
Monitoring Reconfigurable Simulation Scenarios in
Co-simulated Digital Twins

Simon Thrane Hansen1, Eduard Kamburjan2, and Zahra Kazemi3

1 University of Luxembourg, Luxembourg, simon.hansen@uni.lu
2 University of Oslo, Norway, eduard@ifi.uio.no

3 Aarhus University, Denmark, zka@ece.au.dk

Abstract

Co-simulation, essential for various domains, involves simulating systems with hetero-
geneous subsystems by combining them into scenarios using orchestration algorithms.
Due to system evolutions, digital twins may require dynamic reconfiguration of the
scenario and orchestration algorithm, which may introduce a significant simulation er-
ror that may go unnoticed if the scenario and orchestration algorithm are not correctly
aligned. This paper introduces a monitor-based approach to automatically detect and
help prevent any discrepancies between the scenario and the orchestration algorithm.
The approach’s overhead may be significant for short simulations, but amortizes over
longer simulations, as illustrated by a case study.

1 Introduction

Co-simulation, vital for simulating complex systems, involves integrating heteroge-
neous simulation models into a single simulation that captures all aspects of the sys-
tem [9,18]. Each model represents a dynamic system that evolves according to a set of
evolution rules and stimuli from other models in the simulation. Interoperability be-
tween heterogeneous models, developed by different companies using different tools,
can be achieved by exporting the model as a Functional Mock-up Unit (FMU) from one
of the more than 170 tools supporting the Functional Mock-up Interface (FMI) [4,8].
A collection of FMUs can be composed into a scenario, representing their collective
behavior by coupling their input and output ports.

Simulations of digital twins (DTs) require that the corresponding scenario mirrors
the structure of the physical counterpart by adjusting both the involved FMUs and their
connections dynamically [16]. This is a challenging task as the behavior of a scenario is
obtained by advancing the states of the FMUs and exchanging stimuli between them ac-
cording to a scenario-tailored orchestration algorithm (OA) [18,9,13,21]. Consequently,
methods have emerged to verify that an OA is suitable for a specific scenario, ensuring
that data are exchanged according to the evolution rules of the FMUs [13,21,22]. The
existing methods apply only to static scenarios, where the scenario remains unchanged
throughout the simulation [25]. Simulating a reconfigurable scenario requires dynamic
loading and unloading FMUs and adjusting the OA accordingly to ensure accurate sim-
ulation results. To mitigate the risk of introducing errors during reconfiguration, we



2 Hansen et al.

propose a runtime verification method implemented in the Semantic Micro Object Lan-
guage (SMOL) [15] and the UPPAAL toolbox [3] to ensure that the OA and scenario
are aligned.

To illustrate the challenge and our solution in the remainder of this paper, consider a
DT simulation of a power grid with a controller [17], based on the IEEE-14 system [5].
The system consists of a set of power generators and one or more estimators used by the
controller to estimate the generators’ hidden states. The controller adjusts the genera-
tors’ operational parameters to ensure reliable operation. The number of power genera-
tors, and subsequently estimators, changes dynamically as the load demand varies [20].
We consider two different topologies, each with a different number of generators and
estimators as depicted in Figure 1. The approach doesn’t limit the number of topologies,
but we focus on two for clarity.

Our solution introduces a dynamic and flexible scenario monitor, that gets queried
before any FMU action to ensure that the action is allowed according to the current sce-
nario. This monitor supports dynamic reconfiguration where the FMUs and connections
can change in response to structural changes in the DT, as demonstrated when shifting
from Scenario 1 to Scenario 2 (see Figure 1). Here, FMUs for the controller and gener-
ators 1-4 are reassigned, and a new estimator is introduced. The monitor checks that the
OA follows the new scenario, which will include, e.g., a startup phase. Additionally,
FMUs can be assigned to multiple scenarios, facilitating efficient FMU sharing Such
reconfigurable scenarios are critical for DTs that must react to signals from outside the
simulation by adopting both their structure and OA.

Estimator 1 Estimator 2

Generator 1 Generator 2 Generator 3 Generator 4 Generator 5

Controller

(a) Scenario 1: five synchronous generators,
two estimators, and one controller.

Estimator

Generator 1 Generator 2 Generator 3 Generator 4

Controller

(b) Scenario 2: four synchronous genera-
tors, one estimator, and one controller.

Fig. 1: Two different power system topologies. Each square represents an FMU, and
each arrow represents between 1 and 10 connections between the FMUs.

Contribution. We present an approach to load co-simulation scenarios at runtime and
(a) check properties of the scenario, as part of the DT, and (b) check that the OA and the
scenario are aligned. This ensures the correctness of reconfigurable co-simulation in the
context of DTs. We implement our approach as (a) a JVM library for online monitoring
according to the FMI standard, and (b) an extension of the FMI-integration [14] into
SMOL [15]. In the following, we introduce the notion of correctness (Section 2), the
runtime checker (Section 3), and its integration for reconfiguration (Section 4). We



Monitoring Reconfigurable Simulation Scenarios in Co-simulated Digital Twins 3

demonstrate how our method ensures that the OA correctly adapts to the changes in the
above power grid case study (Section 5).

2 State-of-the-Art and Preliminaries

2.1 State-of-the-Art in Runtime Verification of Simulation Units

Co-simulation is commonly realized by frameworks that do not allow to reconfigure af-
ter the co-simulation is started [9]. Runtime monitoring has been investigated by Tem-
perekidis et al. [23], who synthesize LTL-monitors for FMI-based simulations, verify-
ing the values within simulations. Our work, in contrast, ensures that simulations adhere
to the specified scenario and dynamically adapt the OA, a capability not provided by
them. Similar to Balakrishnan et al.[1] and Zapridou et al.[29], who apply runtime veri-
fication in autonomous driving simulations, our approach emphasizes the structure and
adherence of simulations, but uses co-simulation scenarios as specifications and adopts
a language-based approach. In a broader sense, runtime monitoring is an important tool
for self-adaptive systems, and we refer to the surveys [27,26] for a detailed treatment.
Specifically to DTs, Weyns [26] discusses the application of general formal methods to
DTs. The work by Wright et al. [28] uses reachability analysis to ensure system-level
properties of a DT. Similarly, our work uses reachability analysis to ensure that the
DT faithfully represents the simulation scenario. Most works on runtime monitoring
and DTs focus on using the twins as the monitor – such as the example in Section 1
is a monitor that detects drift between simulated and observed behavior. For instance,
Leucker et al. [19,24] discuss using simulation to monitor rescue missions or energy
grids to recommend and plan actions. Hallé et al. [11] give a general approach for de-
signing a specification language to compare simulation results and observed behaviors
online. As for the use of a model checking approach for runtime verification, Cimatti et
al. [6] extend nuXmv in a similar fashion as our work uses UPPAAL, but not for model
checking. Current approaches to runtime monitoring of co-simulation either assume a
fixed structure and cannot react to the changes triggered by a physical twin or focus on
comparing data streams.

2.2 Preliminaries: Functional Mock-up Interface

To establish a notion of correctness for simulation scenarios, we require a precise, for-
mal notion of consistent OAs and consistent simulation traces. Having established these
properties, we can then check the consistency of the OA (whenever we reconfigure the
scenario) and dynamically monitor the generated orchestration trace afterward. This
section introduces the notion of valid OAs and traces and briefly introduces the nec-
essary background on co-simulation and the FMI standard. We refer to [9] for a com-
prehensive introduction to FMI-based co-simulation. An FMU is a black-box repre-
sentation of a model encapsulating the model’s binary and a description file outlining
the model’s interface [4]. Following the FMI standard version 2.0 [4,12], we define the
interface of an FMU as follows:



4 Hansen et al.

Definition 1 (Functional Mock-up Unit). An FMU with identifier c is represented
by the tuple ⟨Sc,Uc,Yc,setc,getc,stepc⟩, where: (i) Sc denotes the state space of the
FMU. (ii) Uc and Yc are the input and output ports of the FMU. Each port holds a value
from a set of values V and a timestamp from a set of timestamps R≥0. The set of times-
tamped values is denoted VT = R≥0 ×V . (iii) The functions setc : Sc ×Uc ×VT → S
and getc : Sc ×Yc → VT set an input and get an output, respectively. (iv) The function
stepc : Sc ×R>0 → Sc ×R>0 advances the state of the FMU by a given duration. If an
FMU is in state s(t)c at time t then, (s(t+h)

c ,h) = step(s(t)c ,H) denotes the state s(t+h)
c of

the FMU at time t + h, where h ≤ H. The FMU advances by h because the FMU, due
to implementation details, cannot advance by H.

A set of FMUs is combined into a scenario by connecting their ports to specify
dependencies between them.

Definition 2 (Scenario). A scenario S is a tuple S ≜ ⟨C,L,M,R,F⟩ , where (i) C is
a finite set (of FMU identifiers). (ii) L is a function L : U → Y , where U =

⋃
c∈C Uc

and Y =
⋃

c∈C Yc, and where L(u) = y means that the output y is coupled to the input
u. (iii) M ⊆ C denotes the FMUs that implement error estimation. (iv) R : U → B is a
predicate describing whether an FMU uses interpolation or extrapolation on a given
input to approximate the evolution of the connected output when stepping the FMU. An
input is called reactive if R(u), which means the FMU uses interpolation, while an input
is delayed and the FMU uses extrapolation if ¬R(u) [10]. (v) F is a family of functions
{Fc : Yc → P(Uc)}c∈C. The statement uc ∈ Fc(yc) says that the input uc feeds through
to the output yc of the same FMU.

In addition to the FMUs and how they are coupled, a scenario introduces the func-
tions M, R, and F referred to as the scenarios’ contracts. Gomes et al. [9,10] introduced
the contracts to capture non-confidential information about how an FMU is most opti-
mally simulated in a scenario. For instance, an FMU B with a reactive input u connected
to the output y of FMU A means that FMU A must be stepped before the value of the
output y is obtained and set on the input u to ensure that FMU B can interpolate on the
new input value of u when advancing its state.

An OA is a sequence of FMU operations outlining how the joint state of the sce-
nario evolves by specifying when and how the state of the FMUs is advanced using the
step operation and how data is exchanged between the FMUs using the get and set

operations.

Definition 3 (Orchestration Algorithm). The orchestration operations for a scenario
S = ⟨C,L,M,R,F⟩ is the set

{
setc(_,v,_),getc(_,w),stepc(_,_) | v∈Uc,w∈Yc,c∈

C
}

. An OA for a scenario S is a regular expression over orchestration operations for
S , which contains only sequence and iteration.

A scenario should be simulated using a suitable OA, which is an OA A for a sce-
nario S where no other algorithm produces more accurate simulation results than A,
formally: ∀OA ∈ OAs · err(simulate(OA,S)) ≥ err(simulate(A,S)), where OAs is the
set of all OAs, the result of a simulation of a scenario S using an OA OA is denoted



Monitoring Reconfigurable Simulation Scenarios in Co-simulated Digital Twins 5

simulate(OA,S), and err(R) is a function that measures the error of a simulation result
R. Unfortunately, the nature of FMUs inhibits the implementation of the function err(),
making it impossible to reason directly about the accuracy of results in general. Never-
theless, Gomes et al. [10,21] showed that an OA respecting the contracts of a scenario
is suitable, meaning it can be statically judged if an OA is suitable.

2.3 Preliminaries: FMI-based Co-Simulation Semantics

We incorporate the contracts defined in Definition 2 into the semantics of the actions
described in Definition 1 to be able to conclude whether an OA is suitable for a given
scenario solely based on the OA. Specifically, we adopt the notation and semantics
defined in [12,13]. The semantics are defined in terms of a runtime state of an FMU.
A runtime state abstracts the internal representation of an FMU while capturing the
information necessary to reason about the actions performed on the FMU.

Definition 4 (Runtime State of an FMU). The runtime state sR of an FMU c in a
scenario S is an element of the set SR

c = R≥0 × SR
Uc

× SR
Yc
× SR

Vc
, where: (i) R≥0 is the

timebase of the simulation; it denotes the current time of the FMU. (ii) SR
Uc

: Uc → R≥0

maps each input port to a timestamp. (iii) SR
Yc

: Yc → R≥0 is a function mapping each
output port to a timestamp. (iv) SR

Vc
: (Uc ∪Yc)→ V maps each port to a value.

The semantics are defined in terms of preconditions and postconditions for each
action. We omit the semantics of the get and set functions for brevity, but they are de-

fined similarly in [12,13]. The notation s P−→ s′ is read as “s is changed to s′ by executing
the action or algorithm P”.

Definition 5 (Step Computation). Stepping an FMU using step(s(t),H) advances
the state of the FMU by H ∈ R>0, formally:

sR step(s(t),H)−−−−−−−→ sR′ =⇒ preStepT(H,sR)∧postStepT(H,sR,sR′).

The precondition specifies that all the FMU inputs have been updated based on their
reactivity constraints, with reactive inputs at time t+H and delayed inputs at time t. The
postcondition guarantees that the time of the FMU has progressed by the step duration
H and that new port values have been computed:

preStepT(H,
〈
t,sR

U,s
R
Y ,s

R
V

〉
)≜ ∀u ∈U · ((R(u)∧ t +H = sR

U(u))∨ (¬R(u)∧ t = sR
U(u)))

postStepT(H,
〈
t,sR

U,s
R
Y ,s

R
V

〉
,
〈

t ′,sR
U,s

R
Y ,s

R
V
′〉
)≜ t +H = t ′.

Every FMU action changes the co-simulation state - the runtime state of all the
scenarios FMUs.

Definition 6 (Co-simulation State). The co-simulation state sR
S of a scenario

⟨C,L,M,R,F⟩ is an element of the set SR
S = time×SR

U ×SR
Y ×SR

V where: 1. time : C →
R≥0 is a function, where time(c) denotes the current simulation time of FMU c. We



6 Hansen et al.

denote by a time value t ∈ R≥0 the function λc.t, which we use if all FMUs are si-
multaneous. 2. SR

U = merge({SR
Uc

· c ∈ C}) maps all inputs of the scenario to a times-
tamp. 3. SR

Y = merge({SR
Yc
· c ∈ C}) maps all outputs of the scenario to a timestamp.

4. SR
V = merge({SR

Vc
· c ∈C}) maps all ports of the scenario to a value.

The co-simulation is performed using an iteratively applied OA (called a co-
simulation step) that advances the co-simulation state from a time t to the time t ′ while
ensuring that the values of the coupled ports remain equal. Furthermore, the algorithm
must respect the contracts of the scenario, i.e., it must advance the FMUs according
to their approximation functions and other contracts. This is captured by the follow-
ing definition of a consistent co-simulation state that uses Dijkstra’s weakest precon-
dition calculus to account for the semantics of the FMU actions when advancing the
co-simulation state from one consistent state to another.

Definition 7 (Consistent Orchestration Algorithm). An OA A for a scenario S de-
fined in Definition 2 is consistent if it takes an initial consistent co-simulation state at
time t to a future consistent co-simulation state at time t ′ while respecting the semantics
of the FMU actions.

consistent(
〈
t,sR

U,s
R
Y ,s

R
V

〉
) =⇒ wp(A,consistent(

〈
t ′,sR

U
′
,sR

Y
′
,sR

V
′〉
))∧ t ′ > t,

where consistent states that all coupled ports are equal, and all FMUs have the same
time [12].

2.4 Preliminaries: Consistent Traces with Reconfiguration

While a consistent OA is suitable for a static scenario [10,12], it does not work for re-
configurable scenarios such as the power system in Figure 1 as a suitable OA for the
scenario in Figure 1a is not suitable for the scenario in Figure 1b. Consequently, the OA
must be correctly updated at every reconfiguration (a change in the scenario) to ensure
that the used OA is always suitable OA for the current scenario. As the reconfigurations
depend on changes to the simulation’s physical counterpart, it cannot be checked stat-
ically whether the OA and scenario are properly aligned. Neither does it make sense
to check this after the execution, as computational resources would have been wasted
on am inconsistent simulation. To mitigate this problem, we use a runtime monitor to
check that a DT simulation uses a suitable OA at all times. We say that such a simulation
is reconfiguration consistent.

The monitor operates on the co-simulation trace π, a sequence of tuples captur-
ing both the applied operations A and the current scenario S to capture the evolution
of the co-simulation state indirectly. Reconfigurations can, due to the discrete nature
of co-simulation, only occur between co-simulation steps, meaning we can group the
co-simulation trace into a trace map using a series of projections, linking each time
step to an OA and a scenario (πM : R>0 →

〈
OAs,2S

〉
. We now define the notion of

reconfiguration consistency.



Monitoring Reconfigurable Simulation Scenarios in Co-simulated Digital Twins 7

Definition 8 (Reconfiguration Consistency). A co-simulation trace π with the trace
map πM is reconfiguration consistent if the used OA is consistent with the corresponding
scenario at all times, formally:

consistentTrace(π)≜ ∀t ∈ dom(πM) · consistent(pr1(πM(t)),pr2(πM(t))),

where consistent is defined in Definition 7 and the functions pr1() and pr2() projects,
respectively, the first and second element of a tuple. A co-simulation trace π where
consistentTrace(π) holds, is reconfiguration consistent. Otherwise, we say that the co-
simulation trace π is reconfiguration inconsistent.

3 Runtime Verification of Co-simulations

This section defines a monitor for verifying whether a given co-simulation connected
to a DT is reconfiguration consistent. Monitors enable runtime verification of a system
by observing the system during execution and detecting violations of a given specifica-
tion [2]. Falcone et al. [7] describe a monitor as a tuple ⟨D,A,Q,q0,∆ ,Γ ⟩, where: (i) D
is the verdict domain. (ii) A is a set of actions/events. (iii) Q is a set of states. (iv) q0
is the initial state. (v) ∆ : Q×A → Q is the transition function. (vi) Γ : Q → D is the
verdict function. The monitor is implemented in the UPPAAL model checker [3] and
the Scenario-Verifier tool [13] to generate a tool-chain that can instantiate a UPPAAL
monitor for a scenario described in a DSL.

3.1 The UPPAAL model

The UPPAAL model formalizes a co-simulation as a set of FMUs whose joint behavior
is computed by an orchestrator executing an OA. Each FMU is represented by a UP-
PAAL template describing the runtime state of the FMU and the interface described in
Definition 1. The orchestrator is represented by another UPPAAL template outlining
how the orchestrator interprets the OA and exercises the FMUs accordingly. A scenario
is instantiated in UPPAAL by instantiating one FMU template for each FMU in the
scenario and one Orchestrator template per scenario. The two templates are outlined
below.

The Orchestrator template. Figure 2a shows the (visualization of the) orchestra-
tor template in UPPAAL. The orchestrator sequentially interprets the OA using the
action NextAction() and exercises the FMUs accordingly. It executes the OA
by invoking the actions defined in Definition 1 on the FMUs using the channel
fmu[activeFMU]!, where activeFMU is the identifier of the FMU currently be-
ing exercised. The Orchestrator waits for the FMU to confirm that the action was suc-
cessfully performed by synchronizing on the channel actionPerformed? before
selecting and invoking the next action. When all actions in the OA have been per-
formed (algorithmDone), the Orchestrator terminates the co-simulation by going
to the state Terminated. The transitions to the state IterativeSearch are only
relevant for particular scenarios with cyclic dependencies and active error estimation;
we omit them due to space limitations.



8 Hansen et al.

(a) The Orchestrator template in UPPAAL.
The orchestrator sequentially interprets the
OA and exercises the FMUs accordingly. (b) The FMU template in UPPAAL.

Fig. 2: The UPPAAL templates of the Orchestrator interpreting the OA and the FMU
checking the OA.

The FMU template. In UPPAAL, each FMU is represented by a template that captures
the runtime state of the FMU and implements the interface described in Definition 1.
Each transition represents an action the Orchestrator can invoke on the FMU by syn-
chronizing on the channel fmu[id] and setting the variables act and id to the ac-
tion and identifier of the FMU, respectively. Each transition has a guard (CanSet,
CanGet, and CanStep) to ensure that the model catches violations of Definition 7.
Consequently, an action is only executed if the guard evaluates to true, which means that
any violations of Definition 7 will result in a deadlock because the Orchestrator cannot
synchronize with the given FMU. Once the FMU has performed the requested action, it
synchronizes with the Orchestrator on the actionPerformed! channel to confirm
that the action was performed so that the Orchestrator can invoke the next action.

3.2 (Online) Monitoring a Co-simulation

The UPPAAL model implements a monitor as the set of states Q, the transition func-
tion ∆ , the set of actions A, and the initial state q0 are defined by the UPPAAL model.
The verdict function Γ is defined by the CTL formula in the UPPAAL query language
A♢Orchestrator.Terminated. It ensures that the simulation respects Definition 7 as all
violations lead to a deadlock. UPPAAL evaluates this formula to determine the algo-
rithm’s suitability and suggests FMU actions to resolve potential deadlocks. The moni-
tor is implemented as a Java library interfacing with UPPAAL to ensure that a simula-
tion is reconfiguration consistent.

The implementation avoids unnecessary calls to UPPAAL by using a cache that ex-
ploits that a co-simulation step is typically applied more than once. The caching mech-
anism utilizes the following three observations: (i) All verification of the same scenario
starts from the same consistent initial state I. (ii) The simulation is deterministic, i.e.,
performing the same sequence of actions from the same initial state always results in
the same final state. (iii) A valid OA A starting from a consistent state S always leads to
a consistent state S′ where the only difference between S and S′ is the simulation time.
Moreover, applying A to S′ results in a new consistent state S′′. Consequently, all actions



Monitoring Reconfigurable Simulation Scenarios in Co-simulated Digital Twins 9

performed before the last consistent state S was established can be removed [13,10]. The
first two observations facilitate caching through verdict reuse, while the third reduces
UPPAAL’s state space by removing already verified actions from the OA.

4 Online Monitoring

Equipped with a precise notion of consistency, as well as means to verify a simulation
and compare traces to scenarios, we now demonstrate how these techniques are applied
for reconfiguration. To this end, we extend the SMOL programming language to handle
simulation scenarios as runtime monitors by extending it with scenario monitors. While
we present it in the context of SMOL, the principles apply to any language, but using it
as a basis enables us to investigate DTs and simulation scenarios from the perspective
of the software implementing them [14]. This section recaps the integration of FMUs
into SMOL before describing how SMOL has been extended with a notion of scenarios
to enable monitoring of reconfigurable scenarios.

A functional mock-up object (FMO) is an object-oriented wrapper that encapsulates
an FMU. An FMO is a layer around an FMU, together with its role in the simulator.

Definition 9 (FMOs). Let I be a set of object identifiers and M be a set of scenario
identifiers. A functional mock-up object (FMO) is a tuple FMO =

〈
i,FMU,c,sR,MI

〉
,

where i ∈ I is a unique identifier for the FMO, FMU is an FMU with state space
S, sR ∈ S its runtime state, c is an FMU identifier and MI ⊆ M is a set of monitor
identifiers. A functional mock-up scenario (FMS) is a triple ⟨m,M,π⟩, where m ∈M is
a scenario identifier, M is a monitor, and π is a co-simulation trace.

An FMO does not keep track of its trace – its trace is only relative to a scenario
and thus stored within the scenario. Note that in our system, the FMS is more than just
the co-simulation scenario; it also includes the OA (through the monitor). We define
the program’s configuration using a set of variables Var assigned to values from the
set Val. The values in Val include object identifiers I and scenario identifiers M , as
well as doubles D. FMOs and scenarios are stored in the additional set σ . The runtime
semantics are expressed as a transition system between these states.

Definition 10 (State). A configuration conf = ⟨ρ,σ⟩ is a pair of a map ρ : Var 7→ Val
that assigns values to locations and a set σ of FMOs and FMS’s.

To single out elements in states, we write {F1,F2, . . .Fn} as F1 · {F2, . . .Fn} We re-
frain from introducing full operational semantics (which are a straightforward extension
of the one given by Kamburjan and Johnsen [14]), and use J·Kρ for evaluation of expres-
sions.

The language permits the operations outlined below. The formal rules are
given in Fig. 3. To facilitate these operations, we employ two auxiliary functions:
advance(σ , /0,a, role), which updates these scenarios in σ accordingly, and the func-
tion canAdvance(σ , role,a,MI), which checks whether the FMO playing role role can
perform action a for all scenarios with identifiers in MI. Fig. 4 provides their formal
definitions. The transition relation has the form conf

s−→
b
conf ′ where s is the statement



10 Hansen et al.

s = obj=simulate("fmu", p1=e1, . . . ,pn=en)

Init
(
fmu,Je1Kρ , . . . ,JenKρ

)
=
〈
i,FMU, role,sR, /0

〉
(io)

⟨ρ,σ⟩ s−→
⊤

〈
ρ[obj 7→ i],

〈
i,FMU, role,sR, /0

〉
·σ

〉
s = obj=scenario("fms", p)

Init(fms) = ⟨m,M,ε⟩
(is)

⟨ρ,σ⟩ s−→
⊤

⟨ρ[obj 7→ m],⟨m,M,ε⟩ ·σ⟩

JfKρ = i
(ro) 〈

ρ,
〈
i,FMU, role,sR,MI

〉
·σ

〉 f.role=e−−−−−−−−→
⊤〈

ρ,
〈
i,FMU,JeKρ ,sR,MI

〉
·σ

〉
JeKρ = i JsKρ = m

(rs) 〈
ρ,

〈
i,FMU, role,sR,MI

〉
·σ

〉 s.assign(e)−−−−−−−−−−−−→
⊤〈

ρ,
〈
i,FMU, role,sR,MI ∪{m}

〉
·σ

〉
JfmoKρ = i JeKρ = t b = canAdvance(σ , role,step,MI)

(step) 〈
ρ,

〈
i,FMU, role,sR,MI

〉
·σ

〉 fmo.step(e)−−−−−−−−−−−−→
b〈

ρ,
〈
i,FMU, role,step(sR, t),MI

〉
·advance(σ , role,step,MI)

〉
JfmoKρ = i b = canAdvance(σ , role,getv,MI)

(get) 〈
ρ,

〈
i,FMU, role,sR,MI

〉
·σ

〉 x=fmo.v−−−−−−−→
b〈

ρ[x 7→ get(sR,v)],
〈
i,FMU, role,sR,MI

〉
·advance(σ , role,getv,MI)

〉
JfmoKρ = i b = canAdvance(σ , role,setv,MI)

(set) 〈
ρ,

〈
i,FMU, role,sR,MI

〉
·σ

〉 fmo.v=x−−−−−−−→
b〈

ρ,
〈
i,FMU[v 7→ JxKρ ], role,sR,MI

〉
·advance(σ , role,setv,MI)

〉
JsKρ = m

(stop)

⟨ρ, registered(σ ,m) ·unregistered(σ ,m)⟩ s.stop()−−−−−−−−→
⊤

⟨ρ, remove(registered(σ ,m),m) ·unregistered(σ ,m)⟩

Fig. 3: Operational Semantics Rules



Monitoring Reconfigurable Simulation Scenarios in Co-simulated Digital Twins 11

canAdvance(σ , role,a,MI)

⇐⇒∀m ∈ MI. ∃∆ ,Γ ,q. ⟨m,⟨_,_,_,_,∆ ,Γ ⟩ ,q,_⟩ ∈ σ ∧Γ (∆(q,(a, role))) = (⊤,_)

advanceS(⟨m,⟨_,_,_,_,∆ ,Γ ⟩ ,q,π⟩ ·σ ,m, role,a)

=⟨m,⟨_,_,_,_,∆ ,_⟩ ,∆(q,(a, role)),π · (a, role)⟩ ·σ
advance(σ , /0,a, role) = σ

advance(σ ,m ·MI,a, role) = advance(advanceS(σ ,m,a, role),MI,a, role)

remove(σ ,m) = {
〈

i,FMU, role,sR,MI
〉
|
〈

i,FMU, role,sR,MI ∪{m}
〉
∈ σ}

registered(σ ,m) = {
〈

i,FMU, role,sR,MI ∪{m}
〉
|
〈

i,FMU, role,sR,MI ∪{m}
〉
∈ σ}

unregistered(σ ,m) = σ \ registered(σ ,m)

Fig. 4: Auxiliary definitions.

whose execution transitions conf into conf ′ and b is a boolean parameter set to ⊤ for
no errors or ⊥ for errors.

Intuitively, our DT is a program that, at some point, needs to load a new scenario, reassign the correct FMUs, and run
the new OA. The monitor implementing the scenario. Thus, the language or library must support the following operations:
it must be able to (a) load FMUs and scenarios, (b) assign an FMU to a role in a scenario, (c) read/write ports of an FMU,
such that this operation fails if it does not follow the scenario, (d) advance time, and (e) check whether a loaded scenario is
consistent after loading. In more detail, this operation is provided as follows in SMOL.

Loading The statement obj=simulate("fmu",p = e) loads an FMU at location fmu into the language
and initialize its parameters p. Let Init(loc,v1, . . . ,vn) be the FMO generated by initializing the FMU at location loc,
with a fresh identifier, a unique FMU identifier, and an empty set of monitor identifiers. A scenario is loaded with the
statement scn=scenario("fms"); (is) and deactivated with scn.stop();. Let Init(loc) be the
FMS generated by initializing the monitor at location loc with a fresh identifier and an empty trace.

Role Management To manipulate the role of an FMO, it has a special field role that can be assigned a role. The effect
of the statement is that the manipulated FMO has a new role identifier but remains unchanged otherwise. To assign an
FMO to a scenario, an FMO offers the method fms.assign(fmo). The scenario is then linked to the FMO
and uses it according to the current value of its role.

Input/Output Each input and output port v is accessed using a field fmo.v, corresponding to the set (set) and get
(get) functions on the associated FMU. Accessing the fields checks that all scenarios assigned to the FMO in question
are allowed to do so. If the check fails, the scenario issues an error message. Our goal is to prevent these error messages
actively, and for this purpose, we provide methods canGet_v() and canSet_v() for each field v.

Time Advance Advancing the time, i.e., using the step function on the contained FMO,is done with the method fmo.
step(e), where e must be an expression of type Double. Again, all scenarios the FMO is assigned to are
consulted, and method canStep() is used check whether all scenarios this FMO participates allow it to perform
a time advance next.

Consistent Algorithm The statement fms.check() invokes a call to UPPAAL to directly check the consistency of
the OA used in the scenario.

We are interested in the following properties: (1) Each reachable state should only contain FMS, where the co-simulation
trace π follows the OA. If this is the case, it is reconfiguration consistent. (2) We only use suitable algorithms in the FMS’s.
While (2) is directly ensured by fms.check(), property (1) follows from the following.

Theorem 1. A FMS ⟨m,M,π⟩ is correct, if its trace π is accepted by M. A run without transitions annotated with ⊥ ensures
that all reached configurations contain only correct FMS’s.

The proof is straightforward, given the observation that if a transition is annotated with ⊥, then it is not accepted by
M, exactly the case that we aim to avoid. We require that in the simulation algorithm, every read, write, and time advance
is guarded by the corresponding call to canGet_v, canSet_v and canStep, respectively. A DT that can reconfigure its
simulation scenarios, thus, has to perform the following steps for reconfiguration: First, the new scenario is loaded, and the
old one is deactivated. The new scenario fms is checked using fms.check(), if the check fails, an error is raised to the
user. Second, all FMOs are assigned to the new scenario using fms.assign.



12 Hansen et al.

Discussion The assignment of an FMO to an FMS can change over time by either assigning a new role to an FMU or
by changing which scenarios an FMU is assigned to. Thus, it is possible to change the scenario on the fly by changing the
assignment of FMUs to scenarios. Furthermore, one can transfer one FMU to another, meaning that results can be reused if
the overall system, e.g., a DT, uses a multi-stage experiment where multiple scenarios are run sequentially.

An FMO can be assigned to multiple FMS objects, allowing scenarios to share an FMU if their operations intersect in
allowed behavior. For example, a computationally heavy simulation FMU may be read in two scenarios, running only once,
with the monitor ensuring correct usage according to both. Our approach offers greater flexibility than current co-simulation
frameworks, which mandate static scenarios and prohibit FMU sharing. The scenario also describes how data is transmitted
between the FMUs, but as this standard data flow problem is not specific to co-simulations, and we refrain from introducing
it here.

5 Evaluation

This section showcases an application of the proposed approach to the power system described in Section 1. The
FMUs are implemented using the FMI 2.0 standard [4] and available at https://anonymous.4open.science/
r/SemanticObjects-34A8/.

Experimental Setup. The experimental setup uses a system that first simulates the left topology of Figure 1 and then
the right topology, using the reconfiguration pattern described above. Each topology was run for a simulated time of 3s with
a step size of 0.001s.

This setup was used in three different ways: (a) Monitoring disabled (NOMON), (b) Monitoring enabled for the entire
simulation (FULLMON), and (c) Monitoring enabled only for the first iteration (FIRSTMON).

Results and Discussion. The results, averaged over 10 runs, are shown in Table 1. Monitoring causes a minor
overhead for the reconfiguration itself (+11%), a small overhead in the first iteration (+105%), and a bigger one in the
following ones (+271%) if the monitor is running.

Table 1: Monitoring overhead. All times are in ms.
avg. reconf. avg. 1st iter. avg. other iters.

NOMON 4998 37 21
FULLMON 5535 76 78
Change +11% +105% +271%
FIRSTMON 5535 76 21
Change +11% +105% +0%

Reconfiguration is significantly slower than an iteration, as time is needed to load and initialize FMUs, which accounts
for 89% The first iteration is generally slower, as the FMUs are initialized and the ports are accessed for the first time, causing
additional computations. Here, the overhead caused by the monitoring is significant. Again, every first iteration corresponds
to a reconfiguration, which is rare.

In later iterations, runtime monitoring causes a more significant overhead. However, as we pointed out, the iterations in
the simulation scenario are the same – if the OA contains no branching inside its main loop, a consistency violation will be
detected in the first iteration. Thus, a simple static analysis of the dynamically loaded OA (e.g., no branching in the main loop)
can determine whether the monitoring should be turned off after the first iteration and only turned on reconfiguration. We
evaluated this approach (FIRSTMON), where the total overhead in the experiment is merely 0.02%, making it suitable for
digital twins and configuration exploration. In conclusion, most overhead is caused during the reconfiguration itself, which
we expect to occur rarely. By using the redundancy between the iterations and using the runtime monitoring not at every
iteration, but only occasionally, brings total runtime overhead down to an acceptable level. Considering the minor overhead
which occurs mainly during reconfiguration and first iterations, we find it acceptable for our target applications: digital twins
and configuration exploration.

6 Conclusion

The paper presents a monitoring approach to ensure that the orchestration algorithm and the simulation scenario are aligned
throughout a co-simulation where the scenario may change in unforeseen ways to adapt to the physical counterpart of a digital

https://anonymous.4open.science/r/SemanticObjects-34A8/
https://anonymous.4open.science/r/SemanticObjects-34A8/


Monitoring Reconfigurable Simulation Scenarios in Co-simulated Digital Twins 13

twin. This is achieved by using the scenario as a runtime monitoring specification rather than relying on domain-specific
properties specified by an expert. The approach introduces a non-negligible overhead in short simulation. Nevertheless, the
caching mechanisms mean that the overhead only affects a few simulation iterations. To adopt our approach, one can use the
provided library, available on Maven. for easy integration into other JVM-based projects. In future work, beyond expanding
experimental evaluation, we plan to employ language-based approaches, such as session types and typestate, to integrate
simulation models and programming more closely.

References

1. A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, and G. Fainekos. PerceMon: On-
line Monitoring for Perception Systems. In Runtime Verification. Springer, Switzerland, Oct.
2021.

2. E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger. Introduction to runtime verification.
In Runtime Verification. Springer, 2018.

3. G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hendriks.
UPPAAL 4.0. In Proc. QEST 2006. Springer, 2006.

4. T. Blockwitz, M. Otter, J. Åkesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich,
A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A. Viel. Functional Mockup In-
terface 2.0: The Standard for Tool independent Exchange of Simulation Models. In Proc.
9th International Modelica Conference. Linköping University Electronic Press, 2012.

5. R. D. Christie. Power Systems Test Case Archive - UWEE, Mar. 2023. [Accessed 8. Mar.
2023].

6. A. Cimatti, C. Tian, and S. Tonetta. NuRV: A nuXmv extension for runtime verification. In
RV, volume 11757 of LNCS, pages 382–392. Springer, 2019.

7. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. Engineering
Dependable Software Systems, 34, 01 2013.

8. FMI. Functional mock-up interface tools, 2014.
9. C. Gomes, D. Broman, H. Vangheluwe, C. Thule, and P. G. Larsen. Co-simulation: A survey.

ACM Computing Surveys, 51(3), 2018.
10. C. Gomes, L. Lucio, and H. Vangheluwe. Semantics of co-simulation algorithms with sim-

ulator contracts. In Proc. ACM/IEEE MODELS’19, , 2019. IEEE.
11. S. Hallé, C. Soueidi, and Y. Falcone. Leveraging runtime verification for the monitoring of

digital twins. In FMDT@FM, volume 3507. CEUR-WS.org, 2023.
12. S. T. Hansen and P. C. Ölveczky. Modeling, algorithm synthesis, and instrumentation for

co-simulation in maude. In WRLA 2022, Munich, Germany. Springer, 2022.
13. S. T. Hansen, C. Thule, C. Gomes, J. van de Pol, M. Palmieri, E. O. Inci, F. Madsen, J. Al-

fonso, J. Á. Castellanos, and J. M. Rodriguez. Verification and synthesis of co-simulation
algorithms subject to algebraic loops and adaptive steps. STTT, 24(6), 2022.

14. E. Kamburjan and E. B. Johnsen. Knowledge structures over simulation units. In ANNSIM.
IEEE, 2022.

15. E. Kamburjan, V. N. Klungre, R. Schlatte, E. B. Johnsen, and M. Giese. Programming and
debugging with semantically lifted states. In ESWC, volume 12731 of LNCS. Springer, 2021.

16. E. Kamburjan, V. N. Klungre, R. Schlatte, S. L. T. Tarifa, D. Cameron, and E. B. Johnsen.
Digital twin reconfiguration using asset models. In ISoLA (4), volume 13704 of LNCS.
Springer, 2022.

17. Z. Kazemi, A. A. Safavi, F. Naseri, L. Urbas, and P. Setoodeh. A secure hybrid dynamic-state
estimation approach for power systems under false data injection attacks. IEEE Transactions
on Industrial Informatics, 16(12), 2020.

18. R. Kübler and W. Schiehlen. Two methods of simulator coupling. Mathematical and Com-
puter Modelling of Dynamical Systems, 6(2), 2000.



14 Hansen et al.

19. M. Leucker, M. Sachenbacher, and L. B. Vosteen. Digital twin for rescue missions - a case
study. In FMDT@FM, volume 3507. CEUR-WS.org, 2023.

20. M. Marchiano, D. M. J. Rayworth, E. Alegria, and J. Undrill. Power generation load sharing
using droop control in an island system. IEEE Transactions on Industry Applications, 54,
2018.

21. B. J. Oakes, C. Gomes, F. R. Holzinger, M. Benedikt, J. Denil, and H. Vangheluwe. Hint-
based configuration of co-simulations with algebraic loops. In Simulation and Modeling
Methodologies, Technologies and Applications, volume 1260. Springer, 2020.

22. B. Schweizer, P. Li, and D. Lu. Explicit and implicit cosimulation methods: Stability and
convergence analysis for different solver coupling approaches. Journal of Computational
and Nonlinear Dynamics, 10(5), 2015. Publisher: ASME.

23. A. Temperekidis, N. Kekatos, and P. Katsaros. Runtime verification for FMI-based co-
simulation. In Runtime Verification. Springer, 2022.

24. D. Thoma, M. Sachenbacher, M. Leucker, and A. T. Ali. A digital twin for coupling mobility
and energy optimization: The ReNuBiL living lab. In FMDT@FM, volume 3507. CEUR-
WS.org, 2023.

25. C. Thule, K. Lausdahl, C. Gomes, G. Meisl, and P. G. Larsen. Maestro: The INTO-CPS
co-simulation framework. Simul. Model. Pract. Theory, 92:45–61, 2019.

26. D. Weyns. Software engineering of self-adaptive systems. In Handbook of Software Engi-
neering. Springer, 2019.

27. D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad. A survey of formal methods in
self-adaptive systems. In CSSE. ACM, jun 2012.

28. T. Wright, C. Gomes, and J. Woodcock. Formally verified self-adaptation of an incubator
digital twin. In ISoLA. Springer, 2022.

29. E. Zapridou, E. Bartocci, and P. Katsaros. Runtime Verification of Autonomous Driving
Systems in CARLA. In Runtime Verification. Springer, Cham, Switzerland, Oct. 2020.


