Digital Twin Reconfiguration
Using Asset Models*

Eduard Kamburjan @, Vidar Norstein Klungre ®, Rudolf Schlatte @,
S. Lizeth Tapia Tarifa@®, David Cameron ®, and Einar Broch Johnsen

Department of Informatics, University of Oslo, Oslo, Norway
{eduard, vidarkl,sltarifa,rudi,einarj ,davidbc}@ifi .uio.no

Abstract. Digital twins need to adapt to changes in the physical system
they reflect. In this paper, we propose a solution to dynamically recon-
figure simulators in a digital twin that exploits formalized asset models
for this purpose. The proposed solution uses (1) semantic reflection in
the programs orchestrating the simulators of the digital twin, and (2)
semantic web technologies to formalize domain constraints and integrate
asset models into the digital twin, as well as to validate semantically
reflected digital twin configurations against these domain constraints on
the fly. We provide an open-source proof-of-concept implementation of
the proposed solution.

1 Introduction

Digital twins are model-centric applications in which some asset — typically
a physical system — is mirrored in near real-time, or twinned, by a digital
artefact in order to understand, predict or control the behaviour of the asset
(e.g., [15,36]). We envision a digital artefact, the so-called digital twin (DT),
that contain components that compare the behaviour of the targeted asset, the
so-called physical twin (PT), with expected behaviour based on a model, opti-
mize the behaviour of the asset and prototype new designs. A typical example
of such a component in the digital twin is a simulation model to explore the
expected behaviour of the physical system.

The digital and physical twins are coupled: Data concerning the physical
twin, such as live sensor data obtained by monitoring the physical system, are
transmitted to the digital twin. Decisions made by the digital twin by analysing
this data in the context of its model of the physical system, are communicated
back. The connection between the digital twin and the physical system, and
the integration of new observations of the physical system (such as live sensor
data) into the digital twin’s model of the physical system, are realized by the
application itself; in this work, we refer to this architectural layer of the digital
twin as the Digital Twin Infrastructure (DTI); The DTT is not only responsible

* This work was supported by the Research Council of Norway through the projects
SIRIUS (237898) and PeTWIN (294600).

http://orcid.org/0000-0002-0996-2543
http://orcid.org/0000-0003-1925-5911
http://orcid.org/0000-0001-5601-5517
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0002-1172-478X
http://orcid.org/0000-0001-5382-3949

2 E. Kamburjan et al.

for communication between the components of the DT but also of its evolution
through the dynamic reconfiguration of simulation models.

As the physical system evolves over time, we may experience that the digital
twin and the physical twin drift apart. This leads to a precision loss in the
digital twin’s ability to reflect the behaviour of the physical system. For example,
the physical system may change through maintenance operations or unexpected
events (such as failures). The simulation model may also drift due to uncertainty
in parameters or noise in the sensor data it receives from the physical system.

This paper considers how digital twins can be dynamically reconfigured in
response to changes in the physical twin. There are two categories of reconfig-
uration. The first category is behavioural reconfiguration, where the behaviour
of the digital twin must be adapted but the structure of the physical system
remains intact. For example, if simulated behaviour drifts away from the sensor
data from the physical system, the corresponding simulator must be recalibrated
with different parameters to match the real behaviour [8]. The second category
is structural reconfiguration, where the structure of the physical system changes
and the digital twin must perform some adaptation that goes beyond adjusting
a single component. For example, reconstruction work or reorganisation in a fac-
tory may affect its entire production pipeline. The main focus of this paper is
on the structural reconfiguration of digital twins.

To accommodate such reconfigurations, we here consider the use of semantic
web technologies to connect the configuration of the digital twins to formalized
asset models. Semantic web technologies are logic-based techniques to formalize
knowledge and data, as well as to query and reason over the formalized knowl-
edge represented as a knowledge graph. Semantic web technologies have been
recognized as one of the potential pillars in symbolic Al for digital twins. Asset
models are descriptions of the composition and properties of some physical asset,
which is essential to represent the structure of the physical system not only for
digital twins, but also for other engineering and maintenance applications [32,41].

In short, the main contributions of this paper are:

— a solution for structural reconfiguration of digital twins using formalized
asset models, and

— a proof-of-concept realization of a digital twin infrastructure which orches-
trates and configures simulation models, integrated with asset models.

We use the Semantic Micro Object Language (SMOL) [21] for our imple-
mentation. SMOL is a small, experimental and formally defined programming
language with explicit primitives both to integrate simulation units, namely for
the Functional Mock-Up Interface [4], and to integrate semantic web technolo-
gies that operate directly on the program state of the SMOL program itself.
SMOL is open source and available from http://smolang.org.

Related Work. The connection of digital twins and knowledge bases so far is
mostly limited to data integration to handle the numerous heterogeneous data
sources in a digital twin. For example, Yan et al. [43] use knowledge bases to
integrate data in manufacturing equipment and enable the user to query this

http://smolang.org

Digital Twin Reconfiguration Using Asset Models 3

PT
~—

S
Room

3
=
5]
c
£

Outer Wall

Room
Inner Wall
Inner Wall
Inner Wall

Outer Wall

DT

¢ ¢ o & ¢ ¢
| Controller | | Controller |

Fig. 1. A house (left top), its digital twin (left bottom), an extension of the house (right
top) and the corresponding structural reconfiguration of the digital twin (right bottom).
In the reconfigured digital twin, gray components are new and blue components need
to be adapted.

information more easily. Banerjee et al. [2] use a similar approach to interact
with data from IoT sensors in industrial production lines, and Oakes et al. [28]
for drivetrains. Going one step further, Wascak et al. [40] aim to use asset mod-
els as part of this integration in their abstract digital twin architecture. More
abstractly, Kharlamov et al. [22] have investigated the use of KBs for data in-
tegration in the context of the energy industry, and used this integrated data
to enable machine learning on data streams [45]. Lietaert et al. [25] use KBs
similarly to integrate data for machine learning approaches. To the best of our
knowledge, the use of KBs to influence the structure of the digital twin after
its initial construction is hitherto unexplored. We discuss related work for asset
models in Sec. 3.

Structure. Section 2 explains the problem of digital twin reconfiguration in terms
of a motivating example and Sec. 3 introduces preliminaries. We use the motivat-
ing example to discuss the interplay of asset models, semantic web technologies,
simulation units and programming in Sec. 4 and structural reconfiguration in
Sec. 5. Section 6 concludes the paper.

2 DMotivating Example

Let us consider the digital twin of a small house, which should retain some tar-
geted temperature (inspired by an example developed by OSP [34]). The physical
system consists of two rooms, each with an outer wall and a heater, separated
by an inner wall. The physical system is depicted in Fig. 1 (top left). The cor-
responding DT has five simulators modelling the rooms with their heaters, the
inner wall and the outer walls, respectively. In addition, the DT includes a con-
troller that decides how to regulate the heaters of the two adjacent rooms, based
on the input data. The DT is depicted in Fig. 1 (bottom left). In our example,
the controller’s restriction to two adjacent rooms is inherent to the available
controller software.

4 E. Kamburjan et al.

asset:walll asset:left asset:rooml.

1 @prefix asset:<https://smolang.org/Asset#>.

2 @prefix rdf:<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>.
3 @prefix xsd:<http://www.w3.o0org/2001/XMLSchema#>.

4

5 asset:walll rdf:type asset:Wall.

6 asset:walll asset:id "2""~xsd:string.

7

8

asset:walll asset:right asset:room2.

Fig. 2. Example RDF graph with four statements.

A behavioural reconfiguration of the digital twin could be triggered by the
following scenario: One of the heaters breaks down and is replaced with a dif-
ferent model which heats the room faster than the previous heater. The digital
twin needs to reconfigure itself to adjust the parameters of its corresponding
simulation model to reflect that heating in one of the rooms now works faster.

A structural reconfiguration of the digital twin could be triggered by the
following scenario: The house is extended with two new rooms, one to the left
and the other to the right of the existing rooms. The resulting physical system is
depicted in Fig. 1 (top right), where the blue walls depict the former outer walls
of the house, which have now become inner walls. This change in the physical
system would require a complete reconfiguration of the digital twin. A solution,
depicted in Fig. 1 (bottom right), would be to add four new simulators which
capture the new rooms and new outer walls of the physical system (gray color
in the figure), to change two of the existing simulators to reflect the change
from outer walls to inner walls (blue color in the figure), and to replace the old
controller by two new controllers (blue color in the figure). For example, the
old controller could be removed and two new controllers added to reflect the
constraint that only two adjacent rooms can be controlled by one controller.

3 Preliminaries

This section covers technical background for the proposed digital twin infra-
structure: Knowledge bases and semantic web technologies, asset models and
simulation units.

3.1 Knowledge Bases

Knowledge bases are a triple-based data representation of domain knowledge and
other axioms. We here ignore their theoretical properties as description logic
models, and briefly introduce four essential semantic web technologies: RDF,
OWL, SPARQL and SHACL. All these technologies are W3C recommendations.

The Resource Description Framework (RDF) [38] is the framework and data
model on which all other Semantic Technologies are built. RDF is used to de-
scribe entities (called resources) and their relation to other resources and data

Digital Twin Reconfiguration Using Asset Models 5

asset:Room rdf:type owl:Class ;
rdfs:subClass0f [rdf:type owl:Restriction ;
owl:onProperty asset:next ;
owl:cardinality 2 1].
asset:next rdf:type owl:0ObjectProperty.
asset:next rdfs:domain asset:Room.
asset:next rdfs:range asset:Wall.

© 00 O U W N

asset:rooml asset:next asset:wallb

Fig. 3. Example OWL ontology.

values (called literals). Each such relationship can be represented as a link be-
tween a subject and an object via a given predicate. In RDF, triples of the
form (subject, predicate, object) are called statements, and multiple statements
constitute a knowledge graph. Each RDF resource is represented by a Uniform
Resource Identifier (URI), a unique identifier which makes it possible to refer to
the same resource in different RDF graphs.

Figure 2 shows an example RDF graph using Turtle! syntax. The first three
lines are all prefix declarations (aliases) while each of the lines 5-8 corresponds
to a single triple. The statement in line 5 expresses that an entity asset:walll
exists and that it is a wall. The statement consists of a subject that is a resource
with the URI https://smolang.org/Asset#walll, which has been simplified to
asset:walll by using the prefix in line 1, a predicate that is a resource with URI
rdf :type that expresses type membership, and an object asset:Wall, which is
an OWL class.? The next line gives an identifier to the wall (asset:id), in this
case the value "2" of type xsd:string. The last two lines express that the wall
is between the two rooms asset:rooml and asset:room?2.

OWL [37] is an extension to RDF that makes it possible to develop complex
models (called ontologies) of any application domain. OWL provides a vocabu-
lary to declare which classes and properties exist, and the rules to which each
such class and property must adhere. Figure 3 shows how OWL can be used to
make a small ontology for the house example from Sec. 2. The statements in
lines 1-4 declare an OWL class asset:Room, that has exactly two things stored
using the asset:next Property. OWL has the open world assumption, at this
point we know there are 2 things next to a room, but we may not have them
explicit in our KB. The property asset:next itself is defined in lines 5-7 and
relates asset : Room instances to asset:Wall instances. In line 9, we increase the
KB and said that one of the things next to a room1 is walls.

! nttps://www.w3.org/TR/turtle/

2 OWL classes and individuals are declared when they occur in a triple, not in a
separate construct. We can derive that asset:Wall is a class, because it is a subject
of a triple with predicate rdf:type. One can add a triple asset:Wall a owl:Class
to make this explicit.

https://www.w3.org/TR/turtle/

6 E. Kamburjan et al.

OWL gives precise and formal semantics to RDF, which allows automated
reasoners to detect inconsistencies in RDF graphs and to infer implicit facts. For
example, by considering the range and domain of the property asset:next, a
reasoner can infer that the individual asset:rooml in line 9 is an asset:Room
and the individual asset:walll is a asset:Wall. Subproperties can be defined
in OWL; for example, we can declare property asset:left to be a subproperty
of asset:next, in the sense that all Room resources that are left of a Wall
resource are also next to that Wall resource.

SPARQL [30] is the prevailing language for querying and manipulating RDF
graphs. It resembles languages such as SQL, but the way it specifies which data
to return is specially suited for RDF graphs. In SPARQL, a basic SELECT query
contains a WHERE clause with a graph pattern, which is an RDF graph where
parts of the pattern are replaced with variables. The answers to this query are
all subgraphs of the RDF knowledge graph that match this pattern, as given by
the values from the RDF knowledge graph that were assigned to the variables
in the matched pattern. This is demonstrated in the following query, which asks
for all walls and their id.

1 SELECT ?7a 7i WHERE{?7a rdf:type asset:Wall. 7a asset:id ?7i}

Here, 7a and 7i are both variables. When this query is posed over the RDF graph
in Fig. 2 it returns only one result: 7a = asset:walll, 7i = "2". SPARQL
queries can access derived information by means of a logical consequence relation
(technically, an entailment regime) [11,12,23].

In contrast to SPARQL, SHACL [39] ignores information that is not explicit
in the knowledge base. SHACL is not used to check consistency of the knowledge
base with respect to the ontology, but to ensure basic validity conditions on the
concrete data.

3.2 Asset Modelling

An asset model is an organized description of the composition and properties
of an asset (e.g., [16,32,41]). It is common practice in engineering to build asset
models to support, e.g., maintenance operations on an asset. Asset models are
useful in a digital twin context because they can provide the twin with static
configuration data for the twin’s simulation model [6]. In industrial applications,
the asset model is often spread across several databases such as an asset man-
agement system, a engineering database and computer-aided design systems.
Asset models may be directly formalized as knowledge bases (e.g., READI [9]),
connected to them [26], or treated as such by means of ontology-based data
access [29,33] which enable data integration across multiple databases. We can
conceptually distinguish two kinds of asset models: top-down and bottom-up.?

Top-down asset models start with modelling the desired functionality of the
cyber-physical system as a whole, and then decomposing the system into func-
tional sub-systems. There is a tight coupling between functional sub-systems

3 Standard semantic data for both top-down and bottom-up asset models is the subject
of current research projects (e.g., DEXPI [42], CFIHOS [18] and READI [9]).

Digital Twin Reconfiguration Using Asset Models 7

and simulation components in the digital twin setting [35,27]. This approach,
which relates to model-driven engineering [3], is supported by modelling tools
and languages such as SysML (e.g., [27]). A top-down model provides a scal-
able framework for tracking requirements along a system decomposition and
linking requirements to individual components to higher-level system require-
ments [7,10]. However, the semantics of top-down models can be less well defined
than for bottom-up models; for example, the Reference Designation System for
ISO/TEC81346 [17,31] provides a taxonomy of functional systems for engineer-
ing, energy and construction, but is not so far supported by an ontology.

Bottom-up asset models can be given a well-defined semantics since they
are organized around the actual physical components of the asset. Depend-
ing on the domain, the semantics and data models are provided by standards
like ISO15926 [24] for the process industries, ISO10303 for manufacturing and
aerospace [1] and BIM [44,5] for the built environment. The common feature
of these models is their focus on physical artefacts. The functional behaviour
that we want to simulate, is modelled by functional objects that correspond
to the physical object. This tight linkage to the physical artefact means these
models do not scale well for managing information about system behaviour and
requirements, even though they are effective in organizing detailed information
regarding individual components.

For the purposes of this paper, we work with a bottom-up asset model. We
do this because, for this simple example, there is a tight correspondence between
physical artefacts and systems. We do not commit to any specific standard and
instead use an RDF based representation and our own ontology. This corresponds
to the abstraction layer one would typically use after ontology-based data inte-
gration of the different databases that make up a complex asset model. Aspects
typically associated with top-down asset models, such as the connection to the
functionality, are here realized by the digital twin infrastructure.

3.3 Simulation Units

Simulation units are simulator prototypes that can be instantiated as simula-
tion instances to perform some computation. Simulation units have inputs (to
influence the computation) and outputs (to access results) and perform the com-
putation step-wise, where the step size is determined by the driver that uses the
simulation instance.

Formally, simulation units [13] are hextuples (S, U, Y, set, get, doStep), where
S is the internal state space, U the set of input variables, Y the set of output
variables, set : S x U x V — S the function to set the values of the input
variables to some values of domain V, get : S x Y — V the function to get the
results and doStep : S x RT — S the function to perform the simulation for a
given amount of time.

We work with a special form of simulation units, namely functional mock-up
units (FMUs) [14], as defined by the functional mock-up interface (FMI) [4]. The
FMI defines additional structures for simulation units, such as types or param-
eter variables, which cannot be reset, and additional information on the correct

8 E. Kamburjan et al.

usage, e.g., the order of calls needed to initialize an FMU. Most importantly,
it defines the model description, an XML formatted description of input and
output variables, and further information about the FMU.

4 Semantically Lifted Co-Simulation

Semantically lifted programs can interpret their runtime state as a knowledge
base, and access this knowledge base describing their own current state by means
of language primitives at runtime [21]. This semantic reflection operates on a
knowledge base which connects the representation of the runtime state with
further ontologies, most importantly static domain knowledge and, in our case
here, asset models.

Semantic lifting is supported by the Semantic Micro Object Language (SMOL),
a Java-like object-oriented programming language. Semantic reflection in SMOL
is realized through dedicated language primitives, such as an access expression,
which loads the result of a SPARQL query, evaluated over a lifted enriched
ontology under a logical consequence relation (see Sec. 3.1), into a list of objects
in the runtime state.

Beyond semantic lifting, SMOL supports Functional Mock-Up Objects, a trans-
parent layer that tightly integrates FMUs directly into the object model [19].
We here introduce SMOL by presenting a minimal digital twin infrastructure for
the first scenario of Sec. 2 (see Fig. 1 left) and highlight its distinctive features
as we proceed.

Digital Twin. Let us now consider a digital twin of the house from the motivating
example in Sec. 2. The overall structure of the digital twin consists of objects of
the classes Wall and Room that mirror the structure of the physical house, and
objects of the additional classes House, that manages the overall DTT of a single
house, Dutside, to provide the context for the house, and class Controller, to
make decisions about the heating behaviour.

Figure 4 shows the classes Dynamic and Wall (the class Room is analogous to
wall). In the figure, the class Dynamic defines two methods that are used for co-
simulation (propagate and advance) to propagate values and uniformly advance
time throughout the system, and a getter (getHeat) to access the output heat of
a simulator. The class Wall defines a wrapper for the simulation unit of a wall,
it has the following four fields:

— The field fmo contains an FMO, i.e., a wrapped FMU. Its type Cont wraps
descriptions of the ports to the FMU: there are two input variables (T_room1
and T_room2), preceded by the modifier in, and one output variable (h_wall),
preceded by the modified out.

— The fields 1left and right point to the areas to the left and the right of the
wall (an area is either a room or the outside).

— The field id is the identifier in the asset model for the physical wall that this
object is mirroring (see Fig. 2).

Digital Twin Reconfiguration Using Asset Models 9

1 abstract class Dynamic ()

2 abstract Int propagate()

3 abstract Int advance(Double db)

4 end

5

6 class Wall extends Dynamic(

7 Cont[in Double T_rooml, in Double T_room2, out Double h_wall] fmo,
g8 Area left, Area right, Int id)

9

10 override Int propagate()

11 this.fmo.T_rooml = this.left.getHeat();
12 this.fmo.T_room2 = this.right.getHeat();
13 return 0;

14 end

15 override Int advance(Double db)

16 this.fmo.tick(db); return O;

17 end

18 Double getHeat() return this.fmo.h_wall; end
19 end

Fig. 4. SMOL class for the digital twin of a wall.

The methods realize the propagation of values into the FMU, time advance
and the reading of the current temperature of the wall. In SMOL, the FMO is
treated as a standard object with a method for time advance (1. 16) and the
variables of its type are treated as fields (e.g., l. 11).

We next discuss how to instantiate a wall according to an asset model. Before
introducing the asset model for our example in full detail in Sec. 5, we consider
a restricted form here: There are OWL classes asset : Wall and asset : Room
that model physical walls and rooms, with a property asset : id for their id
and two properties asset : left and asset : right that connects a room to the
wall left and right of it. Additionally, there is an OWL subclass asset : Outer
of asset : Wall for the outermost walls.

The code in Fig. 5 shows how Wall instances for the outermost walls are
created by exploiting the semantic reflection. This requires both access to the
semantically lifted program state (to query over the ids of existing objects) and
an external knowledge base with an asset model (to query over the ids of existing
walls). First, a SPARQL query is executed on the knowledge base (1. 3), using
the access statement, to select all the ids of outermost walls from the physical
asset, from this list we retain the ids of outermost walls which are not stored
in the id field of any existing Wall object (1. 4). Then, a new FMO is loaded
for each id, using the simulate statement which takes the filepath to an FMU
file (1. 7). The type of the FMO is then checked against the variable description
given in the model description of the FMU file. Finally, the Wall object itself is
created and stored in the list of all outermost walls.

10 E. Kamburjan et al.

1 List<Wall> walls = null;

2 List<Int> outer

3 = access("SELECT 7id WHERE {?7a asset:id 7id. 7a a asset:QOuter.

4 FILTER NOT EXISTS { 7o prog:wall_id 7id}}");

5 for Int i in outer do

6 Cont[in Double T_rooml, in Double T_room2, out Double h_wall] fmo
7 = simulate ("outerWall.fmu") ;

8 walls = this.add(walls, new Wall(fmo, null, null, i));

9 end

Fig. 5. Prettified SMOL code loading walls from the asset model into the digital twin.

Note that the connection of the outerWall.fmu FMU and the asset : Outer
OWL class is established by the digital twin infrastructure, i.e., the code creat-
ing the object instances, as we assume a bottom-up asset model. Furthermore,
communication to the physical system happens through the Room objects, which
encapsulate some interface to push and pull values to (resp. from) the physical
system. The actual control of the actuators for the heaters in the Room objects
is not detailed in this paper.

Behavioural Reconfiguration. Reconfiguration can be either structural or be-
havioural. A behavioural reconfiguration does not change the structure of the
DT or DTI, but reacts to changes in the data stream from the PT, such as de-
tected model/sensor drift. To do so, parameters of the existing twinned structure
must be set again. Similarly, newly created DTs must be configured as part of
their initialization. In the example above, where an outer wall is loaded, it does
not suffice to simply create an FMU, if the FMU is used for simulation and not
only as an interface to the PT.*

Consider an FMU outerSim and the case where the outer wall FMU has
an additional parameter in Double p, which may be set to some value in the
interval [—1, 1], and a starting point in Double init. To estimate this parameter,
one may collect some additional data and perform a model search, for example
by recording the n data points coming from the PT, and then testing which
value for p generates the best fit for these data points. Fig. 6 shows a simple
linear search for this case [19].

In case an FMU is replaced, the state of the old FMU, which may not be
fully exposed, may contain additional information required for the simulation.
To handle this, either the FMUs must expose enough information about their
inner state to allow such operations, or the parameters of the new FMU, if there
are any, must be determined.

Behavioural reconfiguration must be part of structural reconfiguration as the
sensor streams, simulators and eventual feedback communication units are all

4 If it is used as an interface, the identifier of connection to the PT must be given to
the FMU (this is elided here).

Digital Twin Reconfiguration Using Asset Models 11

1 Cont[...] reconfigure(Double last, List<Double> sysVal, Int n)
2 Double step = -1;

3 List<Double> sim = null;

4 while step <= 1 do

5 Cont[...] wall = simulate("outerSim.fmu", init=last, p=step);
6 for(0 <=1i<=n) do

7 wall.tick(1.0);

8 sim = Cons(shadow.h_wall, sim);

9 end

10 Double d = compare(sim, sysVal); //some error measurement

11 if(d <= threshold) then return wall; end //new parameter

12 step = step + 0.1;

13 end

14 return null; //no parameter found

15 end

Fig. 6. Model search for behavioural reconfiguration.

affected by changes in the asset, but as the mechanisms for it are orthogonal to
asset models, we refrain from discussing it in more detail.

5 Structural Reconfiguration in SMOL

In this section, we consider the structural reconfiguration of the digital twins,
focusing on its simulation component. For the digital twin infrastructure to struc-
turally reconfigure its simulation component, we must (1) detect that the Digital
Twin and Physical Twin have structurally drifted apart, as well as the exact kind
of change that has occurred, (2) amend the relation between DT and PT, and
(3) repair the Digital Twin Infrastructure. We continue with our house example
to illustrate how semantic reflection is used to detect structural drift and mon-
itor basic properties after repair. In this paper, we consider a domain-specific
approach to the problem of structural reconfiguration in which the reconfigura-
tion of the DT mimics the changes that occur in the PT.

Recall from Sec. 2 that a house must have an even number of rooms to be
twinnable. For the sake of the example, we thus assume that the only structural
changes that can occur to the asset is adding two rooms to the left of the existing
rooms, adding two rooms to the right of the existing rooms, or adding one new
room to the left and one to the right of the existing rooms in the house.

Detecting Structural Drift. Every n simulation steps, the DTT runs a query to
retrieve all IDs of rooms and walls that are in the asset model but not in the
DT. If the number of such IDs is neither 0 (no change) or 2 (valid change),
then the change is rejected — it is expressing an update that is not possible to
twin because it violates our assumptions about the asset model and its changes.

12 E. Kamburjan et al.

class RoomAssert(String room, String wallLeft, String wallRight) end

1
2
3 List<RoomAssert> newRooms =

4 construct ("

5 SELECT ?room ?wallLeft ?wallRight WHERE

6 { 7x a asset:Room;

7 asset:right [asset:Wall_id ?7wallRight];

8 asset:left [asset:Wall_id ?walllLeft]; asset:Room_id ?room.
9 FILTER NOT EXISTS {7y a prog:Room; prog:Room_id ?room.} }");

10 if newRooms != null then // if newRooms —— null then no update is needed
11 Int nrRooms = newRooms.length();
12 if nrRooms !'= 2 then /x report error x/ end

13 RoomAssert nl = newRooms.content;

14 RoomAssert n2 = newRooms.next.content;
15 ...// (continued in Fig. 8)

16 end

Fig. 7. Detecting structural drift using semantic reflection.

The relevant query is given in Fig. 7. It constructs RoomAssert instances, each
containing the room id of the room in the asset model, as well as the ids of the
walls to the left and the right of the room. The query itself is analogous to the
example described in Fig. 5. Afterwards, the number of retrieved rooms is used
to detect whether a change has happened and, if so, whether the resulting house
is still twinnable. The new house is twinnable if there are two new rooms that
satisfy our criteria (see above).

Next, the position of the new rooms with respect to the existing structures
needs to be detected. To this aim, we determine whether the two new rooms are
adjacent to each other, their spatial relation to each other, and their relation to
the left-most (resp. right-most) existing room. This is shown in Fig. 8: the first
case is that the first retrieved room (r1) is right of the second room (r2) and left
of the existing structure. The second case is that the first retrieved room (r1)
is left of the second room (r2) and right of the existing structure. The last two
cases are when the two new rooms are not adjacent and the remaining cases are
omitted for readability.

Structural Reconfiguration. Having detected the kind of structural drift, the
structure of the DT can be updated in two steps. First, we create the new simu-
lation elements and insert them into the structure. Second, we update the DTI
and repair possible virtual elements that are not reflecting elements in the asset
(such as the controllers in our example). Figure 9 shows the resulting method
which implements the addition of one new room to each side of the existing
model. First, the rooms are created using addOneLeft and addOneRight, then the
controller structure is rebuilt in rebuildCtrl, before we finally use SHACL to
validate that the structural constraints hold for the new model configuration.

Digital Twin Reconfiguration Using Asset Models 13

1 if nl.wallLeft == n2.wallRight &

2 nl.wallRight == house.firstRoom.wallLeft.id then

3 house.addTwoRight(nl.wallLeft, nl.room, n2.wallLeft, n2.room);
4 else

5 ...

6 if nl.wallRight == n2.walllLeft &

7 nl.wallLeft == house.firstRoom.wallRight.id then

8 house.addTwoLeft (nl.wallRight, nl.room, n2.wallRight, n2.room);
9 else

10

-
[

if house.firstRoom.wallLeft.id == nl.wallRight then

12 house.addLeftRight(nl.wallLeft, nl.room, n2.wallRight, n2.room);
13 else
14 house.addLeftRight (n2.wallLeft, n2.room, nl.wallRight, nl.room);
15 end
16 .
Fig. 8. Determining the kind of structural drift.
1 Unit addLeftRight(String iwl, String irl, String iw2, String ir2)
2 this.addOneLeft(iwl, irl); this.addOneRight(iw2, ir2);
3 this.firstRoom.rebuildCtrl();
4 Boolean valid = validate("examples/House/shape.ttl");
5 if !'valid then /* report error */ end
6 end

Fig. 9. Adding two rooms and reconstructing the controller structure.

Figure 10 details the addition of a single room. Object creation is straight-
forward, the interesting change is at its end where the old outer wall becomes an
inner wall and the method reloads the FMU. An (omitted) method calibrate
can adjust the behavioural configuration of the newly loaded FMU, if needed. If
the FMU is only an interface that receives data from the PT, then this method
may not perform any action. The method addOneRight has no counterpart in sole
operations on the PT (i.e., addition of a single room is not supported), thus is
does not validate the structure at its end.

Figure 11 details the code to completely rebuild the controller structure. It
is called on the left-most room and creates a new controller, connects it to the
currently considered room and its neighbour, deletes the old controller and con-
tinues with the next room with an old controller. A particular detail of semantic
lifting is that it requires manual memory management: objects are retrievable by
queries even if no pointer to them exists and can, thus, not be garbage collected.

Validation. We can use the knowledge base also to validate consistency con-
straints. This can be done either using the underlying logic, e.g., by checking

14 E. Kamburjan et al.

Unit addOneRight(String idw, String idr)
//create new wall and room
Cont[...] new_outer = simulate("examples/DummyFMUs/OuterWall.fmu") ;
Wall new_wall = new Wall(idw, new_outer, null, null);
Cont[...] new_room_fmu = simulate ("examples/DummyFMUs/Room.fmu") ;
Room new_room =

new Room(idr, new_room_fmu, null, null, null, False, null);

new_wall.arealeft = new_room; ///11'111(

© W N U s W N

10 //repair old outer wall

11 Cont[...] new_inner = simulate("examples/DummyFMUs/InnerWall.fmu");
12 new_room.wallLeft.fmuSim = new_inner;

13 end

Fig.10. Adding one room and adjusting the wall simulator.

1 Unit rebuildCtrl()

2 Cont[...] ctrl = simulate("examples/DummyFMUs/Controller.fmu") ;
3 Controller control = new Controller(ctrl, this, this.nextRoom) ;
4 if this.ctrl !'= null then destroy(this.ctrl); end

5 this.ctrl = control;

6 this.nextRoom.ctrl = control;

7 if this.nextRoom.nextRoom !'= null then

8 this.nextRoom.nextRoom.rebuildCtrl();

9 end

10 end

Fig. 11. Rebuilding the controller structure.

that the knowledge base must is consistent. One can also use queries, by giving
special SPARQL queries or OWL classes that must be empty or return an empty
answer set. The approach sketched above can be seen as a variation of this idea:
the query detecting structural drift formulates the constraint that the DT and
the PT are consistent with each other. Such queries can also be used without a
following repair.

Alternatively, one can perform data validation using SHACL, which is a more
lightweight approach as it does not involve reasoning. For example, to validate
the DTI we can formulate that the room that is stored in the House.firstRoom
field is indeed the first one from the left, as the following SHACL shape.

Digital Twin Reconfiguration Using Asset Models 15

1 schema:FirstShape a sh:NodeShape ;

2 sh:targetClass prog:House ;

3 sh:property [

4 sh:path

5 (prog:House_firstRoom prog:Room_wallLeft prog:Wall_arealeft);
6 sh:class prog:Outside;

7

1.

It expresses that for every node that is of prog:House class, following the
path prog:House_firstRoom prog:Room_wallLeft prog:Wall_arealeft ends
in an object of type prog:0utside . L.e., the area to the left of the left wall of
the first room must be outside.

Remowal of Assets. To remove objects that are no longer part of the asset model,
we run a similar query as before, but must consider that an asset that is removed
from the physical system is not removed from the KB, but instead marked as re-
moved. An example for such a query, which directly returns all the Room instances
to be removed is the following. We refrain from giving the repair methods, which
are analogous to adding assets.

1 SELECT 7y WHERE { 7?x asset:Room_id ?id;
2 a asset:removed.
3 ?y a prog:Room; prog:Room_id 7id. }

6 Conclusion

We have presented an approach to reconfiguring digital twin infrastructure ac-
cording to structural changes. The approach integrates a knowledge base with a
digital twin infrastructure. The knowledge base includes an asset model, which
formalises our knowledge of the physical twin, with a similar representation of
the runtime state of the digital twin. We provide a proof of concept implementa-
tion of the approach in SMOL, a programming language which allows the runtime
state of programs to be lifted into a knowledge base and queried from within
the running program (so-called semantic reflection). We implement the DTT as
a SMOL program and view the physical twin through an asset model. Both DTI
and asset models are integrated into a knowledge base, so that the DTI can
perform semantic reflection and perform queries on itself and the asset model
to detect discrepancies and guide the reconfiguration. The very same integrated
knowledge base is also used to validate domain specific constraints on the DTI
and the relation of the DTI to asset model.

Our proof of concept implementation in SMOL has assumed a one-to-one re-
lation between the components of the asset model and those of the simulation
system. In future work, we will explore other relations between the structure of
the asset and the structure of the digital twin. Furthermore, we aim to auto-
matically generate the digital twin infrastructure from a top-down asset model,

16 E. Kamburjan et al.

including automatic detection of structural drift and repair, using the more ad-
vanced RDF loading mechanism recently developed for SMOL [20]. Our work so
far does not incorporate data streams from the asset into the knowledge base.
We expect that this integration can be handled similar to the semantic lifting of
the runtime state into the knowledge base’s static structure of the digital twin,
but this remains to be done. Whereas the knowledge base is well suited to store
and query information, solving constraints is not directly supported (e.g., for pa-
rameter optimisation). We believe that this apparent limitation of the approach
can be naturally overcome by using the knowledge base to collect constraints,
to be solved by an external solver.

References

1. R. Anderl, S. Haag, K. Schiitzer, and E. Zancul. Digital twin technology — An
approach for Industrie 4.0 vertical and horizontal lifecycle integration. it - Infor-
mation Technology, 60(3):125-132, June 2018.

2. A. Banerjee, R. Dalal, S. Mittal, and K. P. Joshi. Generating digital twin models
using knowledge graphs for industrial production lines. In Proc. Web Science Conf.
(WebSci’17), page 425-430. ACM, 2017.

3. J. Bickford, D. L. Van Bossuyt, P. Beery, and A. Pollman. Operationalizing digital
twins through model-based systems engineering methods. Systems Engineering,
23(6):724-750, 2020.

4. T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmgqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A. Viel.
Functional Mockup Interface 2.0: The standard for tool independent exchange of
simulation models. In Modelica Conf., pages 173-184. The Modelica Association,
2012.

5. M. Bolpagni. Building Information Modelling and Information Management. In
M. Bolpagni, R. Gavina, and D. Ribeiro, editors, Industry 4.0 for the Built Envi-
ronment: Methodologies, Technologies and Skills, Structural Integrity, pages 29-54.
Springer, 2022.

6. D. B. Cameron, A. Waaler, and T. M. Komulainen. Oil and Gas digital twins after
twenty years. How can they be made sustainable, maintainable and useful? In
Proc. 59th Conf. on Simulation and Modelling (SIMS 59), pages 9-16. Linkoping
University Electronic Press, 2018.

7. P. Delgoshaei, M. A. Austin, and D. A. Veronica. A Semantic Platform Infrastruc-
ture for Requirements Traceability and System Assessment. In Ninth Intl. Conf.
on Systems (ICONS 201/). IARIA, Feb. 2014.

8. H. Feng, C. Gomes, C. Thule, K. Lausdahl, A. Iosifidis, and P. G. Larsen. Intro-
duction to digital twin engineering. In C. R. Martin, M. J. Blas, and A. Inostrosa-
Psijas, editors, Annual Modeling and Simulation Conference, ANNSIM 2021, Vir-
tual Event / Fairfaz, VA, USA, July 19-22, 2021, pages 1-12. IEEE, 2021.

9. E. Fjgsna and A. Waaler. READI Information modelling framework (IMF). As-
set Information Modelling Framework. Technical report, READI Joint Industry
Project, Mar. 2021.

10. A. Fraga, J. Llorens, L. Alonso, and J. M. Fuentes. Ontology-Assisted Systems
Engineering Process with Focus in the Requirements Engineering Process. In
F. Boulanger, D. Krob, G. Morel, and J.-C. Roussel, editors, Complezr Systems
Design € Management, pages 149-161. Springer, 2015.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Digital Twin Reconfiguration Using Asset Models 17

B. Glimm and M. Krétzsch. SPARQL beyond subgraph matching. In P. F. Patel-
Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, I. Horrocks, and
B. Glimm, editors, Proc. 9th Intl. Semantic Web Conf. (ISWC 2010), volume 6496
of Lecture Notes in Computer Science, pages 241-256. Springer, 2010.

B. Glimm and C. Ogbuji. SPARQL 1.1 Entailment Regimes. W3C Recommenda-
tion, 2013. Available at http://www.w3.org/TR/sparqlll-entailment/.

C. Gomes, L. Licio, and H. Vangheluwe. Semantics of co-simulation algorithms
with simulator contracts. In MoDELS (Companion), pages 784-789. IEEE, 2019.
C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe. Co-simulation:
A survey. ACM Comput. Surv., 51(3):49:1-49:33, 2018.

M. Grieves and J. Vickers. Digital twin: Mitigating unpredictable, undesirable
emergent behavior in complex systems. In F.-J. Kahlen, S. Flumerfelt, and
A. Alves, editors, Transdisciplinary Perspectives on Complex Systems: New Find-
ings and Approaches, pages 85—113. Springer, 2017.

J. Heaton and A. K. Parlikad. Asset information model to support the adoption
of a digital twin: West cambridge case study. IFAC-PapersOnLine, 53(3):366-371,
2020. 4th IFAC Workshop on Advanced Maintenance Engineering, Services and
Technologies - AMEST 2020.

IEC TC3. IEC 81346-1 Structuring principles and reference designations - Part 1
Basic rules. International Standard TEC 81346-1 Ed. 1, IEC, July 2009.

IOGP JIP 36. CFIHOS Standards. https://www.jip36-cfihos.org/
cfihos-standards/. Accessed: 2021-12-12.

E. Kamburjan and E. B. Johnsen. Knowledge structures over simulation units.
In Proc. SCS Annual Modeling and Simulation Conf. (ANNSIM 2022), 2022. In
press.

E. Kamburjan, V. N. Klungre, and M. Giese. Never mind the semantic gap: Mod-
ular, lazy and safe loading of RDF data. In Proc. 19th Intl. Conf. on the Semantic
Web (ESWC 2022), volume 13261 of Lecture Notes in Computer Science, pages
200-216. Springer, 2022.

E. Kamburjan, V. N. Klungre, R. Schlatte, E. B. Johnsen, and M. Giese. Pro-
gramming and debugging with semantically lifted states. In R. Verborgh, K. Hose,
H. Paulheim, P. Champin, M. Maleshkova, O. Corcho, P. Ristoski, and M. Alam,
editors, Proc. 18th Intl. Conf. on the Semantic Web (ESWC 2021), volume 12731
of Lecture Notes in Computer Science, pages 126—142. Springer, 2021.

E. Kharlamov, F. Martin-Recuerda, B. Perry, D. Cameron, R. Fjellheim, and
A. Waaler. Towards semantically enhanced digital twins. In IEEE BigData, pages
4189-4193. IEEE, 2018.

E. V. Kostylev and B. C. Grau. On the semantics of SPARQL queries with optional
matching under entailment regimes. In ISWC, pages 374-389, 2014.

D. Leal. ISO 15926 "Life Cycle Data for Process Plant": an Overview. Qil & Gas
Science and Technology, 60(4):629-637, July 2005.

P. Lietaert, B. Meyers, J. V. Noten, J. Sips, and K. Gadeyne. Knowledge graphs
in digital twins for AI in production. In A. Dolgui, A. Bernard, D. Lemoine,
G. von Cieminski, and D. Romero, editors, Proc. IFIP WG 5.7 Intl. Conf. on Ad-
vances in Production Management Systems. Artificial Intelligence for Sustainable
and Resilient Production Systems (APMS 2021), volume 630 of IFIP Advances in
Information and Communication Technology, pages 249-257. Springer, 2021.

R. Mehmandarov, A. Waaler, D. Cameron, R. Fjellheim, and T. B. Pettersen. A
semantic approach to identifier management in engineering systems. In Proc. Intl.
Conf. on Big Data (Big Data), pages 4613-4616. IEEE, 2021.

http://www.w3.org/TR/sparql11-entailment/
https://www.jip36-cfihos.org/cfihos-standards/
https://www.jip36-cfihos.org/cfihos-standards/

18

27.

28.

29.
30.
31.
32.

33.

34.

35.

36.

37.
. W3C, RDF Working Group. Resource description framework. https://wuw.w3.

39.

40.

41.

42.

43.

44.

45.

E. Kamburjan et al.

C. Nigischer, S. Bougain, R. Riegler, H. P. Stanek, and M. Grafinger. Multi-domain
simulation utilizing SysML: state of the art and future perspectives. Procedia
CIRP, 100:319-324, Jan. 2021.

B. J. Oakes, B. Meyers, D. Janssens, and H. Vangheluwe. Structuring and accessing
knowledge for historical and streaming digital twins. In I. Tiddi, M. Maleshkova,
T. Pellegrini, and V. de Boer, editors, Joint Proc. of the Semantics co-located
events: PosterédDemo track and Workshop on Ontology-Driven Conceptual Mod-
elling of Digital Twins, volume 2941 of CEUR Workshop Proceedings. CEUR-
WS.org, 2021.

A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. Data Semant., 10:133-173, 2008.

E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
Recommendation, 2008. Available at http://www.w3.org/TR/rdf-sparql-query/.
READI. Reference Designation System for Oil and Gas - READI, 2020.

M. Rotondi, A. Cominelli, C. Di Giorgio, R. Rossi, E. Vignati, and B. Carati.
The benefits of integrated asset modelling: lessons learned from field cases. In
Europec/EAGE Conf. and Ezhibition. OnePetro, 2008.

M. G. Skjaeveland, M. Giese, D. Hovland, E. H. Lian, and A. Waaler. Engineering
ontology-based access to real-world data sources. J. Web Semant., 33:112-140,
2015.

@. R. Smogeli, K. B. Ludvigsen, L. Jamt, B. Vik, H. Nordahl, L. T. Kyllingstad,
K. K. Yum, and H. Zhang. Open simulation platform — an open-source project for
maritime system co-simulation. In COMPIT. Technische Universitit Hamburg-
Harburg, 2020.

H. Sohier, P. Lamothe, S. Guermazi, M. Yagoubi, P. Menegazzi, and A. Maddaloni.
Improving simulation specification with MBSE for better simulation validation and
reuse. Systems Engincering, 24(6):425-438, 2021.

F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee. Digital twin in industry: State-of-
the-art. IEEE Trans. Ind. Informatics, 15(4):2405-2415, 2019.

W3C, OWL Working Group. Web ontology language. https://www.w3.org/0WL.

org/RDF.

W3C, SHACL Working Group. Shapes constraint language. https://www.w3.
org/TR/shacl/.

M. Waszak, A. N. Lam, V. Hoffmann, B. Elvesater, M. F. Mogos, and D. Roman.
Let the asset decide: Digital twins with knowledge graphs. In 19th IEEE Intl.
Conf. on Software Architecture (ICSA 2022). IEEE, 2022.

K. Wei, J. Z. Sun, and R. J. Liu. A review of asset administration shell. In 2019
IEEFE Intl. Conf. on Industrial Engineering and Engineering Management (IEEM),
pages 1460-1465, 2019.

M. Wiedau, L. von Wedel, H. Temmen, R. Welke, and N. Papakonstantinou. EN-
PRO Data Integration: Extending DEXPI Towards the Asset Lifecycle. Chemie
Ingenieur Technik, 91(3):240-255, 2019.

H. Yan, J. Yang, and J. Wan. KnowIME: A system to construct a knowledge graph
for intelligent manufacturing equipment. IEEE Access, 8:41805-41813, 2020.

J. Zhang, H. Luo, and J. Xu. Towards fully BIM-enabled building automation
and robotics: A perspective of lifecycle information flow. Computers in Industry,
135:103570, Feb. 2022.

B. Zhou, Y. Svetashova, A. Gusmao, A. Soylu, G. Cheng, R. Mikut, A. Waaler,
and E. Kharlamov. SemML: Facilitating development of ML models for condition
monitoring with semantics. J. Web Semant., 71:100664, 2021.

http://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/OWL
https://www.w3.org/RDF
https://www.w3.org/RDF
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

	Digital Twin Reconfiguration Using Asset Models

