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Abstract—With the advent of AI-driven applications, testing
faces new challenges when it comes to the integration of software
with AI components. We present a novel testing approach to
tackle the integration of software with symbolic AI in the form
of knowledge graphs (KG). As the KG is expected to change
during the run- and lifetime of the software, we must ensure the
robustness of the system w.r.t. changes in the KG. Starting with
a singular KG, we mutate its content and test the unchanged
software with the original test oracle. To address the specific
challenges of KGs, we introduce two additional concepts. First, as
generic mutations on single triples are too fine-grained to reliably
generate a KG describing a different, consistent KG, we employ
domain-specific mutation operators, that manipulate subgraphs in
a domain-adherent way. Second, we need to specify those parts
of the knowledge that the software relies on for correctness. We
introduce the notion of a robustness mask as shapes in the graph
that the mutant must conform to. We evaluate our approach
on two software applications from the robotic and simulation
domain that tightly integrate with their respective KG.

I. INTRODUCTION

a) Motivation: Artificial intelligence (AI) is becoming
ubiquitous in modern applications, yet poses challenges for
testing the integration of AI components into software. Not
only are these systems black boxes, they are also expected
to change and evolve during the run- and lifetime of an
application. The software relies on certain structures in the AI
component, yet must be robust with respect to changes in it.
Knowledge graphs (KG) [14], and related technologies such as
ontologies, are a form of symbolic AI based on graph data that
are notorious for posing difficulties in software integration, due
to the number and complexity of reasoners, query engines and
other tools that can be used to operate on them. Indeed, their
integration with software tools is their next big challenge [13].

b) Contributions: We present a new approach to test
the robustness of KG-components integrated with software,
in the sense of integration testing [31] to investigate whether
the software works correctly with unexpected KGs. Hence,
our system under test (SUT) is the combination the two
interacting components software and KG. Based on a seed
KG, we use mutation testing for test-case generation, but
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retain the original software and test oracle. Thus, we test the
integration by fuzzing one component. To address the specific
challenges, described below, we (a) introduce the notion of
domain-specific mutators to mirror possible changes in the
KG, and (b) introduce the notion of a robustness mask to
specify the structural assumptions of the software about the
KG and its ontology. The overall goal is to characterize the
graph structures that the software component assumes in a KG
in order to work correctly.

c) Challenges: Testing the SUTs poses several chal-
lenges, due to how the software components interacts with
the KGs.

1) KGs are accessed through reasoners and query engines
that use logical reasoning based on ontologies and de-
scription logics, turning them into black boxes from the
perspective of the software. But while the KG is accessed
through a black box, the software still relies on some
knowledge and structures within the KGs, such as a
specific vocabulary and minimal domain knowledge. For
example, a robot control system might implicitly expect
that the KG contains a node that represents the robot
itself.

2) KGs do not change arbitrarily and not in small steps.
Triples in a KG are not manipulated in isolation, but
according to specific patterns [9] and in conjunction with
other triples.

3) KGs are logically embedded. Not every knowledge graph
is also valid – it must be logically consistent with respect
to some ontology.

The first challenge is addressed by general approaches to gray
and black box testing, but the later two challenges prohibit a
direct application of generation-based fuzzing.

Generation-based fuzzing, e.g., grammar-based fuzzing
[11], can generate random syntactically correct test cases, as
one can utilize the formal grammars underlying the KGs. How-
ever, these test cases are not necessarily semantically correct,
i.e., they are not consistent with the respective ontology (see
third challenge) and do not respect the assumed structures
within the KGs (second challenge). More complex constraints
can be imposed on grammars by fuzzers [33], but these
techniques are still not expressive enough to express arbitrary
graph structures. Existing mutation testing approaches for the
underlying ontology [5], [19], [26] provide an alternative
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way to generate random KGs. These approaches use generic
mutations, which contain operations like deleting nodes from
the KG or swapping two classes in the class hierarchy of the
underlying ontology. However, such approaches are limited
to single steps of changes and do not ensure that the KG
is consistent with the ontology and do not preserve assumed
structures, again failing to address the second and third chal-
lenge.

Facing these challenges, the main research question that we
aim to answer in this work is the following:

• RQ1: How can one test the integration of software with
KGs?

As an answer, we propose a novel architecture for a test
case generator that is tailored for KGs.

d) Approach: Our generator is based on two key com-
ponents: (i) a set of mutation operators and (ii) a robustness
mask. The first is used to generate random test cases and the
second one is used to filter the generated test cases to the
meaningful ones.

The mutation operators are used to generate test cases
by applying a sequence of mutation operations to an initial
KG. The initial KG is known to be handled correctly by the
software and contains general information that is required. We
use two kinds of mutation operators. The first kind are domain-
independent mutation operators, which are generic and can
be applied to every input KG. The second kind are domain-
specific mutation operators, which we introduce to efficiently
generate test cases that are more interesting for the specific
software (reflecting the specific application domain). These
operators can be more complex and involve several changes
to the KG, thus addressing the second challenge. An example
for such a mutation can be seen in Fig. 1 in Section III.

The different kinds of mutation operators have slightly
different purposes in the generation of test cases. The domain-
independent operators ensure that every possible input KG can
be generated while the domain-dependent operators guide the
generator towards relevant test cases.

The robustness masks restrict the set of test cases to the ones
that are meaningful by filtering out test cases that do not satisfy
them. A mask is a set of graph shapes expressed in SHACL [7]
that must be validated on the KG. In general, the more robust
a software is, the fewer graph shapes are in the mask, as there
are fewer restrictions on the KGs that the software handles
correctly. The robustness masks provide a way to specify
knowledge that is necessary for the software, thus addressing
the first challenge. Furthermore, the KG needs to be consistent
with the respective ontology. By using a reasoner to decide this
consistency, we address the third challenge.

Based on this approach, we aim to answer the following
two research questions in our work:

• RQ2: Which restrictions of the integration of the KG
and the software can be characterized using mutation
operators and robustness masks?

• RQ3: What are the consequences of using domain-
specific mutation operators compared to domain-
independent mutation operators?

We evaluate our approach on two case studies. First, the
SUAVE system for autonomous underwater robots [32] is
a robotic system that uses a non-query based approach to
interact with a knowledge graph to navigate its environment.
We are able to precisely capture possible changes in the
environment in domain-specific mutation operators and the
assumptions on the knowledge graph in graph shapes. Second,
a simulator for geological processes [27], where we are able to
capture assumptions on the ontology that specifies the interface
between software and knowledge graph.

II. BACKGROUND

Our work targets a research gap that we identified by ana-
lyzing the state-of-the-art of testing software with KG. Before
discussing such approaches, we introduce some preliminaries.

A. Preliminaries

a) Knowledge Graphs and Ontologies: Knowledge
graphs [14] are a technique for knowledge representation that
connects graph data with ontological axioms (the so-called
ontology) [3]. Due to the ontological axioms, querying a
knowledge graph can invoke a deductive reasoner to deduce
new facts about the nodes in the graph data. While powerful,
this reasoning makes modularization and interfacing hard, as
one does not a priori know which parts of the ontology are
relevant to answer a query.

While our implementation is based on the standard W3C
stack of RDF1 (to represent the graph), OWL2 (for the ontol-
ogy), SPARQL3 (for the queries) and SHACL4 (for the graph
shapes), we use the more concise Description Logic (DL)
syntax [2] here. DL is the formal underpinning of OWL-based
knowledge graphs, and distinguishes data (denoted ABox)
from ontology (denoted TBox) more clearly than RDF, a
separation that will come in handy in later sections.

b) Testing: Testing is a quality assurance technique in
software engineering, and can be used at different levels
to target either single units of a system (unit testing), the
integration of several interacting units (integration testing),
or the whole system (system testing) [21]. Here, we focus
on integration testing [31], where a test case consists of
a test input and a test oracle that determines whether the
combination of at least two components fails or passes the
test.

To create test inputs, one can either hand-curate new test
input manually, or generate them automatically, a process
called fuzzing [34]. Fuzzing can be either mutation-based
or generation-based. Mutation-based fuzzing creates new test
cases based on existing ones by changing parts of them, while
generation-based fuzzing generates random new inputs that
satisfy some constraints. Both forms of fuzzing are suitable
to test robustness, the “the degree to which a system or
component can function correctly in the presence of invalid

1Resource Description Framework, www.w3c.org/RDF/
2Web Ontology Language, www.w3c.org/OWL/
3SPARQL Query Language for RDF, www.w3c.org/SPARQL
4Shapes Constraint Language, www.w3.org/TR/shacl/
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inputs or stressful environmental conditions” [15], but in
highly constrained situations, mutation-based fuzzing can be
considered better suited to avoid generating too many invalid
inputs [34].

Designing oracles is a challenging task [4], and if generating
the expected output is not possible, one can use indirect
techniques, such as metamorphic testing [6], which relates the
outputs of different runs to each other, for example the output
of an original test case to a generated one.

B. State-of-the-art

Test-driven-development can be applied to ontologies,
where the test cases are axioms that must be entailed even
after modification and specify certain competency questions,
which in turn act as requirements [8], [18]. This procedure
is fully independent from the software components eventually
using the ontology. Similarly, mutations of ontologies, mostly
focusing on the TBox axioms [5], [26], have been proposed
to check how robust the ontology is to changes.

Research on testing software working on ontologies and
KGs, has focused on systems that work on generic graph
data, mainly graph database management systems [16], [17].
In this line of work, queries have been used as the input to
detect both logical and generic bugs. However, the software
and KGs are loosely coupled. Metamorphic testing of Datalog
engines, while not directly addressing KGs, similarly focuses
on generating new instances for software components that
work on generic inputs [23].

Lemieux and Sen use a branch mask to control where
an input byte sequence may be mutated to increase branch
coverage of the test suite [20]. Our approach similarly masks
part of the KG to prohibit its mutation, but works on a more
structural level than mere bytes.

Research Gap: The above discussion shows that, there
is currently no approach for integration testing of systems in
which software and KG components interact. In particular,
there is no notion of an interface between these components,
as competency questions are posed by subject matter experts
during the development of the ontology and do not consider
software. Consequently, no way to variate the KG in a
meaningful way to generate further test scenarios is known.
Additionally, mutations of ontologies so far only consider
TBox axioms and completely ignore the ABox instances that
must be consistent with them. Thus, it is not possible to assess
the robustness of the SUTs.

In the next section, we illustrate by a concrete example how
this gap manifests itself for tightly coupled systems – software
components that rely on the specifics of the used KGs and
interact with them in a fixed vocabulary.

III. MOTIVATING EXAMPLE

To illustrate tightly coupled and KG-based software appli-
cations, their challenges and to give an overview over our
approach, consider the software for an autonomous underwater
vehicle (AUV), which performs infrastructure inspection in
an unknown environment [25], [29]. This is a simplified

p := query(“:isAt(:auv, ?p)”)
inspect(p)
S := query(“:nextTo(p, ?s)”)
while S ̸= ∅ do

p := S.pop()
if ¬inspected(p) then

moveTo(p)
inspect(p)
S := query(“:nextTo(p, ?s)”)

end if
end while

(a) Pseudo code of an algorithm for pipeline inspection, which
accesses the KG via queries marked with query.

:auv :AUV

:p1 :p2

:Pipe

rdf:type

:isAt

:nextTo

rdf:type

rdf:type

(b) Scenario with corresponding KG representation before mutating.

:auv

:p1

:AUV

:p2

:p3 :Pipe

rdf:type

:isAt

:nextTo

rdf:type

rdf:type
:nextTo

rdf:type

(c) Scenario with corresponding KG representation after mutating.

AuvAtPipeline
a sh:NodeShape ;
sh:targetNode :auv ;
sh:property [

sh:path :isAt ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:class :Pipe ;

].

(d) Robustness mask that describes a restriction on the shape of the
KG, namely how :auv needs to be connected to other nodes.

Fig. 1: Components for a simple pipeline-inspection algorithm:
Pseudo code, graph representations for original / mutated
scenarios and a robustness mask.
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system based on the deployed SUAVE system, which we
will use in our evaluation in Section VI. The KG serves two
purposes: First, the KG encodes the perceived environment
and contextualizes this environment using domain knowledge
encoded in an ontology. Second, the KG encodes the mission
and the possible actions of the AUV [?], [?], [?], [?].

a) Infrastructure Inspection: For pipeline inspection, a
scenario is depicted in Fig. 1. In Fig. 1a, we provide an
algorithm that orchestrates the inspection of (all) the pipe seg-
ments. The algorithm relies on knowledge about the environ-
ment, which the algorithm accesses using queries (marked with
query(...)) to retrieve sets of elements for further processing.
The algorithm starts by retrieving the current position, inspects
the pipe segment that the AUV is at and finds an adjacent
segment of pipe that has not been inspected yet. Afterwards,
the AUV moves to the new pipe segment. This is repeated
until no uninspected adjacent pipe segment can be found.

For the representation of the knowledge, the KG in Fig. 1b
shows how we can encode an environment as a graph. The
picture shows an AUV in an underwater environment with two
pipe segments. Next to that, we show how this scenario can
be encoded as a knowledge graph. All relevant entities in the
scenario, i.e. the AUV and the pipe segments, are expressed as
nodes that are connected by appropriate relations to explain
their location w.r.t. each other. Furthermore, we might add
information about the classification of the individuals, e.g.
the pipe segments are all of the class :Pipe. The SUT
successfully inspects all pipe segments in this scenario (first,
it inspects :p1 and then :p2).

b) Challenges: Testing the robustness of the integration
of the software component implementing the algorithm with
the KG involves the challenges mentioned in Section I.

(1) Although the software treats the KG as a black-box, it
implicitly has some assumptions about its structure. Some of
these assumptions are rather obvious, e.g. that the AUV is in
the beginning at the position of exactly one pipe segment,
others are more subtle. One such assumption is that the
inspected pipe structure is not branching. The illustration in
Fig. 1c contains a scenario, i.e. a knowledge graph, where
this assumption is violated. The algorithm does not behave as
desired when it uses this KG as the input: After inspecting
the first segment, either the second or the third segment
will be visited. However, from both of them, there is no
adjacent uninspected segment as the first segment is already
inspected. Thus, the SUT terminates without inspecting all
pipe segments.

(2) The KG in Fig. 1c, which reveals an assumption of
the software, differs in several ways from the original KG in
Fig. 1b. Multiple changes need to be made to the original KG
to obtain the new KG: a new individual of the type :Pipe
needs to be added and the :nextTo relations between the
new segment and the first one need to be added. Having a
test case where only one of the changes is considered, e.g.
only adding a new individual with a :nextTo relation to the
first segment, might result in a KG that does not represent
a meaningful scenario, e.g. because only individuals of type

:Pipe can be in a :nextTo relationship. Thus, the changes
between relevant test cases are non-continuous.

(3) The graph structure has to be consistent with the
respective ontology. This might require that only the node
:auv is in an :isAt relationship with some other node
and that the node :auv is not of type :Pipe. Our testing
framework must ensure that we only generate consistent KGs.

c) Overview: To test the robustness of the integration,
we need a generator for KGs that are within the domain of
the implemented algorithm. To construct those, we start with
the KG in Fig. 1b and then use mutation operators that are
specifically designed for the underwater domain.

We apply domain-specific mutation operators to the original
KG (Fig 1b) to create test cases. These mutations should be
able to generate test cases that reveal new information about
the behavior of the software, like the one in Fig. 1c. So, we
can define an operator that generalizes the change from the
KG in Fig. 1b to the KG in Fig. 1c. The result is a mutation
operator for adding a new pipe segment, which is applicable to
every existing individual of type :Pipe. In general, a domain-
specific mutation operator works on some subset of the KG.
This operator includes several changes that are all necessary
to reflect the addition of a new pipe segment and thus solves
the challenge of the non-continuous behavior of changes of
the KGs. The operator is only relevant for the specific domain
of pipe infrastructure inspection.

We use robustness masks to describe declaratively the
scenarios in which the software works as intended. It is thus
a measure to describe the assumptions that the software has
about the KG. The less robust the software is, the more
restrictive is its mask. The mask contains shapes that must
be enforced by the KG together with the underlying ontology.
An example for a mask in our scenario is depicted in Fig. 1d.
It contains a restriction on how the node :auv is connected
to other nodes. In particular, that is exactly in one :isAt
relation with another node and this node is of type :Pipe.
This restriction needs to be satisfied, as the algorithm fails
otherwise because the initial position of the AUV can not be
extracted from the KG.

Before it is used for testing, a generated KG is checked
against the mask of the software, as we are only interested in
KGs that reveal new information about the software and not
in test cases for which we already know that the software does
not behave as intended.

Additionally, KGs are checked for consistency with their re-
spective ontology. Using domain-specific mutation operators is
a way to ensure that most of the generated KGs are consistent,
while generic mutations will often generate inconsistent KGs.
For example, a generic mutation might add new :nextTo
relations between nodes, which can lead to an inconsistency
if we consider the KG on the top and an ontology that requires
that only nodes of type :Pipe can be in a :nextTo relation.

Generating test cases where the software fails, such as the
one in Fig. 1c, reveals that the software is less robust than
assumed. It provides evidence that the robustness mask does
not describe the valid inputs correctly. In such a situation,
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one must update the mask. In our example, we need to add a
shape that the pipe structure is not branching to the robustness
mask. We discuss the creation of such a mask in detail in
Section V-B.

IV. TESTING ARCHITECTURE

We propose to use the testing architecture, which is shown
in Fig. 3 to test the integration of software with KGs. We first
introduce the relevant structures and the different components
before explaining the workflow of using our architecture.

A. Structures

Our testing architecture uses different structures to represent
KGs, software, mutation operators and graph shapes.

a) Knowledge Graphs: We follow the usual view on
RDF graphs: Each element (nodes or types of relations) have
their own unique identifier, also known as an IRI, which can
be an arbitrary string. The graph structure is a set of triples
of these identifiers. Each triple represents a directed edge in
the graph, with a start node, a relation that connects the nodes
and a target node (where the edge ends). A subgraph of a KG
is a subset of the set of triples that make up the KG.

b) Software: The software that we consider takes a KG
as an input on which their behavior depends. We can view
the (observable) behavior as the output of the software. We
use this output to judge whether the software works correctly.
So in general, a software takes a KG and produces an output.
Hence, we can view software as functions that map a KG to
one of the possible outputs.

Example 1. Consider the pipe inspection example from Sec-
tion III. We can view the number of inspected pipe segments as
the output of the software; i.e., the possible outcomes are the
natural numbers. The software works correctly if the output
equals the number of pipe segments in the KG.

c) Mutation Operators: A mutation operator for KGs
selects a subgraph and replaces it by a different subgraph. To
make the operators applicable to different KGs, we use graph
patterns, which include variables in addition to the unique
identifiers from the KG. This allows a mutation operator to be
specified in an abstract manner. A pattern is a set of triples; i.e.,
it is a graph itself. To describe actual subgraphs of a specific
KG, we instantiate the patterns by mapping the free variables
to elements of the KG. We call such subgraphs instantiations
of the mutation operator. Because instantiated graph patterns
do not contain any variables, they are essentially KGs.

Example 2. We consider an example related to the
domain in Section III. We use the graph pattern
{(x, type,Pipe), (y, type,Pipe)}, which describes two
individuals of type Pipe. Instantiating the pattern with the
valuation that maps x to p1 and y to p2 yields the new
pattern {(p1, type,Pipe), (p2, type,Pipe)}, which does not
contain any variables.

A mutation operator is a pair of two graph patterns (S,R).
The pattern S describes which subgraphs should be selected to

SimplePipeShape
a sh:NodeShape ; sh:targetClass Pipe ;
sh:property [
sh:path nextTo ; sh:minCount 1 ;
sh:class Pipe ; ].

Fig. 2: Example of a SHACL shape for the pipeline example.

apply the operator, i.e. where to mutate the KG. The pattern
R describes how the selected subgraph should be replaced,
i.e. how to mutate the KG. All possible instantiations of the
first pattern that are subgraphs of the KG are possible places
to apply the operator. The second pattern describes the new
graph structure that should replace the found subgraph. Note,
that the new pattern can contain more variables than the pattern
with which we select the subgraph to apply the mutation. Such
additional variables can match either: any existing node in the
KG or new individuals whose identifier has not been used so
far in the KG.

Example 3. We consider again the example
from the pipeline domain. We define a mutation
operator that connects two pipe sections with the
patterns S = {(x, type,Pipe), (y, type,Pipe)} and
R = {(x, type,Pipe), (y, type,Pipe), (x, nextTo, y)}.
Note, that the pattern R contains all triples from S;
otherwise, they would be deleted when the operator is
applied. We consider the following KG as before, containing
two pipe segments: G = {(p1, type,Pipe), (p2, type,Pipe)}.
The operator describes four mutants for this graph, resulting
from the four possible ways to map the two variables
to the two pipe segments. The mutants are the following
KGs that all contain the original KG and one additional
relation: G ∪ {(p1,nextTo,p1)}, G ∪ {(p1,nextTo,p2)},
G ∪ {(p2,nextTo,p1)} and G ∪ {(p2,nextTo,p2)}.

The described mutation operators are defined quite general.
From a practical point of view, one can further classify
the operators based on the subgraph that is affected by the
mutation: the selected subgraph can be only concerned with
the nominal data, i.e., the ABox, or only with universals, i.e.,
the TBox, or with both. In our example, adding a pipeline
segment corresponds to selecting nominal data, while changing
a subclass relation corresponds to modifying universals. Cre-
ating a new subclass of pipeline segments and changing some
specific segments to be members of the new class falls into
the last category. Thus, all three possibilities are potentially
useful.

d) Graph shapes: We use SHACL to define shapes of
KGs [7]. A SHACL shape defines the structure of a subgraph
and where they have to be used in the KG. If a KG contains
the specified structures at the required places, it conforms to
the shape. A SHACL shape is expressed as a KG itself.

Example 4. We consider again the graph and muta-
tion operator from Example 3. We assume that we ap-
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Fig. 3: Testing architecture.

plied the mutation operator once to generate the mutant
M = {(p1, type,Pipe), (p2, type,Pipe), (p1,nextTo,p2)}.
The SHACL shape in Fig. 2 describes the requirement that
every pipe segment needs to be connected to at least one
other node, which has to be a pipe segment. The mutant
does not conform to the shape as p2 is not in a nextTo-
relation. However, by applying the mutation operator twice
to the original KG, we can generate the mutant M′ =
M∪ {(p2,nextTo,p1)}, which conforms to the shape.

B. Components

Our testing architecture is build out of several components.
We introduce them one by one, explain their behavior and how
they connect to each other.

a) Mutant Generator: The mutant generator is the cen-
tral component of our architecture. Its location in the architec-
ture is depicted in Fig. 3. It takes the KG that is going to be
mutated, called the seed, as an input. To perform mutations,
it further needs a (finite) set of mutation operators and the
desired number n of mutations applied to the initial KG
to obtain the mutated KG, called the mutant. The mutant
generator starts by randomly selecting a mutation operator.
The operator might have several or no place to be applied
to the KG. If the operator is applicable, i.e. there is at least
one mutant of the KG described by the operator, the mutant
generator selects randomly one of the mutants described by the
operator. Otherwise, a different operator is chosen. Afterwards,
the mutant generator starts with the mutant and applies a
new operator to obtain the next iteration of the mutant. This
procedure is repeated until n operators have been applied to
the KG. The higher the number n, the more likely it is that
the test run will fail, as the mutant is more different from
the original KG. This reduces the number of times the test
executor needs to be run, which is desired, as running the
software can be time consuming. The resulting mutant is the
output of the mutant generator.

b) Validity Checker: The validity checker is a component
that takes the mutant generated by the mutant generator and
checks, if the mutant can be used for testing (see Fig. 3). To
do so, the component takes a robustness mask, which is a set
of SHACL shapes, as an input. It tests, whether the generated
mutant conforms to all the SHACL shapes in the mask.

Additionally to checking if the mutant conforms to the
robustness mask, the mutant is checked to be consistent
w.r.t. the ontology it contains. An inconsistent KG entails all
knowledge and is therefore useless. Because of that, we only
classify a KG as valid if it is consistent.

The result of the validity check determines if the mutant is
considered for testing or not. Only if the result is positive, the
mutant is handed forward to the next component.

c) Test Executor: The last component in our architecture
(see Fig. 3) is the test executor. It takes the generated mutant
and uses it as input for the provided software component.
The output of the software execution is then compared with
the oracle for the software with the mutant. Depending on
whether the two outputs are the same or different, the mutant
is classified as passing or failing. This result is the overall
result of the architecture.

C. Workflow

We require that the user of the architecture has access to
the software component to use our architecture to analyze the
SUT. Furthermore, the user should provide a KG for which
the software is known to work correctly. This KG is provided
as the seed to the mutant generator and is the foundation for
all generated mutants.

The mutation operators can be of two kinds: domain-
independent or domain-specific. Formally, they differ by the
vocabulary that is used. Domain-independent operators only
use identifiers that are commonly used, e.g. included in the
OWL standard. Some of these operators can be obtained from
descriptions in existing work [5], [26]. On the other hand,
the domain-dependent operators use identifiers that are only
defined specifically for the domain of the software. Such
operators need to be defined by the user and should reflect
changes in the graph that are considered interesting, i.e. for
which the user expects to gain insights into the interaction of
the software component and the KG, based on the outcome of
the test. Domain-dependent operators often involve multiple
changes to the KG while domain-independent operators are
usually more simple as they need to be general enough to be
applied in many domains. If the user wishes to ensure that
the whole space of possible KGs is explored, the domain-
independent operators for adding and deleting nodes and
relations should be part of the set of operators.

Additionally, the user provides the number of mutations that
should be applied to generate the mutant. This number depends
on the software and how different the mutants should be from
the initial KG.

If some restrictions for the KG are already known, the
user provides a robustness mask that characterizes them. The
SHACL shapes in the mask describe information about the
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SUT that is already known, e.g. that some triples need to
be part of the KG, or if only some test cases are considered
relevant for testing, e.g. for the pipeline inspection case one
might be only interested in cases where there is at least
one robot. If an empty mask is provided, e.g. because no
restrictions are known, all consistent mutants are used for
testing. More details about how the robustness mask can be
obtained are described in Section V-B.

The last thing that the user needs to provide is a test oracle
for the mutated KG. Depending on the software, this can be
rather simple or a difficult problem but providing an oracle is
a common requirement. If the test run does not comply with
the oracle, the test run indicates that the provided robustness
mask does not capture the restrictions of the SUT correctly.
Hence, a mutant where the output of the software does not
comply with the oracle needs to be interpreted by the user
and is the source of new insights about the interaction, that
can be added to the robustness mask.

V. TESTING METHODOLOGY

To use our testing architecture most effectively, we propose
to use it as describe in this section. We discuss to which parts
of the KG the mutation operators should be applied to, how to
obtain a robustness mask and how to interpret the generated
mask.

A. Hierarchy of Axioms

Usually, KGs (and in particular the ontologies they contain)
are not build from scratch for each application but follow
established ways to organize knowledge by importing on-
tologies that describe more general concepts. This design is
also advised in order to allow for easier integration between
different KGs. The most general of these ontologies are called
top-level ontologies, such as SUMO [24] or BFO [1]. They
describe the most abstract terms. Often, an existing mid-
level ontology is used, which captures the concepts that are
relevant for the application domain. An example of such an
ontology is the CORA ontology for robotics and automation
[28]. Only the bottom-level ontology is developed specifically
for the SUT and captures the classes but also individuals and
relations that are relevant for the use case. As the top- and mid-
level ontologies are usually imported, we assume that (i) they
contain some superfluous parts and (ii) they are correct w.r.t.
the domain they describe. Hence, one often does not want to
target them with the mutation operators. Instead, one wants to
reveal information about the interaction of the software with
the part of the KG that is specifically designed for the SUT.
To achieve this, the user can (i) restrict the domain-specific
mutation operators to only target the bottom-level ontology
and (ii) use the robustness mask to ensure that all parts of the
KG that are contained in the top- and mid-level ontologies are
unaffected by the (domain-independent) mutation operators.

B. Obtaining Robustness Masks

As explained in Section IV, our testing architecture relies on
the provision of a robustness mask to identify the mutants that

should be used for testing. In general, such a mask does not
exist when the SUT is first tested as it is usually not created
together with the SUT.

a) Iterative Approach: We propose the following itera-
tive approach to develop and refine a robustness mask over
time. The user starts testing the SUT with an empty mask,
i.e. all consistent mutants are considered for testing. If the
test result complies with the oracle, the user generates a new
mutant and repeats this process until a mutant is found for
which the software’s output does not match the oracle. When
such a mutant is found, the mask needs to be updated. This
requires a user that has some understanding about the SUT
and the domain it operates in. The user needs to identify what
part of the mutant, i.e. which mutation, causes the unexpected
behavior. The mask is then updated to forbid such mutants in
the future, i.e. such mutants do not conform to the updated
mask. Afterwards, the process is repeated. This is done until
a sufficiently accurate mask is found, e.g. because a large
number of mutants can be generated without any deviations
from the oracles.

As this iterative approach is an important aspect of using
our testing procedure, we aim to evaluate whether it works by
answering the following research question:

• RQ4: Can the iterative process be used to develop a ro-
bustness mask that characterizes the interaction between
the software and the KG?
b) Example: We demonstrate the iterative approach of

developing a robustness mask using our running example from
Section III. Remember that the mutant in Fig. 1c was an
example for which the SUT does not work as expected. We
assume that we found this mutant with the initial (empty)
mask. Hence, we want to specify a new mask such that this KG
does not conform to it. One example of such a mask would
be the mask containing the two SHACL shapes in Figs. 4a
and 4b. The first shape specifies a node that has at most one
:nextTo relation, i.e. a node that is at the beginning of a pipe
structure and not in the middle. The second shape targets the
node :auv and requires that this node is only linked to nodes
defined by the first shape by an :isAt relation. Together, the
shapes express that the node :auv is at a position that is at the
beginning of the pipe structure. The mutated KG in Fig. 1c
does not conform to this mask as the segment :p1, which
is the one where the AUV is, is in the middle of the pipe
structure, i.e. this segment is connected to two other segments
via a :nextTo relation.

Observe that the second version of the mask can still be
further refined. It only filters out KGs where the branching
of the pipe structure occurs at the segment where the AUV
is located. Further generation of mutants using this second
mask might generate the KG in Fig. 5, for which the SUT
does not inspect all pipe segments because the AUV does only
inspect one of :p3 and :p4. This mutant can be generated by
applying the mutation that adds a new pipe segment twice. The
mutant also hints at how to expand the mask: we need to add
a shape that forbids the branching of the pipe structure as the
algorithm only works on linear pipe structures. The SHACL
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PipeStart
a sh:NodeShape ;
sh:property [

sh:path :nextTo ; sh:maxCount 1 ; ].

(a)

AUVStart
a sh:NodeShape ; sh:targetNode :auv ;
sh:property [

sh:path :isAt ; sh:node :PipeStart ;
].

(b)

LinearPipe
a sh:NodeShape ; sh:targetClass :Pipe ;
sh:property [

sh:path :nextTo ; sh:maxCount 2 ; ].

(c)

ConnectedPipe
a sh:NodeShape ; sh:targetClass :Pipe ;
sh:property [

sh:path (:nextTo∗)/(^isAt) ;
sh:node :auv ; ].

(d)

Fig. 4: Four SHACL shapes that are useful for the robustness
mask of the pipeline inspection example.
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Fig. 5: A mutant of the KG in Fig. 1b with two new pipe
segments.

shape in Fig. 4c describes the desired structure. The shape
specifies that every pipe segment is connected to at most two
nodes via :nextTo relations. The mutant in Fig. 5 does not
conform to this shape as the node :p2 has three nodes with
which it is in a :nextTo relation. Hence, we obtain the third
version of the mask by adding the shape from Fig. 4c.

Although it eliminates many invalid input KGs, this third
version of the mask is still not perfect. A fourth SHACL shape
that needs to be added to the mask is shown in Fig. 4d. It
describes the connectivity of the pipe structure, i.e. that all

pipe segments are connected to each other and can be reached
from the :auv. To specify this requirement, we use a complex
path condition, expressing a sequence of :nextTo relations
of any length followed by an inverse :isAt relation.

Overall, the fourth mask for our example might contain
all the shapes from Fig. 4. Together with the shape that we
introduced in Fig. 1d, we finally obtain a robustness mask for
our example that describes all requirements of the algorithm
on the structure of the KG.

C. Interpretation of Results

Apart from identifying test cases for which the SUT behaves
unexpectedly, i.e. the output differs from the oracle, the final
obtained robustness mask is also a relevant result. The mask
describes KGs for which the SUT behaves as expected. Hence,
if the mask is large, the software component is less robust
than if it only contains a few shapes. Furthermore, the mask
describes the parts of the KG that are relevant for the SUT,
i.e. it can help to identify parts of the KG that are superfluous.
We expect such parts to occur rather often, as KGs are often
not designed for a specific piece of software but rather for
a domain and thus capture more knowledge than needed for
the specific SUT. Additionally, the ontologies contained in the
KG are often based on existing, more general ontologies, thus
containing axioms that are not relevant.

D. Discussion

We briefly discuss two further issues: redundant mutants
and the human aspect in our methodology.

Redundant mutants are mutants that reveal the same fault
of the SUT. They can be equivalent, but do not have to be. We
address the problem of redundant mutants with the robustness
masks: After refinement following a failing test run, the mask
contains shapes such that this failure is not explored again.
The mask not only prevents using the exact same mutant again
for testing but defines the equivalence between mutants on a
semantic level, i.e. addresses redundant mutants.

Our iterative approach requires the user to refine the mask.
Different users might generate different masks when testing
the same SUT as there are multiple ways to prevent a specific
failure. When the users understanding of the SUT is limited,
there is the risk that generated mask is too strict, because
our testing framework can only reveal that a mask is too
permissive.

VI. EVALUATION

A. Research Questions

We recall our four research questions that we aim to answer
with this evaluation:

• RQ1: How can one test the integration of software with
KGs?

• RQ2: Which restrictions of the integration of the KG
and the software can be characterized using mutation
operators and robustness masks?
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Fig. 6: Underwater robot simulation Suave with an AUV
inspecting a pipeline.

• RQ3: What are the consequences of using domain-
specific mutation operators compared to domain-
independent mutation operators?

• RQ4: Can the iterative process be used to develop a ro-
bustness mask that characterizes the interaction between
the software and the KG?

B. Experimental Design and Setup

We apply our testing methodology to two different systems
to answer these research questions. The two systems differ in
many aspects, including the application domain, the way they
access the KG and the relevant mutation operators, and thus
allow us to derive a balanced view on our method.

a) SUAVE: The first system is Suave [32]. It is a control
system for autonomous underwater robots implemented on
top of ROS2 [22]. The mission of the robot is to find and
inspect a pipeline on the sea floor. While doing so, the current
and visibility of the water can change and thrusters of the
robot can fail. This requires the robot to adapt its control
algorithms, e.g. change the search pattern. The system that
we are testing is responsible for this higher level of control
called metacontrol [12]. The KG contains information for
introspection, describing the components of the robot, how
they interact and which capabilities are provided by which
interactions. It also captures the relevant environment param-
eters, e.g. the water visibility, to derive estimations about the
quality of different control algorithms. The ontology contained
in the KG has three different levels: the top- and mid-level
ontologies contain the axioms of the TOMASYS architecture
[12], which describes self-adaptation. The low-level ontology
contains the information about components, capabilities and
restrictions of capabilities that are specific for the underwater
inspection scenario.

Suave does not access the KG using queries, instead the
nodes in the KG become Python objects and Python classes.
This makes extracting the relevant parts of the KG with
traditional methods, e.g. through analyzing modules of the
ontology [30], impossible. Thus, Suave is a practical example
where methods of black-box testing for the SUTs, like our
method, are required.

Suave provides a realistic underwater physics simulation
for the mission of inspecting a pipeline using the robot
BlueRov25. A screenshot of the simulation is shown in Fig. 6.
We use the simulation to decide if the metacontrol algorithm
works correctly with a mutated KG. We classify finding and
following the pipeline as “pass” and not being able to do so
as “fail”. Because the environmental parameters are chosen
randomly by the simulation environment and differ for each
test run, we run the simulation several times for each generated
mutant. In our experiments, we used five test runs and the
overall result is the majority of the results of the individual
test runs.

b) Geo Simulator: The second system that we use for our
evaluation is a geological simulator [27]. The KG describes
an ontology of geological formations, processes and process
triggers, and their relation. In particular, the ontology specifies
triggers for oil maturation. The software simulates processes
happening in the formations using the triggers described in the
KG. The ontology is based on the top-level ontology BFO [1]
and the mid-level ontology GeoCore [10]. The bottom-level
ontology describes the geological processes and triggers rel-
evant for the oil maturation simulation. The scenario, i.e. the
types of formations and their layering, is described outside the
KG.

To evaluate if a mutated KG preserves the correctness of the
simulation, we track whether oil maturation occurs. The oracle,
i.e. whether maturation is expected, is generated together with
the scenario. As the simulation is deterministic, we only need
to run the simulation once for each mutant.

c) Mutation Operators: We use 19 mutation operators
for our evaluation, which are depicted in Table I. We chose
operators that fit our evaluation scenarios. About half of the
operators target only ABox axioms, about a third of the
operators target TBox axioms and the remaining operators
can be applied to both ABox and TBox axioms. It is no
coincidence that this difference is mirrored by the scenarios,
in which the operators are used: in Geo, we only mutate the
TBox and in Suave only the ABox. This is the case because
the KG in Geo does not contain any ABox axioms that we
can mutate. The KG for Suave does contain both types of
axioms, TBox and ABox axioms, but the software depends so
heavily on the TBox axioms, which are completely described
in the top- and mid-level ontologies, that all modifications of
the TBox axioms lead to failure. Therefore, we only mutate the
ABox for Suave. By using both systems for our evaluation,
we cover both types of mutations.

In general, all of our mutations target the low-level ontology
as we are interested in analyzing the part of the KG that was
developed specifically for the SUT and not the representations
of general knowledge.

The mutation operators used for Suave target the descrip-
tion of the components and capabilities. This includes domain-
independent operators that allow to add (and delete) individ-
uals and relations between individuals. The domain-specific

5https://bluerobotics.com/store/rov/bluerov2/
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name description target domain- used in
specific?

CEUA* remove one conjunct in a complex subclass axiom TBox no Geo
CEUO* remove one disjunct in a complex subclass axiom Tbox no Geo
ACATO* replace “and” with “or” in a subclass axiom TBox no Geo
ACOTA* replace “or” with “and” in a subclass axiom TBox no Geo
ReplaceSibling replace class by sibling class in a subclass axiom TBox no Geo
ChangeDataProperty change data property value to one that is in the domain of the property ABox no Geo/ Suave
ChangeDouble change value of a double ABox / TBox no Geo
AddInstance add a new instance of a class ABox no Suave
RemoveAxiom delete an axiom ABox / TBox no Suave
AddRelation add an object property relation between individuals ABox no Suave
ChangeRelation change object property relation (change target) ABox no Suave
RemoveNode delete a node (including deleting it from all relations it occurs in) ABox / TBox no Suave
AddThruster add a new thruster to the robot ABox yes Suave
AddQAEstimation add new “quality-attribute estimation” relation ABox yes Suave
RemoveQAEstimation remove “quality-attribute estimation” relation ABox yes Suave
ChangeSolvesFunction change target of a “solves function” relation ABox yes Suave
ChangeHasValue change target of a “has value” relation to random decimal ABox yes Suave
ChangeQAComparison change target of a “qa comparison operator” relation to a different operator ABox yes Suave

TABLE I: Implemented mutation operators. Operators marked with “*” are taken from [26], the other operators are introduced
by us.

operators are mostly refinements of the domain-independent
ones, e.g. they add or change one specific type of relation.
For the changes, we choose relations that are most relevant for
the scenario. An example of a more complex domain-specific
mutation operator is “AddThruster”, which involves adding a
new node of class “Thruster” and adding several relations that
include the new node to connect it properly to the existing
configurations.

The mutation operators used for Geo target complex sub-
class axioms, which are the key elements of the ontology
describing the oil maturation triggers. Notably, we consider
mutations to remove parts of the conditions under which
maturation is triggered. As the ontology contained in the KG
does not contain many axioms, it does not make sense to
define domain-specific operators as the domain-independent
operators can already only be applied in very few places.

d) Implementation: We implemented our framework and
the mutation operators using Kotlin. The implementation and
data for reproducing our results can be found online [?].

For both systems, we generated mutated KGs in batches
and updated the robustness mask accordingly after obtaining
the results for all the runs in a batch. For Geo we chose a
batch size of 100 and for Suave we chose batch sizes between
10–30. The difference comes from a difference in behavior:
Test runs using the initial, empty mask failed less often for
Geo (29%) than for Suave (50%) and running Geo requires
less time (about 5min) than running Suave (about 15min).
Therefore, we chose a smaller batch size for Suave to refine
the mask faster. Overall, about 15% of the tested mutants
lead to failing test runs. For Geo, we generated 10 random
scenarios where oil maturation occurs in some but not in all
of the scenarios. After obtaining a mask for the first scenario,
we also tested it against the other scenarios.

C. Results

For each research question, we state a general answer before
providing more evidence for our findings with more detailed

insights gained from analyzing Suave and Geo.
a) RQ1: Our presented approach is well suited for inte-

gration testing of software with KGs. Using mutations of the
original KGs, we identified KGs for which the SUT does not
behave as intended for both systems, Suave and Geo, with
reasonable effort. The developed masks provide a declarative
description of the restrictions, which can be interpreted by
KG experts. We could develop such a mask for both systems,
Suave and Geo.

b) RQ2: Two types of insight that can be very well
detected are parts of the KG that are superfluous and axioms
that are missing in the KG.

Superfluous parts are to be expected in many KGs as they
are often developed for more than one particular software.
Depending on whether the superfluous part is irrelevant to
solve the problem, this can indicate one of two modeling
errors: (i) the model is unnecessarily large or (ii) a lack
of separation of concerns. We found examples of both in
our analyzed systems. Superfluous parts are detected, when
we can apply mutation operators without any effect on the
behavior of the SUT. We identified several complex subclass-
axioms in the KG of Geo that had no effect on the behavior
and thus describe relations that are not necessary for the
intended scenarios. An example for the second modeling error
was discovered using mutation “AddThruster” for Suave.
Although the number of thrusters is relevant for the control
algorithm of the robot, e.g. the number of thrusters is an upper
limit of the degrees of freedom in which the robot can move,
the software component does not rely on this information from
the KG. This reveals a lack of separation of concerns in the
system as this information has to be encoded in the software
component and the KG simultaneously.

Our method can also discover axioms that are missing in the
KG by generating graphs that are consistent w.r.t. the TBox
in the KG but that do not conform to with what the software
component expects. For example, we discovered that one of
the data relations in Geo had no range associated with it.
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Fig. 7: Average number of attempts to create a valid mutant
for each iteration of the mask for Suave. For each data point,
batches of 100 mutants were created by applying two domain-
specific or domain-independent mutation operators.

This allowed mutations where the data value was changed
from a double to a boolean value, which the software could
not handle. The solution is to add an axiom that specifies the
correct range of the relation.

c) RQ3: Domain-specific mutation operators behave dif-
ferently from domain-independent ones: using them increases
the probability to generate mutants that are valid and the
generated mutants are more likely to lead to failing test runs.

In general, the usage of domain-specific mutation operators
leads to less mutants that do not comply with the specified
robustness mask or are inconsistent, as shown in Fig. 7 for
Suave. Hence, by using domain-specific operators, one can
generate mutated KGs faster.

Similarly, the domain-specific mutation operators lead faster
to test cases for which the SUT does not work correctly; i.e.,
the probability that a test run fails is higher for the same
number of mutations. This is desirable, as failing test runs
are our main source to gain insight into the behavior of the
SUT. Overall, it allows us to use less mutations to generate a
test case, which is beneficial for developing a mask (see RQ4).

d) RQ4: In general, we observed that the iterative pro-
cess can derive masks that are able to characterize significant
restrictions on the SUT. On the contrary, there are some
restrictions to what can be expressed with the masks and
the optimal number of mutations to generate a mutant is not
obvious.

The robustness masks are able to restrict the allowed test
cases. Fig. 7 shows that the more the mask is refined, the
more attempts need to be made to get a valid mutant. This is
to be expected and demonstrates that iterative refinement of a
mask really leads to an increasingly tailored mask while the
generated mask is still permissive enough that test cases can
pass it with reasonable probability. An interesting observation
is that the development of a mask converges with different
speeds for different scenarios. While we were able to derive
the final mask for Geo after the (initial) batch of 100 test

runs, we needed seven iterations of masks and 180 test runs
for Suave.

However, we also discovered some shortcomings of our
procedure. The main problem is that masks expressed using
SHACL shapes are not precise enough to characterize all kinds
of restrictions. The masks are very good at characterizing parts
of the KG that should not change but they are less suited to
describe more complex restrictions. Some mutations might be
fine in isolation but can cause problems in combination. For
example, the robot in Suave has several strategies to find the
pipeline, which are represented in the KG. Each of them can
be deleted from the KG and the robot can still find the pipeline.
But if all strategies are deleted, this is no longer the case.

One difficulty for the iterative process is to find the best
number of mutation operators to apply to the initial KG. The
higher the number, the more test runs fail and we can get
insights into the behavior of the SUT faster. Therefore, less
test runs of the system are required. But on the other hand, it is
harder to identify which of the mutations led to the failure. We
identified such mutations by finding mutations in failing runs
that do not occur in passing runs. As mentioned in the previous
paragraph, there might be dependencies between different
mutations, which further complicates this task. Therefore, one
wants to use as many mutation operators as possible while
only having as many that one can still identify the ones that
cause a failure. We identified that for our systems the optimal
number happened to be two.

D. Threats to Validity

It is not guaranteed that our results hold for all kinds
of domains where software makes use of KGs but the two
systems that we used are from two very different domains.
The systems that we investigated use two complementing
methods of accessing the KG but other software might use a
different method. The mutation operators that we used cover
a broad spectrum but we could not use all kinds of possible
operators for our systems. In particular, operators that are
domain-specific and target the TBox are missing. However,
adding mutation operators for this case would only enhance
our method, and not invalidate our results. Lastly, the process
of developing a robustness mask requires a human with
insight into the semantics of the KG. Hence, different users
with different backgrounds might develop different masks and
gather different insights about the SUTs, i.e. their findings
might differ from ours.

VII. CONCLUSION

We presented an approach for integration testing of software
with KGs. The approach combines mutation operators for KGs
with a robustness mask to generate meaningful mutants. Our
evaluation showed that the combination of mutation operators
and robustness masks allows to identify and describe KGs for
which the SUT does not behave as expected.

We identified several optimizations to make the testing
approach more efficient in the future. Using more mutations
to generate a mutant increases the probability for a failing
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run but also makes it harder to extract which mutation caused
the failure. Hence, a method of shrinking the set of applied
mutations for a failing mutant to the mutations that caused
the failure could reduce the compromises to be made in
this regard. A second extension could be to use methods of
metamorphic testing to avoid the oracle problem. To do so,
one would need to relate the mutation operators to the effects
that they have on the output of the software.
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