
A Notion of Equivalence for Refactorings with

Abstract Execution

Ole Jørgen Abusdal1, Eduard Kamburjan2, Violet Ka I Pun1, and Volker Stolz1

1 Western Norway University of Applied Sciences, Norway
{ojab,vpu,vsto}@hvl.no
2 University of Oslo, Norway

eduard@ifi.uio.no

Abstract. Relational veri�cation through dynamic logic is a promising
approach for verifying object oriented programs. Recent advances from
symbolic to abstract executions have enabled reasoning about incom-
plete/abstract versions of such programs. This has proven fruitful in the
exploration of correctness of refactorings primarily related to code blocks
in Java. In this paper we explore further types of equivalent transfor-
mations and refactorings and discuss the challenges that still need to be
overcome for full round-trip correctness of refactorings in object-oriented
languages.

1 Introduction

Refactoring is a fundamental activity in software engineering to reorganize code
to improve its structure, e.g., to simplify maintenance, while preserving its ob-
servable behavior of the program. A refactoring can be de�ned as a pattern it
matches on, and a subsequent program transformation on the matched part. To
ensure that the transformed program indeed has the same observable behavior
one can either compare the transformed program with the original or reason
about the program transformation itself.

Relational veri�cation through dynamic logic is a promising approach to
veri�cation of refactoring patterns in object oriented programs. Recent advances
from symbolic to Abstract Execution (AE) [30] have enabled reasoning about
incomplete/abstract versions of such programs. This has proven fruitful in the
exploration of correctness of refactorings primarily related to code blocks in Java:
AE introduces abstract statements (and expressions), which act as named and
speci�ed placeholders for statement-sequences of the host language. A refactoring
proof is a relational veri�cation proof that compares two programs which can
have abstract program elements. Consider relating

if (Eboolean) {S1;} else {S2;} return;

and

if (!Eboolean) {S2; return;} S1; return;

where Eboolean is an arbitrary boolean expression, S1 and S2 correspond to arbi-
trary statements. One of the programs represents the schema of the code before
the refactoring, and the other one the code afterwards, with respect to some re-
lational post-condition that de�nes the notion of program equivalence. This rea-
soning about abstract programs is exactly the aforementioned reasoning about
the program transformation behind the refactoring.

Despite the promising results due to AE, it has only been applied to statement-
level refactorings that change the body of a single method. However, refactorings
are not limited to single methods or statement-blocks, but may also restructure
classes and data structures [14]. In this paper we investigate the role of AE for
veri�cation of refactorings beyond statement-level.

Challenges. More complex refactorings require more elaborate speci�cation and
veri�cation techniques for relational veri�cation. The reason is that the pro-
grams surrounding the abstract statements, as well as the notion of equivalence,
become more involved. This holds for both structure and behaviour. Following
the general approach of AE, REFINITY [30], the tool supporting veri�cation on
top of the KeY system, an automated theorem prover for Java [29], has been
primarily designed to verify the correctness of refactorings that are based on
moving code within a method, or on extracting some statements into their own
method (i.e., the Extract Method refactoring [15, p. 106]).

To investigate the use of AE for refactorings on the class-level, we investigate
theHide Delegate refactoring [15, p. 189] that moves code between classes and
show how it can be encoded in REFINITY. As for speci�cation, we discuss the
interpretation of equivalence from the perspective of the user and how to encode
this � for example, if the surrounding programs throw exceptions, under which
conditions are the exceptions considered equivalent? The equivalence interpre-
tation goes beyond exceptions, but touches on a fundamental problem: there are
several possible choices for when newly created objects (and exceptions, which
are objects in Java) are considered to be equal in relational veri�cation using
dynamic logic. This was �rst investigated by Beckert et al. [7] and we discuss
alternatives here.

For exceptions and object creation, we describe several possibilities when
newly created objects (resp. thrown exceptions) are considered equal and how
this information can be used in dynamic logic proofs. The di�erent possibilities
are implemented as multiple (sets of) rules, from which the developer chooses the
one corresponding to his assumptions on object allocations � this choice does not
have to be encoded explicitly in the relational post-condition. This reduces the
size of the required speci�cation, which is an advantage, since it is a notorious
bottleneck in formal veri�cation [6,17].

Furthermore, we discuss the necessary extensions needed to prove equivalent
behaviour where one data structure is replaced by another, e.g., an array or any
primitive type by a class. Here, the main challenge lies in the encoding that the
structures are used correctly throughout the execution. This could, for example,
be handled by coupled invariants [8], whose connection to AE is yet unclear.
Lastly, we discuss the challenge to apply AE to novel speci�cation approaches

2

for traces which aim to simplify the speci�cation of temporal properties for
expressive properties, but whose use for relational veri�cation is unexplored.

Contributions and Structure. Our contributions include an investigation into the
necessary side conditions to be able to proof of the correctness of the Extract
Local Variable- and Hide Delegate refactorings, extending the collection
of proven refactorings. The latter is a refactoring beyond code motion within
a method and highlights the interaction of AE with general relational veri�ca-
tion challenges. Then, we discuss possible extensions that would be required to
address further refactorings with AE.

We �rst describe AE and relational veri�cation using the Extract Local

Variable refactoring in Section 2, before we show necessary conditions for the
Hide Delegate refactoring to be correct and then discuss the challenges for AE
in Section 3. Section 4 proposes future directions for improvements in REFINITY
and AE which most likely require major development e�ort. In Section 5, we
discuss our results. We discuss the related work in Section 6, and lastly conclude
in Section 7.

2 Preliminaries

In this section, we will �rst brie�y describe AE and how it extends symbolic exe-
cution. Then, we will show how AE can be used to prove refactoring correctness
with an example.

2.1 Abstract Execution

Succinctly, as stated by Steinhöfel in their Ph.D. thesis, �Abstract Execution�
denotes the idea to process abstract programs by symbolic execution (SE) [28].
SE [2,33] abstracts concrete execution by means of symbolic representations of
language runtime state in place of concrete machine representations of such arte-
facts. Thus, a store, a program counter, values, and so on, all have a symbolic
representation in SE. Branching points, such as encountered when symbolically
executing e.g., an if-then-else statement that splits an execution path into new
paths for each possible branch arm. For each of these paths, for instance, the sym-
bolic store may be preserved in the new paths, but di�erent conditions may also
be carried through such that in the path where the symbolic program counter
refers to the then-branch the evaluation of the boolean expression in the if state-
ment must be valid, whereas it is not valid in the path where the symbolic
program counter refers to the else-branch. Possible executions are not just cap-
tured through branching paths, but along a path itself through the symbolic
store; a symbolic value represents any valid concrete substitution.

The SE found in KeY and REFINITY operates on a dynamic logic, JavaDL,
for a restricted subset of Java. Syntactically, JavaDL is an extension of �rst-order
logic with program variables and program modalities. Semantically, JavaDL for-
mulas are evaluated in a Kripke structure, which is a collection of �rst-order
structures [1, Sec. 3.3].

3

void n() {
/*@ assignable frN;

@ accessible fpN;
@ exceptional_behavior requires false;
@*/
\abstract_statement N;

}

Listing 1: Method in REFINITY

The use of SE to potentially explore every possible execution a program can
have is a popular program analysis technique. AE extends SE by introducing
abstract program elements (APEs) to the base language that is symbolically
executed. For statements and expressions, a corresponding abstract statement
and abstract expression are introduced. APEs represent any possible substitu-
tion with concrete program elements, which can be statements or expressions,
from the base language being symbolically executed. Execution of APEs is then
the leap taken in AE over traditional SE. It requires the introduction of abstract
state changes, SE branching for any abrupt completion an APE may have (e.g.
exceptions thrown), over-approximation of returned values and thrown excep-
tions by symbols created �dependently fresh� for identi�ers of abstract program
placeholders, and a way to specify the behavior of APEs [28].

We summarise how AE is implemented in REFINITY by showing how to
specify a method void n() with a mostly unknown method body. Listing 1
shows a speci�cation in REFINITY, in which a method n() is speci�ed and its
only content is an abstract statement \abstract_statement N preceded by a
Java Modelling Language (JML) like3 speci�cation [18]. The speci�cation indi-
cates that the method can possibly assign to some abstract locations (its frame)
and can access some abstract locations (its footprint), and that no exceptions will
be thrown by the method body. The speci�cation is straightforward: abstract
statement N may assign to the abstract location set frN, access the abstract
location set fpN and may not throw any exceptions.

An abstract location set represents a �xed set of memory locations that
(a part of) a program may read from or write to. The set is �xed through
a program's duration but the values at these locations may change. When an
abstract location set occurs in an assignable or accessible speci�cation, it is to
be understood as an upper bound; the locations may possibly all be accessed or
assigned to, not at all or anything in between.

2.2 Proving Refactoring Correctness with Abstract Execution

In the following, we use an example to show how AE can be used to prove a
refactoring correct with REFINITY.

3 We say �like� as JML does not deal with abstract Java programs.

4

x.n();
x.n();

(a) Before

X temp = x;
temp.n();
temp.n(); //change?

(b) After

Listing 2: Extract Local Variable refactoring

assert x instanceof X;
((X)x).n();
((X)x).n();
return x;

(a) Before

assert x instanceof X;
X temp = (X)x;
temp.n();
temp.n();
return temp;

(b) After

Listing 3: Extract Local Variable refactoring in REFINITY

Let us consider the Extract Local Variable refactoring seen in List-
ing 2. The example is an instance of a more general case, where preserving the
behaviour of the program depends on other parts of the code. The behaviour of
the program changes if the method call n() has access to the attribute x and
overwrites it.

Before we would have potentially method calls to di�erent objects o1.n()

and then o2.n(), whereas after applying the refactoring we would have o1.n()

followed by o1.n(). In this case if, e.g., n() simply prints this.toString(),
we will observe a di�erence in the two programs.

The dynamic check for such a change detailed in other work [13] codi�ed the
necessity that the reference x remains unchanged through the introduction of
an assertion assert temp == x; to uncover violations after the fact, which is
useful, e.g., when checking the refactored code against its suite of unit tests.

In REFINITY one proceeds to verify a refactoring as correct by supplying
the code before and after refactoring, and supplying a desired precondition and
postcondition to relate the two programs. We essentially ask REFINITY: given
these preconditions does the postcondition hold after abstract execution of these
two abstract programs? A proof of correctness in REFINITY is a proof for any
concrete Java programs that can be instantiated to adhere to the abstract spec-
i�cation given in REFINITY.

We describe the refactoring to REFINITY as shown with a left side (Before)
in Listing 3a, a right side (After) in Listing 3b and a method level context which
contains the method we have already shown in Listing 1.

Additionally, some information is declared in parts of REFINITY's interface
that are not shown here: Free program variables, here x; abstract location sets,
here frN and fpN; relevant locations for the before and after code, here empty;
the desired precondition, here empty, and the desired postcondition.

5

The pre- and postcondition are speci�ed in terms of equations that may
relate to the e�ects of the before and after side, such as return values, excep-
tions thrown and any of the relevant locations declared. Here we use the default
postcondition REFINITY provides which is simply \result_1 == \result_2,
where \result_1 and \result_2 are each respectively a sequence of results for
the abstract execution of the Before and After program. Each sequence contain
in this order: 1) The return value if any, otherwise null; 2) exceptions thrown
if any, otherwise null; and 3) the values at speci�ed abstract location sets (that
the user selects as relevant).

The default postcondition in our case will be that x returned in Before must
be identical to temp returned in After, and that any exception thrown must
be identical for the Before and After program. When left empty, as done here
and so trivially true, equality with respect to the last component of the result
sequences is an assertion that the values at all abstract location sets selected as
relevant are identical.

We use an assertion to ensure that we consider only the refactoring when x

is an instance of its intended type. A current limitation of the implementation
of REFINITY necessitate the casting (X)x as free program variables may only
be declared to be of type Object.

With only the speci�cation shown in Listing 3, REFINITY is unable to prove
that x will be identical to temp after AE of both sides. We get several instances
of SE resulting in the reference x being changed by the abstract statement N

in n().

To prohibit this, we specify that the execution of the abstract statement N
cannot interfere with x. A constraint on the frame frN of abstract statement N,
namely that it is disjoint from xmust be introduced, which is achieved by putting
an abstract execution constraint @ ae_constraint \disjoint(x,frN) on each
side which ensures x will be assumed not to be in frN.

After the aforementioned change, REFINITYmanages to automatically prove
that the postcondition holds after abstract execution of both sides; x and temp

will hold identical references and any exceptions thrown will be identical. Note
that it remains for any concrete application of this refactoring to prove that any
code matching abstract statements ful�lls their annotated constraints.

Although we successfully prove the refactoring we have encoded here, the
required sca�olding of return statements leaves something to be desired: Finding
intended concrete instances of the abstract programs now involve, potentially,
ignoring the return statements.

3 Challenges in Complex Refactorings

In this section we explore the possibilities of applying REFINITY beyond its orig-
inal vision. In particular, we are interested in moving away from statement-based
refactorings to more complex changes that also a�ect the structure of the code.
The �rst new refactoring, Hide Delegate, expresses the desired behaviour of

6

this o null

f()

g()

NPE

(a) Before

this o null

h()

f()

g()

NPE

(b) After

Fig. 1: Null Pointer Exceptions (NPEs)

REFINITY in a straight-forward manner and KeY automatically completes the
proof once the right preconditions are identi�ed.

After that, we present a refactoring that is related to Dead Code Elimina-
tion. This requires introducing additional constructs for object-creation within
the underlying KeY system, which are then harnessed in taclets expressing that
certain non-identical heaps guarantee equivalent behaviour.

We continue our wishlist for further �exibility in expressing equivalent pro-
gram behaviour based on the execution history of user-de�ned observable ac-
tions, and �nally discuss challenges related to expressing equivalence in the face
of di�erent data types.

3.1 Encoding the Hide Delegate refactoring

The Hide Delegate refactoring can be described as an Extract Method

refactoring on a call chain. Consider the statement Y y = o.f().g(), where
the call chain is extracted to a new method on o, say h(), which contains the
extraction Y h() { return this.f().g(); }, such that we can replace the
chain above with Y y = o.h(). The refactoring can enable less coupling as the
class that contained the call chain afterwards does not need to know the return
type of f().

Note that in the case of the more general pattern X x = o.f(); Y y = x.g()

with non-interfering intermediate statements between the two statements, we
can reach the considered pattern through applications of Slide Statement

and �nally Inline Variable on x.

The scenarios shown in the sequence diagrams in Fig. 1 will both result
in NullPointerException (NPE) when the call to f() returns null. In the
strictest sense of behavioral preservation, we will observe a di�erence in the be-
haviour before and after the refactoring. Concretely, the NPE thrown in Fig. 1a
(before) will show a di�erent stacktrace than the one thrown in Fig. 1b (after).
Thus we consider a behavioral equivalence that allows for disagreement in stack-
traces for such matching exceptions. In fact one is unable to make any other
distinction in REFINITY as it does not consider such e�ects.

7

assert in instanceof Resource;
return ((Resource)in)

.getOwner()

.getResource();

(a) Before

assert in instanceof Resource;
return ((Resource)in)

.hDelegate();

(b) After

Listing 4: Program fragments for Hide Delegate refactoring in REFINITY

class Resource {
Owner owner;
Owner getOwner() {
/*@ assignable frF;
@ accessible fpF;
@*/
\abstract_statement F;
return owner;

}
Resource hDelegate() {
return this.getOwner()

.getResource();
}

}

(a) Before

class Owner {
Resource resource;
Resource getResource() {

/*@ assignable frG;
@ accessible fpG;
@*/
\abstract_statement G;
return resource;

}
}

(b) After

Listing 5: Classes in Hide Delegate refactoring in REFINITY

We specify the before- and after-program fragment for a Hide Delegate

refactoring in Listing 4 which faithfully captures the previously sketched out
refactoring. The classes and methods used in the refactoring are presented in
Listing 5 and show that we minimally specify the contents of the involved meth-
ods by using abstract statements in their bodies. Note that we allow abrupt
completion in the abstract statements F and G in the methods getOwner() and
getResource. That means the abstract statements may for instance throw ex-
ceptions. For instance, the sketched out scenario considered in Fig. 1, where
getResource() will return null and cause the following call to throw a NPE,
is a possibility.

To prove the speci�ed Hide Delegate refactoring in an original published
version (v0.9.7) of REFINITY, we need a postcondition that consists of a con-
junction of return values of the before- and after-programs being identical and
that any thrown exceptions are both instances of NPE or otherwise equal.
This is owing to the fact that REFINITY does not consider occurrences of
new NullPointerException(), or any other newly created objects, to be equal.
In particular we remark that although strictly speaking certain exceptions before

8

and after a refactoring may be distinguished by di�erent stacktraces, we may
want to consider them to be equal even so.

We have improved REFINITY4 to resolve this issue; we may keep the default
postcondition that simply matches return results and exceptions, and REFIN-
ITY automatically manages to prove the shown Hide Delegate refactoring to
be correct. In the following section we will detail the changes needed to accom-
plish this.

3.2 Object Creation

As we have seen in the previous section, REFINITY encodes a rather harsh regi-
men on program equivalence: in the absence of a more �ne-grained (application-
speci�c) post-condition, it encodes that return values or exceptions must be
identical on both sides, as well as the objects in the relevant location set (and
the observables in this location set must be adequately speci�ed).

This, in combination with the symbolic execution of both programs, creates a
hurdle for programs that contain object creations (and, subsequently exceptions).
An object allocation in JavaDL is, roughly sketched, symbolically executed by
creating a fresh function symbol for the allocated object and storing it on the
symbolic heap.

The question of equivalence for created objects is not speci�c to abstract exe-
cution, yet important for its practicability: abstract statements are embedded in
concrete programs which a�ect state as well, and more complex and application-
speci�c refactorings must take all language features of the host language into
account.

At its core, the challenge lies in the fact that, as both programs/versions
are executed in the same proof, objects created within them are not equal to
each other: it is not possible to prove that the program return new C(); is
equivalent to itself. Indeed, it is not obvious whether the program should be
considered equivalent to itself in the �rst place. The program is executed twice
from the same state, but this does not su�ce for the two created objects to be
equal � the allocation must, additionally, be deterministic. In the following, we
make the assumption that this is indeed the case and use this information in the
symbolic execution.

Approach. To formalize this assumption, we �rst need to express the deter-
minism of object creation.

We assume that the program semantics is expressed as a Kripke structure,
where the domain of each Kripke state is constant. This means that all objects
always exist. To allocate an object, it must be marked as allocated. To do so,
each object has a �eld <allocated> that is set to true for all allocated objects,
and to false for all others.

To express deterministic allocation, we use a total order < on all objects,
which is pivoted on some object o. All objects before o are allocated, and all

4 Available at https://github.com/selabhvl/REFINITY-abstractallocate

9

https://github.com/selabhvl/REFINITY-abstractallocate

objects after o are not allocated. Allocation then uses o as the next object to
create. As the order is �xed for the Kripke structure, two allocations in di�erent
states, but with the same pivot object o, will allocate the same object next: o.

Formalisation. As the next step of formalization, we express this as a sequent
calculus rule in JavaDL. We give the basic concepts behind JavaDL next, for a
formal treatment we refer to an introduction to KeY and JavaDL [1].

A sequent has the form Γ ⇒ ∆, where the antecedent Γ and the succedent ∆
are sets of JavaDL formulas. JavaDL is a typed �rst-order dynamic logic with
program variables and updates. Its operators are the usual �rst-order operators,
a modality [s]φ expressing that formula φ holds after executing statement s, and
updates. An update is a syntactic representation of a substitution on a program
variable. A simple update, which is the only form of update we require here, has
the form v := t and expresses that the value of program variable v is set to the
value of term t. The truth value of a formula φ after the substitution expressed
by update U is expressed by applying the update to the formula, denoted by Uφ.

Semantically, JavaDL is evaluated over a Kripke structure and an interpre-
tation I. The interpretation assigns values to predicates and function symbols,
while the Kripke structure is a set of states: assignments for the program vari-
ables. The semantics of a modality is the transition from one state to another,
according to the semantics of the program. The semantics of an update is the
transition from one state to another, according to the substitution expressed
by it. The sequent calculus for JavaDL realizes symbolic execution by reducing
modalities to updates (under certain side-conditions, added to the premise/path-
condition).

To handle objects, JavaDL uses a special program variable heap, which maps
from objects and �elds to their value. The heap is written and read with the usual
theory of arrays [23], where �elds are used as indices, following the approach by
Weiÿ [32]. The special function create sets the <allocate> �eld to true. It
cannot be set otherwise (as one cannot de-allocate an object within JavaDL).
The function C ::exactInstance maps each term to true, that is a member of
class C and none of its subclasses.

This is formalised in the following de�nition, where we model our assumption
directly in the model and extend the allocateInstance taclet in KeY.

De�nition 1. We assume that in every state of the Kripke structure, for every
heap h, all objects are ordered by some total order <h, such that there is some
object oh, such that (1) for all o′ <h oh, the object o′ is allocated (i.e., its
<allocated> �eld is set to true), and (2) for all oh ≤h o

′′, the object o′′ is not
allocated. We introduce a unary function symbol allocate with the signature
Heap → Object, whose interpretation must adhere to I(allocate)(h) = oh.
The (slightly pretti�ed) rule is as follows:

Γ, {U}(v 6 .= null ∧ v .
= allocate(heap) ∧ C ::exactInstance(v) .= TRUE)

⇒ {U}{heap := create(heap, v)}[s]φ,∆
Γ ⇒ {U}[v = C.allocate(); s]φ,∆

10

The modi�cation is the addition of v = allocate(heap) to the antecedent. The
modi�ed rule su�ces to show the simple equivalence of return new C() to itself
from above.

Continuing our investigation of when objects are considered equal, where
the two allocations are independent from each other, i.e., any side-e�ects of the
constructors are not visible to each other, C is not a subtype of D and vice versa.
Again the question where the two C (resp. D) objects are equal arises. They are
not equal in the sense that, if there is a implicit5 global counter that counts all
allocations, they get the same number from this counter. They are equal in the
sense that there is no explicit way to distinguish them in the program.

They are, however, distinguishable in the proof system due to the term-
representation of the heap. If we choose to consider them equal, we must adapt
our allocate mechanism: �rstly, it must be able to distinguish between the
allocation of di�erent classes and, secondly, it must be able to simplify the heap
to ignore irrelevant operations on it. We adapt the previous de�nition to take
into account the types of objects, by having a set of orders <h, one for each
class.

De�nition 2. We assume that in every state of the Kripke structure, for ev-
ery heap h and every class C, all objects of type C are ordered by some total
order <C

h , such that there is some object oCh , such that (1) for all o′ <C
h oCh ,

the object o′ is allocated (i.e., its <allocated> �eld is set to true), and (2)
for all oCh ≤C

h o′′, the object o′′ is not allocated. Additionally, if D is a subtype
of C, then <D

h must be a suborder of <C
h . For each class C, we introduce a

unary function symbol C :: allocate with the signature Heap → Object, whose
interpretation must adhere to I(C :: allocate)(h) = oCh . We obtain:

Γ, {U}(v 6 .= null ∧ v .
= C :: allocate(heap) ∧ C :: exactInstance(v)

.
= TRUE)

⇒ {U}{heap := create(heap, v)}[s]φ,∆
Γ ⇒ {U}[v = C.allocate(); s]φ,∆

Additionally, we give two simpli�cation rules for heaps within any allocate

function application. Let v be the subtype relation and T (t) the type of a term.

C :: allocate(store(h, o, f, v)) C :: allocate(h) if f 6= <allocated>

C :: allocate(create(h, o)) C :: allocate(h) if C 6v T (o)

The �rst rule uses the assumption that the orders are only sensitive to the
<allocated> �eld, and the second one that they are independent, besides the
subtyping relation. Intuitively, this implements a di�erent counter for each class
in the type hierarchy and two objects are considered equal if the counters of
their classes are equal. Creating an object of a class increases the counter of

5 The counter is indeed implicit, as the order <h cannot be accessed by the proof
system.

11

x = new C();
y = new D();

(a) Before

y = new D();
x = new C();

(b) After

Listing 6: Object creation

class C {
private int j;
public C(int j){
this.j = j;

}
}

(a) Class

return new C(1);

(b) Before

return new C(2);

(c) After

Listing 7: Object creation and �elds

this class and all its superclasses. If C is a subtype of D, then the proof fails.
This su�ces to prove the programs in Listing 6 to be equivalent. Interestingly,
Steinhöfel already proved the general Slide Statement refactoring correct for
abstract statements under the right constraints ([28], p.231), yet KeY needs ad-
ditional rules for these concrete statements. The second rule is able to remove
some intermittent operations that are symbolically represented on the heap, e.g.,
a call to an imaginary setter in x = new C(); x.set(1); y = new D() ver-
sus y = new D(); x = new C(); x.set(1), if they are not relevant to object
creation.

Note that we ignore the state of �elds in the heap, meaning that the equiv-
alence of two objects is determined only by their counters. This requires to be
careful with speci�cation: it does not su�ce for each notion of equivalence to
specify that two objects are equal, but also their �elds must be equal. Consider
the class and programs in Listing 7. The returned objects are identical, but in
the post states the heap assigns di�erent values to their �eld.

Let us close with three remarks. Firstly, the solutions we described here are
enabling the programmer (or refactoring designer) to �ne tune their notion of
equivalence, which must be speci�ed in addition to the refactoring itself. Real-
ising the choice, however, is rather simple by enabling and disabling rules, resp.
taclets. Thus, we avoid to put even more burden on the �rst-order speci�cation of
the relational post-condition, and merely require the programmer to select from
a number of options. We emphasise that the taclets for the di�erent options are
not unsound, but merely switch between di�erent version of assumptions about
the (in this case underspeci�ed) Java object model. Of course, the default ver-
sion is not using the new taclets and stick with the originals, i.e., not assuming
deterministic allocation.

12

C x;
x = new C();
x = new C();

(a) Before

C x;
x = new C();

(b) After

Listing 8: Dead Object

Secondly, while we only discussed object creation here, the same solution also
handles exceptions, which must be created before being thrown. Exceptions are
special in the sense that they have access to the program beyond the parts that
are exposed to (non-re�ective) programs. For example, they can access the line
number of the throwing statement for their stack trace. As the stack trace is not
modelled in JavaDL, its treatment for veri�cation is an open research question
in itself, and because we consider exhibiting the stack trace within the program
a dubious practice in the �rst place, we chose to ignore it in this paper.

Thirdly, one could argue that we have not so much proven the refactoring
to be correct, but rather moved this decision further down the chain: unlike in
a full formalisation of the Java object model from ground up, we do not have
a way of proving the taclets correct (i.e., derive them as lemmas) within KeY,
as they model our assumptions about object identity when running two Java
programs in the exact same state, which is not described by the Java semantics.

Excursus: Dead Code Elimination. Similar considerations of equivalent
heap manipulations need to be considered also in the are of optimizations, whose
soundness proofs rely on relation veri�cation as well. For example, consider the
program in Listing 8.

Again, we assume that the constructor of C has no side-e�ects except object
creation on the heap. In this case, the �rst object creation is of no consequence.
The additional rules above however will not yet be su�cient to prove that this
version is equivalent to the version without the redundant object creation and
assignment. The location-set mechanism would still insist that the second object
created in the redundant version is a di�erent object from the �rst (and only)
object created in the optimised version. On the one hand this can be addressed
through a relaxed post-condition where we accept that we only need some ob-
ject of the right type and arguments, but it relies on the side-condition of the
constructor not having side-e�ects, which requires a very restrictive method con-
tract for the constructor. Alternatively, the notion of equivalence becomes even
more speci�cation-heavy for optimisations, as it may be more �ne-grained. We
foresee that such and other instances will give rise to various further taclets in
the future.

13

4 Potential Future Improvements

In the previous section, we have established that relational veri�cation using
abstract execution must take care of the general e�ects of language semantics
outside the abstract statements. In this section, we illustrate a di�erent obstacle
to practical abstract execution, which touches on its core speci�cation principles:
sequences of side e�ects and events.

4.1 Trace Properties

Following Fowler's persuasion of what constitutes correct refactorings, developers
are content if refactored code gives the same observable behavior [15].

This behavior is �rst and foremost encoded through unit-tests, but also on
tests through side-e�ects and their order (e.g. output via print-statements).
Here we then have a much more relaxed setting where equivalence is decoupled
from the �ne-grained program semantics. More realistically, one may want to
establish that after refactoring, certain operations happened in the same order.

Abstract execution supports the speci�cation of read and write events, via
dynamic frames, but does not specify their order or give a general possibility
to specify the order of side-e�ects/events. The most straightforward approach
is to use a special model variable to keep track of the events explicitly in a
trace, and specify properties using the surrounding logic, in our case, JavaDL.
This approach has been taken for dynamics logics (without investigating relation
veri�cation) in, e.g., ABSDL [11] and for relational veri�cation (albeit without
using a dynamic logic) by, e.g., Barthe et al. [5]. This explicit encoding of user-
de�ned execution histories has the advantage that it is not only useful for proofs,
but can also directly be harnessed in concrete unit-tests where we can explicitly
compare the recorded history of an earlier execution of a test with the history
of the same test but on the refactored code base.

A main advantage of encoding the trace in the post state is that relational
veri�cation (either based on self-composition or its variants [10,4,3] or using the
proof obligation described above), can use the state logic to describe both states.
However, �rst-order speci�cations of temporal properties have been proven to
be unwieldy, large and hard to understand. This led to the development of other
dynamic logics which interact with novel trace speci�cations, such as BPL [19]
and symbolic traces [9], where the post-condition of a modality is a trace formula
without quanti�ers over indices, whose models are single traces. It has neither
been investigated how such logics can be used for relational veri�cation, nor how
abstract statements can be speci�ed with respect to such trace properties.

We concentrate on, simpli�ed, symbolic traces here, which are de�ned by the
grammar

θ ::= dφe | call(m) | finite | θ ∗∗θ

where dφe denotes the trace where the state formula φ holds, call(m) a call event
on method m, finite an arbitrary �nite trace without any events6 and ∗∗ is the
6 We deviate here from the original de�nition for example's sake.

14

File f = new File();
String s = "";
/*@ ensures finite ** call(f.open) ** finite; */
\abstract_statement A;
s = f.read();
f.write(s);
/*@ ensures finite ** call(f.close) ** finite; */
\abstract_statement B;

(a) Before

File f = new File();
String s = "";
/*@ ensures finite ** call(f.open) ** finite; */
\abstract_statement A;
f.write(s);
s = f.read();
/*@ ensures finite ** call(f.close) ** finite; */
\abstract_statement B;

(b) After

Listing 9: Refactoring for Trace-Based-Notions of Equivalence.

chop [9], a special concatenation. Models for such formulas are traces: sequences
of states and events.

Consider the two programs in Listing 9. It shows a refactoring of some pro-
gram using a File, where we only give the trace speci�cation. The �rst program
speci�es that some initialisation happens that is guaranteed to call f.open,
then the �le is read and written, and then some �nalisation happens that calls
f.close. The second program switches the order of read and write. The pro-
grams are, obviously, not equivalent in a strict sense, but if the trace property we
are interested in is only concerned with the order of operations on the �le (open,
write, read and open), for example to express that only opened �les are read
and written to, then we need to specify a notion of equivalences. It remains to
be seen in how far abstract executions can be expanded with such a mechanism
in the future.

4.2 Relational Invariants

Another area of interest for equivalence is replacing one data structure with
another, e.g. Fowler's Replace Array with Object [14, p.186] or Replace
Primitive with Object [15]. As an example, in the following we look at a piece
of code where an array is replaced with an object (or vice versa). Again, from
the strict default perspective of �equal return values, equal heaps�, any two pro-
grams using the data structures are obviously not equal. Encoding observability

15

String[] p = new String[2];

p[0] = "36.452999";
p[1] = "28.226376";

(a) Before

Pos p = new Pos();

p.setLat("36.452999");
p.setLon("28.226376");

(b) After

Listing 10: Replace array with object refactoring

String[] p = new String[2];
/* M only uses the static
method API to modify ‘p‘ and
does not assign a new value
to ‘p‘. */
\abstract_statement M
setX(p,value);

(a) Before

Pos p = new Pos();
/* ditto */
\abstract_statement M
p.setX(value);

(b) After

Listing 11: Replace array with object refactoring

through traces as per the previous section will obviously solve this issue. A new
challenge arises when both programs use di�erent or disjoint sets of operations,
i.e., we have di�erent alphabets for their trace languages.

Let us consider a refactoring that replaces an array containing a geographical
position given by a latitude and longitude as in Listing 10a with an object that
gives read or write access to the same values through setters and getters that
make it immediately clear what is being accessed as seen in Listing 10b. In either
direction of this refactoring, we must be certain that indexing can only occur
within the bounds of the original program as there will be no corresponding out
of bounds failure for method calls. We note the added (syntactical) complication
that in the direction from array to object, that if array o�sets are computed,
there is no direct correspondence to a setter/getter, and the refactored code needs
to dispatch on the corresponding component. In the following, for simpli�cation,
we assume that the array is only used with constants.

Having established that the two programs are not equal, but should be con-
sidered equivalent, we need to establish a correspondence in the speci�c case. To
avoid having to establish the correspondence in all uses (of either setter/getter or
the array), we can assume that accesses in either case are wrapped in a method
� if we assume that Extract Method/Inline Method are already proven
as correct. This reliance on other refactorings allows us to compartmentalise the
reasoning, and mostly focus on contracts for the involved methods. While ab-
stract execution is good at reasoning about placeholders for abstract behaviour,
a similar mechanism for abstract structures is missing. Through some interme-
diate steps, we can o�oad most of the reasoning to a history-based mechanism

16

with some static assumptions on the code that can be easily checked. The �rst
is to encapsulate all accesses in methods; setters/getters on the object-side, and
static helpers on the array-side. We can then formulate the abstract programs
for REFINITY as given in Listing. 11 for each of the operations in the API, here
the matching pairs of setters/getters. It remains to show that a) neither abstract
statement overwrites p, that b) the histories of API operations with arguments
called on either side match pairwise, and that c) in the post-condition the values
in their respective components match.

5 Discussion

In the following, we shortly discuss some of the raised issues and in how far they
can be adressed in the future and possibly in the short-term.

The �rst challenge is due to the way REFINITY prepares the environment
and the top-level proof obligation for KeY, in fact both sides in a refactoring
share the same Java namespace. This means for example that the Extract
Method refactoring no so much proves the original correct, but rather a version
where the extracted method is already present. Care must be taken to set this
up correctly, and e.g. in the Extract Method example make sure that the
methods is not used on the Before-side. The same holds for refactorings that
remove code.

Addressing this would require choosing unique names in either schemata,
since they go into a single KeY-proof, and hence would require some form of
mapping classes/objects of distinct types (due to the nominal type system of
Java) between both sides. This issue is closely related to the challenge we dis-
cussed before when trying to relate unrelated yet semantically equivalent data
types (see Section 4.2). In general, we observe that currently REFINITY requires
some sca�olding that makes the actual refactoring less obvious, such as our use
of assertions and casts.

A more general problem is capturing the most general instance of a refac-
toring. Currently, REFINITY's lack of placeholders for names, means that e.g.
in the Extract Local Variable refactoring we would have to instantiate
the Before-schema for every concrete instance with the corresponding identi-
�er names for variables. The otherwise straight-forward refactoring Rename

Temporary already exposes the issue faced by REFINITY due to renaming
on the block-level. Likewise, the related Hide Delegate example uses concrete
method- and class names. During our development of this refactoring, we have
found ourselves revising the encoding and use of placeholders with their anno-
tations repeatedly. Conversely, due to the challenges in checking instantiation
of schemata against concrete programs already pointed out by Steinhöfel [28,
119,137], one has to take care not to write too restrictive programs that rule out
useful working instances.

Another area for placeholders would be a generalisation of storage locations:
We foresee that there exist refactorings that may need to be speci�ed twice, once
with using local variables and another time using attributes in their schemata.

17

For the time being we are limited to checking schemata against each other.
In the future, when we move on to checking instantiations, we feel that often
necessary pre-conditions on a refactoring can easily be discharged by simple
syntactical or static analysis (e.g. �code does never read attribute x of objects
of type C�). Yet unlike in other formal work where the program is encoded as
part of the proof-term, we cannot implement such analyses within KeY, and
can only informally document and require such side-conditions on refactorings.
Correspondingly, we will also not be able to use KeY to formulate and prove a
lemma that such a static property entails the necessary consequences.

6 Related Work

Similar or other approaches to formal veri�cation of refactorings can be found
in work by Garrido et al. [16] who formalize Push Down Method, Pull Up
Field and Rename Temporary using an executable Java formal semantics in
Maude and give partially mechanised proofs for the two former.

Long Quan et al. [25] formulate refactorings as re�nement laws in the calculus
of re�nement of component and object-oriented systems (rCOS), focusing on
correctness proofs of refactoring rules themselves. They did not have the bene�t
of any tool support, but similarly were able to describe refactorings on schematic
programs. Statement level refactorings as well as refactorings that transform
class hierarchies are considered.

While KeY and REFINITY are unique for their relational veri�cation ca-
pacity for schematic programs (or abstract programs) they are limited in power
for veri�cation of concrete programs relying much more on manual speci�cation
or interaction [29] than tools like LLRêve [21] or SymDi� [22] which o�er more
automation for concrete programs.

Peter Müller et al. [24] present a veri�cation infrastructure whose intermedi-
ate language supports an expressive permission model natively, with tool support
including two back-end veri�ers: one based on symbolic execution and one on
veri�cation condition generation, an inference tool based on abstract interpreta-
tion reportedly under development.

Stolz, Pun and Gheyi investigate how well-known refactorings interact with
concurrency in Active Object languages [31]. Findings show that refactorings
that are straight-forward in Java are not necessarily so under the concurrency
model considered and identify key program transformations that may cause in-
teractions. In contrast to their work, REFINITY and its foundation KeY strictly
consider sequential Java programs, but they already explore the notion of equiv-
alent executions in their formal considerations of syntactically di�erent, but
overlapping, programs.

Eilertsen, Stolz and Bagge demonstrate a technique of introducing runtime
checks in Java for two refactorings Extract And Move Method and Ex-

tract Local Variable [13]. The technique in combination with testing can
detect changed behavior and allow identi�cation of which refactoring step intro-

18

duced the change the deviant behavior. Our proof of correctness of Extract
Local Variable in REFINITY is inspired by their technique.

Schaefer et al. develop microrefactorings that can be composed to specify sev-
eral refactorings in a concise manner [26]. They use an infrastructure to preserve
correct name binding in refactorings.

Soares et al. [27] describe and evaluate SafeRefactor - a tool that given a
program input and a refactoring to apply can automatically generate testcases
to detect behavioural changes. It would be interesting to adapt SafeRefactor to
do deal with REFINITY's abstract programs, and generate test cases for the
instances where REFINITY fails to prove a refactoring. These could then be run
against concrete refactored programs.

Dovland et al. [12] propose a proof system that allows incrementally rea-
soning about adaptable class hierarchies, based on lazy behavioural subtyping,
for an object-oriented kernel language similar to Featherweight Java. The proof
system avoids reverifying methods that are not modi�ed explicitly by the class
adaptation. We are unaware whether the incremental reasoning broached for the
proof system has a counterpart in KeY and REFINITY, but the latter allows
for modularity in proof and veri�cation which may achieve a similar result.

7 Conclusion

We have presented two new encodings of refactorings (Extract Local Vari-
able and Hide Delegate) and their necessary preconditions (constraints) for
them to be behaviour-preserving for REFINITY. REFINITY has syntactical
constructs that capture abstract program executions, for which the KeY system,
an automated theorem prover for JavaDL, succeeds in proving the refactorings
as correct (equal) wrt. to the Java semantics without user interaction.

The Hide Delegate refactoring departs from statement-based refactorings
and considers changes involving multiple classes and requires us to consider the
�rst subtle di�erence between equivalent-yet-not-equal objects in the form of
equivalent exceptions and how we need to explicitly address this in the post-
condition of the proof-obligation. This also allows us to make a contribution
through further taclets that capture some indistinguishable programs that only
di�er in placement of objects on the heap.

We discuss in how far REFINITY could be used to capture other refac-
torings, broadening our investigation into the underlying notion of (sometimes
use-case speci�c) equivalent behaviour. For example, while traces over observ-
able behaviour could be explicitly encoded and checked against each other as
return values in REFINITY, a more general process-algebra inspired approach
of execution histories for abstract executions would avoid distorting the original
program logic with sca�olding to achieve an encoding without having to extend
the tool. We also point out the di�culties due to a naming issue in the current
encoding from Re�nity to KeY proof-obligations for refactorings that change the
class hierarchies or in general attempt to relate behaviour across di�erent types.

19

Future Work. To investigate the discussed problems with refactoring using AE
wrt. trace properties, we are currently implementing AE for BPL in the Crowbar
tool [20] as a starting point, a symbolic execution engine to prototype behavioural
symbolic execution.

We are also working on contributing further encodings of common refactor-
ings that can already now be handled by REFINITY. In addition, we are par-
ticularly interested in additional taclets for KeY that would enable automation
of proofs that currently are stuck on the explicit symbolic encoding of program
state although it would be indistinguishable from equivalent states in pratice.
The latter is of relevance e.g. for proving common optimisations as in our Dead
Code Elimination example.

Acknowledgements This work was partially supported by the Research Coun-
cil of Norway via SIRIUS (237898), PeTWIN (294600) and CROFLOW (326249).

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Veri�cation - The KeY Book - From Theory to Prac-
tice, Lecture Notes in Computer Science, vol. 10001. Springer (2016). https:
//doi.org/10.1007/978-3-319-49812-6

2. Baldoni, R., Coppa, E., D'Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 50:1�50:39 (2018).
https://doi.org/10.1145/3182657

3. Barthe, G., Crespo, J.M., Kunz, C.: Relational veri�cation using product programs.
In: FM. Lecture Notes in Computer Science, vol. 6664, pp. 200�214. Springer (2011)

4. Barthe, G., D'Argenio, P.R., Rezk, T.: Secure information �ow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30
June 2004, Paci�c Grove, CA, USA. pp. 100�114. IEEE Computer Society (2004).
https://doi.org/10.1109/CSFW.2004.17

5. Barthe, G., Eilers, R., Georgiou, P., Gleiss, B., Kovács, L., Ma�ei, M.: Verifying
relational properties using trace logic. In: Barrett, C.W., Yang, J. (eds.) 2019
Formal Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA,
October 22-25, 2019. pp. 170�178. IEEE (2019). https://doi.org/10.23919/
FMCAD.2019.8894277

6. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel veri�cation � speci�cation is the new bottleneck. In: SSV. EPTCS, vol. 102,
pp. 18�32 (2012)

7. Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt, P.H., Ulbrich, M.:
Information �ow in object-oriented software. In: LOPSTR. Lecture Notes in Com-
puter Science, vol. 8901, pp. 19�37. Springer (2013)

8. Beckert, B., Ulbrich, M.: Trends in relational program veri�cation. In: Principled
Software Development. pp. 41�58. Springer (2018)

9. Bubel, R., Din, C.C., Hähnle, R., Nakata, K.: A dynamic logic with traces and
coinduction. In: TABLEAUX. Lecture Notes in Computer Science, vol. 9323, pp.
307�322. Springer (2015)

20

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.23919/FMCAD.2019.8894277

10. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information �ow. In: SPC. Lecture Notes in Computer Science, vol. 3450,
pp. 193�209. Springer (2005)

11. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous
communication with shared futures. J. Log. Algebraic Methods Program. 83(5-6),
360�383 (2014). https://doi.org/10.1016/j.jlamp.2014.03.003

12. Dovland, J., Johnsen, E.B., Owe, O., Yu, I.C.: A proof system for adaptable class
hierarchies. J. Log. Algebraic Methods Program. 84(1), 37�53 (2015). https:
//doi.org/10.1016/j.jlamp.2014.09.001

13. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Leveraging Appli-
cations of Formal Methods, Veri�cation and Validation: Foundational Techniques.
LNCS, vol. 9952, pp. 517�531. Springer (2016). https://doi.org/10.1007/
978-3-319-47166-2_36

14. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
object technology series, Addison-Wesley (1999)

15. Fowler, M.: Refactoring: Improving the Design of Existing Code, 2nd Edition.
Addison-Wesley Signature Series (Fowler), Addison-Wesley (2018)

16. Garrido, A., Meseguer, J.: Formal speci�cation and veri�cation of java refactor-
ings. In: 2006 Sixth IEEE International Workshop on Source Code Analysis and
Manipulation. pp. 165�174. IEEE (2006)

17. Hähnle, R., Huisman, M.: Deductive software veri�cation: From pen-and-paper
proofs to industrial tools. In: Computing and Software Science, Lecture Notes in
Computer Science, vol. 10000, pp. 345�373. Springer (2019)

18. Huisman, M., Ahrendt, W., Bruns, D., Hentschel, M.: Formal speci�cation with
jml. Tech. Rep. 10, Karlsruher Institut für Technologie (KIT) (2014). https:
//doi.org/10.5445/IR/1000041881

19. Kamburjan, E.: Behavioral program logic. In: TABLEAUX. Lecture Notes in Com-
puter Science, vol. 11714, pp. 391�408. Springer (2019)

20. Kamburjan, E., Wasser, N.: Deductive veri�cation of programs with underspeci�ed
semantics by model extraction. CoRR abs/2110.01964 (2021)

21. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR - combining static veri�cation and dynamic analysis. J. Autom. Reason. 60(3),
337�363 (2018). https://doi.org/10.1007/s10817-017-9433-5

22. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A language-
agnostic semantic di� tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) Computer Aided Veri�cation - 24th International Conference, CAV
2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. Lecture Notes in Computer
Science, vol. 7358, pp. 712�717. Springer (2012). https://doi.org/10.1007/
978-3-642-31424-7_54

23. McCarthy, J.: Towards a mathematical science of computation. In: Information
Processing, Proceedings of the 2nd IFIP Congress 1962, Munich, Germany, August
27 - September 1, 1962. pp. 21�28. North-Holland (1962)

24. Müller, P., Schwerho�, M., Summers, A.J.: Viper: A veri�cation infrastructure for
permission-based reasoning. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.)
Dependable Software Systems Engineering, NATO Science for Peace and Security
Series - D: Information and Communication Security, vol. 50, pp. 104�125. IOS
Press (2017). https://doi.org/10.3233/978-1-61499-810-5-104

25. Quan, L., Qiu, Z., Liu, Z.: Formal use of design patterns and refactoring. In: Mar-
garia, T., Ste�en, B. (eds.) Leveraging Applications of Formal Methods, Veri�-
cation and Validation, Third International Symposium, ISoLA 2008, Porto Sani,

21

https://doi.org/10.1016/j.jlamp.2014.03.003
https://doi.org/10.1016/j.jlamp.2014.03.003
https://doi.org/10.1016/j.jlamp.2014.09.001
https://doi.org/10.1016/j.jlamp.2014.09.001
https://doi.org/10.1016/j.jlamp.2014.09.001
https://doi.org/10.1016/j.jlamp.2014.09.001
https://doi.org/10.1007/978-3-319-47166-2_36
https://doi.org/10.1007/978-3-319-47166-2_36
https://doi.org/10.1007/978-3-319-47166-2_36
https://doi.org/10.1007/978-3-319-47166-2_36
https://doi.org/10.5445/IR/1000041881
https://doi.org/10.5445/IR/1000041881
https://doi.org/10.5445/IR/1000041881
https://doi.org/10.5445/IR/1000041881
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.3233/978-1-61499-810-5-104

Greece, October 13-15, 2008. Proceedings. Communications in Computer and In-
formation Science, vol. 17, pp. 323�338. Springer (2008). https://doi.org/10.
1007/978-3-540-88479-8_23

26. Schäfer, M., de Moor, O.: Specifying and implementing refactorings. In: Object-
Oriented Programming, Systems, Languages, and Applications

27. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making Program Refactoring Safer.
IEEE Software 27(4), 52�57 (2010)

28. Steinhöfel, D.: Abstract Execution: Automatically Proving In�nitely Many Pro-
grams. Ph.D. thesis, TU Darmstadt, Dept. of Computer Science (May 2020),
https://tuprints.ulb.tu-darmstadt.de/id/eprint/8540

29. Steinhöfel, D.: REFINITY to model and prove program transformation rules. In:
d. S. Oliveira, B.C. (ed.) Programming Languages and Systems - 18th Asian Sym-
posium, APLAS 2020, Fukuoka, Japan, November 30 - December 2, 2020, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12470, pp. 311�319. Springer
(2020). https://doi.org/10.1007/978-3-030-64437-6_16

30. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) Proc. of Formal Methods - The Next 30 Years - Third World
Congress. LNCS, vol. 11800, pp. 319�336. Springer (2019). https://doi.org/
10.1007/978-3-030-30942-8_20

31. Stolz, V., Pun, V.K.I., Gheyi, R.: Refactoring and active object languages. In:
Margaria, T., Ste�en, B. (eds.) Leveraging Applications of Formal Methods, Ver-
i�cation and Validation: Engineering Principles - 9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20-30, 2020, Proceedings, Part II. Lecture Notes in Computer Sci-
ence, vol. 12477, pp. 138�158. Springer (2020). https://doi.org/10.1007/
978-3-030-61470-6_9

32. Weiÿ, B.: Deductive veri�cation of object-oriented software: dynamic frames, dy-
namic logic and predicate abstraction. Ph.D. thesis, Karlsruhe Institute of Tech-
nology (2011), https://d-nb.info/1010034960

33. Yang, G., Filieri, A., Borges, M., Clun, D., Wen, J.: Chapter �ve - advances in
symbolic execution. Adv. Comput. 113, 225�287 (2019). https://doi.org/10.
1016/bs.adcom.2018.10.002

22

https://doi.org/10.1007/978-3-540-88479-8_23
https://doi.org/10.1007/978-3-540-88479-8_23
https://doi.org/10.1007/978-3-540-88479-8_23
https://doi.org/10.1007/978-3-540-88479-8_23
https://tuprints.ulb.tu-darmstadt.de/id/eprint/8540
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-61470-6_9
https://doi.org/10.1007/978-3-030-61470-6_9
https://doi.org/10.1007/978-3-030-61470-6_9
https://doi.org/10.1007/978-3-030-61470-6_9
https://d-nb.info/1010034960
https://doi.org/10.1016/bs.adcom.2018.10.002
https://doi.org/10.1016/bs.adcom.2018.10.002
https://doi.org/10.1016/bs.adcom.2018.10.002
https://doi.org/10.1016/bs.adcom.2018.10.002

	A Notion of Equivalence for Refactorings with Abstract Execution

