}{x := f}

[
s

met


 (W, ϕ)S,C
]
,∆

(call) f fresh

Γ =⇒
{
U
}[
x = e!m(e); s

met


 (W, ϕ)S,C
]
,∆

Γ =⇒ {U}I,∆ Γ,
{
U
}
U

W′
s
F
(
I ∧ e

)
=⇒

{
U
}
U

W′
s
F
[
s

met


 (W′s, I)S,C
]
,∆

Γ,
{
U
}
U

W′
s
F
(
I ∧ ¬e

)
=⇒

{
U
}
U

W′
s
F
[
s′

met


 (W′s, ϕ)S,C
]
,∆

(loop)

Γ =⇒
{
U
}[

while (e) {s} s′
met


 (W, ϕ)S,C
]
,∆

Γ, {U}e =⇒
{
U
}[
s;s′′

met


 (W, ϕ)S,C
]
,∆

Γ, {U}¬e =⇒
{
U
}[
s′;s′′

met


 (W, ϕ)S,C
]
,∆

(branch)

Γ =⇒
{
U
}[

if (e) then {s} else {s′} s′′
met


 (W, ϕ)S,C
]
,∆

Fig. 10. Calculus for behavioral contracts
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� Rules (create) and (call) handle object creation and method calls: the precondi-
tion has to be proven in one premise and a fresh symbol is used subsequently
during symbolic execution. Rule (call) additionally checks that the target is
not null.

� Rule (loop) is a standard loop invariant rule: The invariant formula I has
to be proven when the loop is entered. This is done in the �rst premise.
The second premise checks that I is preserved by the method body. The
update mechanism removes all information from the accessed variables and
heap, except that I and the guard holds. This is the only place where the
statement postcondition is modi�ed: it must be shown that the method body
has the postcondition I. The mechanism for the frames is described above.

� Rule (branch) splits the proof into two branches, following the two branches
of the if statement.

The rules assume a standard technique to translate expressions into terms and
formulas, however, a guard e? is translated into true.

Frames are checked syntactically by computing the accessed �elds in an as-
signment, yet our system is more precise than a purely syntactic approach: By
embedding frames into symbolic execution, the check is �ow- and value-sensitive.
For example, it avoids to execute dead code. In addition, it is contract-sensitive:
given multiple contracts we can check whether the frames hold for a given spec-
i�cation, while purely syntactic approaches cannot distinguish these cases.

We also do not require an explicit history variable keeping track of events, as
the trace properties dealing with events are hidden in the behavioral modalities.

5.5 Context Sets as Global Trace Properties and Soundness

The main theorem states that in every global trace of a veri�ed program, the
projections to local traces are models for the semantics of the corresponding
method contract. This requires a characterization of context sets as properties
of global traces. In addition, we assume standard soundness proofs for most
rules in the proof calculus. However, rules (await) and (get) depend on non-local
information. For example, (get) is only sound if the methods that provide the
read value indeed have veri�ed soundness conditions. These rules, therefore, are
part of the composition step of the main theorem.

Lemma 1. Rules (assign), (assignF), (skI), (skF), (sk), (return), (create), (call), (loop),
(branch) are sound, i.e. validity of the premises implies validity of the conclusion.

De�nition 17 (Semantics of Global Speci�cation). Let m be a method and
p an atomic segment name. A trace sh adheres to global speci�cation G if:

� For every invocation reaction event on m at index i, there is a future event
from a method m′ ∈ GSucc(m) or a suspension event from some p′ ∈ GSucc(m)
at index j < i. If these sets are empty, then i must be the �rst invocation
reaction event on the object. Moreover, every future or suspension event with
index k, such that j < k < i, is from some m′′ ∈ GOver(m) or p′′ ∈ GOver(m).
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� For every suspension reaction event on p at index i, there is a future event
from a method m′ ∈ GSucc(p) or a suspension event from some p′ ∈ GSucc(p)
at index j < i. Moreover, every future or suspension event with index k, such
that j < k < i, is from some m′′ ∈ GOver(p) or p′′ ∈ GOver(p).

Given a future f in a global trace sh, let mf be the method resolving f and
θm its behavioral contract.

Theorem 1. Let P be a program. If all method contracts can be proven, i.e. there
is a proof in the calculus for the sequents in ι(m), and all traces sh generated by
P adhere to the global speci�cation, then for each global trace generated by P and
each future f within sh, the projection of sh on f is a model for θmf :

sh|f |= met
(
θmf
)

Proof Sketch. The proof is by induction over the number n of reactivations and
future reads in the generated trace sh.

n = 0. In the �rst base case there are no suspensions and future reads, hence,
rules (get) and (await) are irrelevant. So all sequents in ι(m) are valid. It remains
to show that the proof obligations do not discard any traces, i.e. precondi-
tions preheap, preparam hold in the �rst state of every projected trace sh|f .
Let i be the invocation reaction of a process and mi its method. If the seman-
tics of the global speci�cation holds, then before i there was a position k < i
with a future event that terminates a process of a method mk in the succeeds
set of mi. By propagation, preheap is established here, as ι(mk) is valid. Be-
tween k and i only methods m′k from the overlaps method run on the same
object, so preheap is preserved until i because ι(m′k) is valid. Methods running
on other objects are irrelevant, because they cannot access the heap of the
object running mi and preheap contains only �elds of one object. Regarding
preparam, there is a l < i with the invocation event corresponding to i. This
l is issued by some other method ml. Since ι(ml) is valid, that call has been
veri�ed to adhere to the call conditions of C.

n = 1. In the second base case there is exactly one future read or reactivation.
Let i be the position of that event in sh. Let mi be the method issuing the
event. We distinguish the two cases:
Future Read. Let p be the PPI of the reading get statement. By assump-

tion, the proof for ι(mi) has been provided, but this does not imply that
ι(mi) is valid: Rule (get) is not sound, i.e., validity of its premises does
not imply validity of its conclusion. But it is sound for the state σ before
i: if its premises hold in σ, then its conclusion holds in σ. To establish
this, we must show that {result := v}Scond(p) holds in the state before
i. It is su�cient to show that the read value is described by Scond(p).
By the �rst rule premise, mi is in Smtds(p). By the second premise, the
code following the get statement is a model for the rest of the behavioral
contract, if the read value is described by Scond(p). By propagation,
Scond(p) is the disjunction of all postconditions (from the interface, so
they contain only result as a program variable).
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We observe that every method not containing await and get statements is
a model for its type by the above argument. To read a future, a method
mi must have terminated with a future event at position k < i. So the
read value v is described by {result := v}postparam and

{result := v}postparam → {result := v}Scond(p) .

Thus, the proof of ι(mi) describes all relevant states to conclude that the
theorem statement holds.

Reactivation. Let p be the PPI of the reading await statement. This case is
similar to the previous one, except one has to show that (await) is sound
at i. It is su�cient to show that Sreq(p) ∧ g can be assumed. The guard
condition g obviously holds, as it is directly part of the semantics. The
argument for Sreq(p) is the same as in the proof in the case for n = 0, i.e.
that preheap can be assumed at method start. The only di�culty arises
when the await statement has to establish Sreq(p) itself. However, if the
proof of ι(mi) has been closed, then the �rst premise has been shown and
does not rely on the soundness of (await): we may extract a partial proof
by pruning the branch corresponding to the second premise to establish
that at suspension Sreq(p) holds.

n > 1. Let i be the index of the last reactivation or future read event. For
sh[0 . . . i − 1] we can apply the induction hypothesis, i.e. every complete
local trace so far was a model for its contract. Let mi be the method issuing
the event. We distinguish the same cases as above:
Future Read. The case for future reads is analogous to the one in base case

n = 1. The only di�erence is that the read future may have been resolved
by a method that contains a get statement itself. The soundness of (get)

for those states, however, is established by the induction hypothesis.
Reactivation. This case is again analogous. The only di�erence is that

other await statements may need to establish the suspension assumption
(instead of the await statement in question), and the process of the other
await statement has not terminated yet at i. This is covered by the same
argument as in the base case n = 1 by extracting partial proofs for any
relevant method. Otherwise, the induction hypothesis su�ces.

We integrate the pointer analysis as a behavioral speci�cation that is obvi-
ously not complete. The appropriate notion of completeness for logics referring
to external analyses remains an open question.

6 Related Work

Wait conditions were introduced as program statements for critical regions and
monitors in the pioneering work of Brinch-Hansen [35, 36] and Hoare [37]. Rea-
soning approaches for monitors are discussed by Dahl [20]. SCOOP [9] explores
preconditions as wait/when conditions.
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The paper [23] provided a reasoning system for distributed communications
between active objects where interleaved concurrency inside each object is based
on explicit release points. This paper assumes pre-conditions to hold when meth-
ods are activated, but uses a set of invariants, i.e., one monitor invariant captur-
ing interleaving at each release point. The proof system is used to prove that a
class maintains a set of monitor invariants which describe its release points. Com-
pare with our paper, the major di�erence is in how release points are handled.
We have more expressive language to specify other methods at the interleaving
points. Thus, the proof system of [23] is more expressive than reasoning over
just a single class invariant but less expressive than ours.

Previous approaches to AO veri�cation [22, 25, 27] consider only object in-
variants that must be preserved by every atomic segment of every method. As
discussed, this is a special case of our system. Compared to our work, this may
make the speci�cations of methods weaker. Our work is an extension of KeY-
ABS [24, 27] with the ability to specify and verify behavioral contracts for the
ABS programs. KeY-ABS is based on a four-event semantics for asynchronous
method calls, which introduces disjoint alphabets for the local histories of di�er-
ent objects. It is an extension of [5]. Invocation event in [5] is split into invocation
event and invocation reaction event in KeY-ABS; completion event in [5] is split
into completion event and completion reaction event in KeY-ABS. This disjoint
alphabets allows to reduce the complexity of reasoning about such concurrent
programs by signi�cantly simplifying the formulas in terms of the number of
needed quanti�ers.

Actor services [58] are compositional event patterns for modular reasoning
about asynchronous message passing for actors. They are formulated for pure
actors and do not address futures or cooperative scheduling. Method precondi-
tions are restricted to input values, the heap is speci�ed by an object invariant.
A rely-guarantee proof system [1,42] implemented on top of Frama-C by Gavran
et al. [32] demonstrated modular proofs of partial correctness for asynchronous
C programs restricted to using the Libevent library.

A veri�cation system for message passing programs written in Java and the
MPJ library can be found in [57]. Compared to our work, future in [57] has
di�erent meaning. The authors modelled the communication protocol in the
mCRL2 process algebra. These algebraic terms were de�ned as futures to pre-
dict how components will interact during program execution. Permission-based
separation logic and model checking were applied in [57] to reason about local
and global correctness of a network, respectively. Speci�cation and veri�cation
supports message sending, receiving and broadcasting but not method contracts.

Contracts for channel-based communication are partly supported by ses-
sion types [16, 38]. These have been adapted to the active object concurrency
model [47], including assertions on heap memory [46], but require composition
to be explicit in the speci�cation. Stateful session types for active objects [46]
contain a propagation step (cf. Sect. 2.3): Postconditions are propagated to pre-
conditions of methods that are speci�ed to run subsequently. In contrast, the
propagation in the current paper goes in the opposite direction, where a con-
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tract speci�es what a method relies on and then propagates to the method that
is obliged to prove it. Session types, with their global system view, specify an
obligation for a method and propagate to the methods which can rely on it.

Compositional speci�cation of concurrency models outside rely-guarantee
was mainly proposed based on separation logic [17, 56], which separates shared
memory regions [29] and assigns responsibilities for regions to processes. Shared
regions relate predicates over the heap that must be stable, i.e. invariant, when
accessed. Huisman et al. [15, 62] have used permission-based separation logic to
verify class invariants in multi-threaded programs, using barrier contracts. Even
though approaches to specify regions precisely have been developed [19,29], their
combination with interaction modes beyond heap access (such as asynchronous
calls and futures) is not well explored. It is worth noting that AO do not require
the concept of regions in the logic, because strong encapsulation and cooperative
scheduling ensure that two threads never run in parallel on the same heap. The
central goal of separation logic�separation of heaps�is a design feature of the
AO concurrency model.

7 Conclusion

Preemption interferes with speci�cation contracts in concurrent programs, be-
cause the unit of computation here di�ers from the unit of speci�cation. Coopera-
tive scheduling introduces syntactically declared program points for preemption,
occupying a middle ground between no preemption (as in actors and sequential
programs) and full preemption, as in multi-threaded programs.

This paper has addressed the problem of speci�cation contracts for cooper-
ative scheduling in active object languages. Because message passing does not
correspond to transfer of control in the asynchronous setting, it is necessary to
distinguish the responsibilities of the caller from the responsibilities of the callee
in ful�lling the precondition of a task. We address this problem by means of
pre- and postconditions at the level of interfaces, re�ecting that the caller must
ful�ll the parameter precondition, and at the level of implementations, re�ecting
that only the callee has enough knowledge of the implementation to ful�ll the
heap precondition. We further show that by exploiting the syntactic declaration
of such preemption points, it is possible to specify locally how tasks depend on
each other and when di�erent tasks may safely overlap.

Technically, the paper develops a speci�cation language for cooperatively
scheduled active objects by specifying program behavior at the possible inter-
leaving points between tasks in terms of a concurrency context with succeeds and
overlaps sets. These sets enable �ne-grained interleaving behavior to be speci�ed
when required, and otherwise default into standard invariants, which weaken the
speci�cation to allow any interleaving. We formalized reasoning about such spec-
i�cations in a behavioral program logic over behavioral types. It relates the trace
semantics generated by execution of programs with method contracts expressed
as behavioral types.
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