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ABSTRACT
We introduce a new system for object-oriented distributed hybrid

systems to verify object invariants andmethod contracts. In a hybrid

setting, the object invariant must not only be the post-condition of a

method, but also has to hold in the post-region of a method, because

the state of the object evolves according to continuous dynamics.

The post-region describes all reachable states after method termina-

tion before another process runs. This set can be approximated using

lightweight analysis of the class structure. The system naturally

generalizes rely-guarantee reasoning of discrete object-oriented

languages to hybrid systems and carries over its compositionality

to hybrid systems: only one 𝑑L-proof obligation is generated per

method. By reasoning about the minimal size of the post-region,

local Zeno behavior can also be analyzed. Our approach is imple-

mented for the Hybrid Active Object language HABS.
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• Theory of computation → Timed and hybrid models; Dis-
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1 INTRODUCTION
Distributed cyber-physical systems are behind modern innovation

drivers such as the Internet-of-Things. Support for formal veri-

fication of such systems, however, is lagging behind. Especially

deductive verification of hybrid systems [28, 29], which does not

suffer from the state-space explosion problem of model checking,

has little compositionality mechanisms. This is in stark contrast to

the situation for distributed discrete systems, where a rich theory

of composition principles for object-oriented languages exists, e.g.,

method contracts [1, 26] and object invariants. Here, we show that

this theory can be carried over to a hybrid setting.
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Recently, Hybrid Active Objects (HAO) [22] have been proposed

as an object-oriented formalism that combines the formal semantics

and verification tools of low-level formalisms with the usability

of mature programming languages. An HAO encapsulates contin-

uous dynamics inside an object and defines methods to interact

with it from the outside. HAOs use the Active Object concurrency

model [6]: message passing concurrency with futures, as well as

cooperative scheduling. With cooperative scheduling, only one pro-

cess is active at each point in time (per object) and cannot be inter-

rupted by other processes, unless it explicitly releases control over

the object. Active Objects have been proven to be a suitable model-

ing language in industrial case studies in many domains [2, 4, 21].

Challenge. Rely-guarantee reasoning for object invariants is an

established modularization technique in discrete systems. Every

method may rely on the object invariants when it starts, but must

also guarantee it to other methods whenever another methods runs.

This results in proof obligations of the following form for each

method m:

inv → [sm]inv
This expresses, in dynamic logic [1, 13], that if the invariant inv
holds before executing the method body sm, then it holds after the

execution. If this is shown for all methods, every method can indeed

safely assume the invariant upon its start. In hybrid systems this

does not suffice, as the state evolves after sm terminates.

The existing system to verify invariants of HAOs, thus, uses one

proof obligation per class. This has several flaws that inhibit one
from applying it to more realistic systems: (1) after changes in one

method the whole class must be re-proven, (2) the proof obligation

is exponential in the number of methods, and (3) two
1
more loop

invariants must be inferred, which hampers automatization.

Overview. Themain insight of this work is that the post-condition

of a method is not just the object invariant inv, but inv and a term

that inv holds until the next method runs. In HABS, the considered
HAO language, every method has some condition when it can be

scheduled. Additionally, we have knowledge about what methods

may be scheduled upon termination of a method. Thus, we can com-

pute the post-region pst of a method: a region where no method is

guaranteed to run. The post-condition is then a term expressing that

the invariant holds inside the post-region pst while following the
continuous dynamics dyn. Such constraints are expressed with the

formula [dyn&pst]𝐼 in differential dynamic logic [31] (𝑑L). In the

most simple, non-trivial case, the proof obligation is the following:

inv →
[
sm

] (
inv ∧

[
dyn&pst

]
inv

)
1
One loop advances time, one loop models scheduling, as multiple methods can run

without advancing time.
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In the trivial case, pst is true, but by using the call structure in

a program we can compute more precise post-regions. Method

contracts are handled by adding them as pre- and post-conditions,

independently of the post-region.

Contribution and Structure. Our main contribution is a natural

generalization of rely-guarantee reasoning from discrete program-

ming languages to hybrid object-oriented languages. The approach

is implemented
2
. Additionally to object invariants we verify method

contracts and, for a large subset of the considered language, local

Zeno behavior. The main advantage of the system is its modularity:
one proof obligation is used per method, changes of one method

do not necessarily require to reprove the whole program.

Sec. 2 describes the HABS language and Sec. 3 the 𝑑L logic. Sec. 4

gives the verification system itself. Sec 5 introduces local Zeno

behavior for hybrid active objects and gives an analysis for it. Sec. 6

describes the implementation and Sec. 7 gives related work and

concludes.

2 HYBRID ACTIVE OBJECTS
In this section we present the Hybrid Abstract Behavioral Specifica-
tion (HABS) language that implements Hybrid Active Objects. For

brevity’s sake we refrain from introducing full HABS and omit, e.g.,

inheritance. We refer to [22] for a complete description.

Example 2.1. Before introducing the language, we use the water

tank given in Fig. 1 as an informal example. The tank keeps a water

level between 3 and 10. The pictured class, Tank has one discrete field

(log) and a physical block that introduces physical fields. A physical

field is described by its initial value and an ODE. Here, level and

drainmodel water level and drain of the tank. The drain is constant

and the water level changes linear w.r.t. the drain. Additionally,

an initialization block is provided, which calls the methods up and

down. Each method starts with a statement that has as its guard the

condition when the process will be scheduled (for up, at the moment

the level reaches 10 while water rises). This is logged by calling the

external object log on method triggered. This call is asynchronous,

i.e., execution continues without waiting for it to finish. Then, the

drain is adjusted and the methods calls itself recursively to react

the next time.

Each object is strongly encapsulated. No other object can access

the fields of an instance. Inside an object, only one process is active

at a time. This process cannot be preempted by the scheduler — it

must explicitly release control by either terminating or suspending

(via await). These two properties make (hybrid) active object easy to

analyze: approaches for sequential program analyses can be applied

between two await statements (and method start and end).

Syntax. The syntax of HABS is given by the grammar in Fig. 2.

Standard expressions e are defined over fields f, variables v and

operators !, |, &, >=, <=, +, -, *, /. Differential expression de are

expressions extended with a derivation operator e'. Types T are all

class names, type-generic futures Fut<T>, Real, Unit and Bool.

A program consists of a main block and a set of classes. Each

class may have a list of discrete fields that are passed as parameters

on object creation, an optional physical block, a list of discrete

2
Tools and examples available under https://formbar.raillab.de/en/chisel/.

1 class Tank(Log log){
2 physical{
3 Real level = 5; level' = drain;
4 Real drain = -1; drain' = 0;
5 }
6 { this!up(); this!down(); }
7 Unit down(){
8 await diff level <= 3 & drain < 0;
9 log!triggered(); drain = 1; this!down();

10 }
11 Unit up(){
12 await diff level >= 10 & drain > 0;
13 log!triggered(); drain = -1; this!up();
14 }
15 }

Figure 1: A water tank in HABS.

fields that are not passed as parameters, a set of methods and an

initializing block that is executed after object creation.

The physical block is a list of field declarations followed by an

ODE describing the dynamics of the declared fields. These fields

are called physical. Methods, initializing and main block consist

of statements. The non-standard statements are the asynchronous

method calls (e!m()) described above and the following:

• The duration(e) statement advances time
3
by e time units.

No other process may execute during this advance.

• The e.get statement reads from a future. A future is a con-

tainer that is generated by an asynchronous call. Afterwards

a future may be passed around. With the statement one can

read the return values once the called process terminates.

Until then, the reading process blocks and no other process

can run on the object.

• The await g statement suspends the process until the guard

g holds. A guard is either (1) a future poll e? that determines

whether the call for the future in e has terminated, (2) a du-

ration guard that advances time while unblocking the object

or (3) a differential guard that holds once expression e holds.

We assume that all methods are suspension-leading, i.e., each

method starts with an await statement. This is easily achieved

by adding await diff true if a method is not suspension-leading

without changing the behavior.

A useful pattern, already applied in Ex. 2.1, are controllers.

Definition 2.2 (Controller). A method is a controller if it (1) starts
with an await (2) contains no other suspensions and neither get
nor duration statements, (3) ends with a recursive call, (4) is called

only from the initial block.

Because of (2), a controller runs instantaneous and because of

(3) and (4) always potentially schedulable. Analyzing the leading

guard of (1) allows one to precisely see under which conditions it

can be scheduled.

3
Time in HABS is global but symbolic, i.e., not wall time.
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Prgm ::= CD {s} CD ::= class C
[
(T f)

]
{[Phys] FD Met {s}} Met ::= T m(T v) {s;return e;} Programs, Classes, Methods

Phys ::= physical {DED} DED ::= Real f = e : f' = de FD ::= T f[ = e]; Physical Block, Fields

s ::=while (e) {s} | if (e) {s} [else {s}] | s;s | await g | [ [T] e] = rhs | duration(e) Statements

g ::= e? | duration(e) | diff e rhs ::= e | new C(e) | e.get | e!m(e) Guards, RHS Expressions

Figure 2: HABS grammar. Notation [·] denotes optional elements and · lists.

In Ex. 2.1 class Tank is controlled by up and down. Controllers are a

natural modeling pattern: the largest Active Object case study (mod-

eling railway operations [21] in ABS) uses controllers for almost all

active classes.

Semantics are defined as structural operational semantics, i.e.,

rewrite rules on runtime syntax. Runtime syntax represents the

state of a program. The HABS semantics are fairly standard, except

that (1) we use the timed extension of Bjørk et al. [5], which allows

us to keep track of time in the semantics, and (2) that time advance

changes not only the time, but also the object state, because it

evolves according to the physical block.

Runtime Syntax. Runtime syntax extends statements by the suspend
statement, which deschedules a process. The semantics are based

on Timed ABS [5].

tcn ::= clock(e) cn cn ::= cn cn | fut | msg | ob
ob ::= (𝑜, 𝜌,ODE, 𝑓 , prc, 𝑞) 𝑞 ::= prc msg ::= msg(𝑜, e, fid)
prc ::= (𝜏, fid, rs) | ⊥ rs ::= s | suspend;s fut ::= fut(fid, e)

Figure 3: Runtime syntax of HABS.

Definition 2.3 (Runtime Syntax [5]). The runtime syntax of HABS
is given by the grammar in Fig. 3. Let fid range over future names,

𝑜 over object identities, and 𝜌, 𝜏, 𝜎 over stores (i.e., maps from fields

or variables to values). We use · to denote lists.

A timed configuration tcn has a clock clockwith the current time,

as an expression of Real type and an object configuration cn. An ob-

ject configuration consists of messagesmsg, futures fut and objects
ob. A message msg(𝑜, e, fid) contains callee 𝑜 , passed parameters e

and the generated future fid. A future fut(fid, e) connects the future
name fid with its return value e. An object (𝑜, 𝜌,ODE, 𝑓 , prc, 𝑞) has
an identifier 𝑜 , an object store 𝜌 , the current dynamic 𝑓 , an active

process prc and a set of inactive processes 𝑞. ODE is taken from

the class declaration. A process is either terminated ⊥ or has the

form (𝜏, fid, rs): the process store 𝜏 with the current state of the

local variables, its future identifier fid, and the statement rs left to

execute. Composition cn1 cn2 is commutative and associative.

Evaluation of Guards and Expressions. Additionally to the current
store, expressions and guards are evaluated with respect to a given

time and continuous dynamics. This is necessary to compute how

much time may advance before a differential guard is evaluated

to true. Given fixed initial values, the solution 𝑓 of an ODE is

unique and 𝑓 (0) = 𝜎 with dom(𝜎) = dom(𝜌) ∪ dom(𝜏), ∀𝑥 ∈
dom(𝜌) . 𝜎 (𝑥) = 𝜌 (𝑥) and ∀𝑥 ∈ dom(𝜏). 𝜎 (𝑥) = 𝜏 (𝑥). We denote

JgK𝑓 ,0𝜎 = true ⇐⇒ mte𝑓𝜎 (g) ≤ 0

mte𝑓𝜎 (duration(e)) = JeK𝑓 ,0𝜎

mte𝑓𝜎 (e?) =
{

0 if JeK is resolved
∞ otherwise

mte𝑓𝜎 (diff e) = argmin
𝑡 ≥0

(
JeK𝑓 ,𝑡𝜎 = true

)
Figure 4: Semantics of Guards

this composition of functions with 𝜎 = 𝜌 ◦ 𝜏 . Non-phyiscal fields
do not evolve.

Definition 2.4 (Expressions). Let 𝑓 be a continuous dynamics of

class C, i.e., a mapping from R+ to stores and 𝜎 = 𝑓 (0) the current
state. Let f𝑝 be a physical field and f𝑑 a non-physical field. The

semantics of fields f𝑝 , f𝑑 , unary operators ∼ and binary operators

⊕ after 𝑡 time units is defined as follows:

Jf𝑑K𝑓 ,𝑡𝜎 = 𝜎 (f𝑑 ) Jf𝑝K𝑓 ,𝑡𝜎 = 𝑓 (𝑡) (f𝑝 )

J∼eK𝑓 ,𝑡𝜎 = ∼JeK𝑓 ,𝑡𝜎 Je ⊕ e'K𝑓 ,𝑡𝜎 = JeK𝑓 ,𝑡𝜎 ⊕ Je'K𝑓 ,𝑡𝜎

Evaluation of guards is defined in two steps: First, the maximal
time elapse is computed. I.e., the maximal time that may pass with-

out the guard expression evaluating to true. For differential guards

diff e this is the minimal time until e becomes true. Then, the guard

evaluates to true if no time advance is needed.

Definition 2.5 (Guards). Let 𝑓 be a continuous dynamic of object

𝑜 in state 𝜎 . The maximal time elapse (mte) and evaluation of guards
is given in Fig. 4.

Discrete Transition System. Fig. 5 gives the most important rules

for the semantics of a single object, the omitted rules are given

in [5]. The rule (1) introduces a suspend statement in front of an

await statement. Rule (2) consumes a suspend statement and moves

a process into the queue of its object—at this point, the ODEs are

translated into some dynamics with sol. Rule (3) activates a process

with a following await statement, if its guard evaluates to true.

An analogous rule (not shown in Fig. 5) activates a process with

any other non-await statement. Rule (4) evaluates an assignment

to a local variable. The rule for field is analogous. Rule (5) realizes

a termination (with solutions of the ODEs) and (6) a future read.

Finally, (7) is a method call that generates a message.

Continuous Transition System. For configurations, there are two
rules, shown in Fig. 6. Rule (i) realizes a step of an object without

advancing time. Only if (i) is not applicable, rule (ii) can be applied.
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(1)
(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, await g;s), 𝑞

)
→

(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, suspend;await g;s), 𝑞

)
(2)

(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, suspend;s), 𝑞

)
→

(
𝑜, 𝜌,ODE, sol(ODE, 𝜌),⊥, 𝑞 ◦ (𝜏, fid, s)

)
(3)

(
𝑜, 𝜌,ODE, 𝑓 ,⊥, 𝑞 ◦ (𝜏, fid, await g;s)) →

(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, s), 𝑞

)
if J𝑔K𝑓 ,0𝜌◦𝜏 = true

(4)
(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, v = e;s), 𝑞

)
→

(
𝑜, 𝜌,ODE, 𝑓 , (𝜏 [v ↦→ JeK𝑓 ,0𝜌◦𝜏 ], fid, s), 𝑞

)
if e contains no call or get

(5)
(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, return e;), 𝑞

)
→

(
𝑜, 𝜌,ODE, sol(ODE, 𝜌),⊥, 𝑞

)
fut

(
fid, JeK𝑓 ,0𝜌◦𝜏

)
(6)

(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, v = e.get;s), 𝑞

)
fut

(
fid, e'

)
→

(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, v = e';s), 𝑞

)
if JeK𝑓 ,0𝜌◦𝜏 = fid

(7)
(
𝑜, 𝜌,ODE, 𝑓 , (𝜏, fid, v = e!m(e

1
, . . . e𝑛;s), 𝑞

)
→

(
𝑜, 𝜌,ODE, 𝑓 , (𝜏 [v ↦→ 𝑓 ′], fid, s), 𝑞

)
msg

(
JeK𝑓 ,0𝜌◦𝜏 , (Je1K

𝑓 ,0
𝜌◦𝜏 , . . . , Je𝑛K𝑓 ,0𝜌◦𝜏 ), fid2

)
where fid

2
is fresh

Figure 5: Selected rules for HABS objects.

It computes the global maximal time elapse and advances the time

in the clock and all objects.

(i) clock(𝑡) cn cn′ → clock(𝑡) cn′′ cn′ with cn → cn′′

(ii) clock(𝑡) cn → clock(𝑡 + 𝑡 ′) adv(cn, 𝑡 ′)
if (i) is not applicable and mte(cn) = 𝑡 ′ ≠ ∞

Figure 6: Timed semantics of HABS configurations.

mte(cn cn′) = min(mte(cn),mte(cn′))
mte(msg) = mte(fut) = ∞

mte(𝑜, 𝜌,ODE, 𝑓 , prc, 𝑞) = Jmin𝑞′∈𝑞 (mte(𝑞′),∞)K𝜌
mte(𝜏, fid, await g;s) = Jmte(𝑔)K𝜏

mte(𝜏, fid, s) = ∞ if s ≠ await g;s' mte(duration(e)) = e

mte𝑓𝜎 (diff e) = argmin
𝑡 ≥0

(
JeK𝑓 ,𝑡𝜎 = true

)
mte(e?) = ∞

advprc
(
(𝜏, fid, s), 𝑓 , 𝑡

)
= (𝜏, fid, s) if s ≠ (await duration(e); s')

advprc
(
(𝜏, fid, await duration(e);s), 𝑓 , 𝑡

)
=

(𝜏, fid, await duration(e+𝑡);s)

advheap (𝜌, 𝑓 , 𝑡) (f) =
{

𝜌 (f) if f is not physical

𝑓 (𝑡) (f) otherwise

Figure 7: Auxiliary functions.

Fig. 7 shows the auxiliary functions and includes the full defi-

nition of mte. Note that mte is not applied to the currently active

process, because, when (1) is not applicable, it is currently block-

ing and, thus, cannot advance time. State change during a time

advance is handled by a family of functions adv which are applied

to all stores and objects. We only give two members of the family:

advheap takes as parameter a store 𝜎 , the dynamics 𝑓 and a dura-

tion 𝑡 , advprc takes a process prc, the dynamics 𝑓 and a duration 𝑡 .

Both advance its first parameter by 𝑡 time units according to 𝑓 . The

state evolves according to the current dynamics and the guards of

duration guards and statements are decreased by 𝑡 (if the duration
clause is part of the first statement of an unscheduled process). For

non-hybrid Active Objects advheap (𝜌, 𝑡) = 𝜌 .

The semantics trigger the guards as soon as possible. This is cru-

cial for the simulation capabilities of HABS. The more relaxed seman-

tics of, e.g., hybrid automata, introduce additional non-determinism

that is beneficial for verification but difficult to handle meaningfully

for simulation. We remind that we only allow weak inqualities, i.e.,

an event boundary always exists and the minimum indeed exists.

Runs. The semantics of a programs are expressed as run, gener-
ated by the operational semantics, and for each run a set of traces,

one for each object.

A trace \ is a mapping from R+ to states, meaning that at time

𝑡 the state of the program is \ (𝑡). A trace is extracted from a run

by interpolating between two configurations resulting from dis-

crete steps using the last solution. We say that clock(𝑡𝑖 ) cn𝑖 is the
final configuration at 𝑡𝑖 in a run, if any other timed configuration

clock(𝑡𝑖 ) cn′𝑖 is before it.

Definition 2.6 (Traces). Let Prgm be a program. Its initial state

configuration is denoted clock(0) cn0 [5]. A run of Prgm is a (pos-

sibly infinite) reduction sequence

clock(0) cn0 → clock(𝑡1) cn1 → · · ·

A run is time-convergent if it is infinite and lim𝑖 ↦→∞ 𝑡𝑖 < ∞. A run

is locally terminated if every process within terminates.

For each object 𝑜 occurring in the run, its trace is defined as \𝑜 is

\𝑜 (𝑥) =



undefined if 𝑜 is not created yet

𝜌 if clock(𝑥) cn is the final configuration at 𝑥

and 𝜌 is the state of 𝑜 in cn.
advheap (𝜌, 𝑓 , 𝑥 − 𝑦) if there is no configuration at clock(𝑥)

and the last configuration was at clock(𝑦)
with state 𝜌 and dynamic 𝑓

We normalize all traces and let them start with 0 by shifting all

states by the time the object is created.

Example 2.7. Consider Fig. 8 which illustrates the semantics of

tank from Ex. 2.1, starting at time 1. The store is 𝜌1 = {level ↦→
4, drain ↦→ −1, log ↦→ l} and two processes are suspended. The one
for up is denoted prc, the one for down has the remaining statement

s+down, which is the whole method body.

Nothing can execute without advancing time, so time is advanced

by 1 time unit (using rule (ii)) until the store changes to 𝜌1 =

{level ↦→ 3, drain ↦→ −1, log ↦→ l}.
This enables rule (3) to schedule the process for down, where the

await statement is removed: sdown is the method body without the

leading suspension. Finally, rule (7) is used to generate a message

to call the other object.
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clock(1)
(
𝑜, 𝜌1,ODE, 𝑓 ,⊥,

{
(∅, fid

1
, s+down), prc

})
(𝑖𝑖)
−−−→ clock(2)

(
𝑜, 𝜌2,ODE, 𝑓 ,⊥,

{
(∅, fid

1
, s+down), prc

})
(3)
−−−→ clock(2)

(
𝑜, 𝜌2,ODE, 𝑓 , (∅, fid1, sdown),

{
prc

})
(7)
−−−→ clock(2)

(
𝑜, 𝜌2,ODE, 𝑓 , (∅, fid1, . . . ),

{
prc

})
msg(𝑜, log, fid

2
)

Figure 8: Example semantics of a tank from Ex. 2.1.

3 DIFFERENTIAL DYNAMIC LOGIC
Differential dynamic logic [30, 33] is a first-order dynamic logic

implemented in the KeYmaera X tool [10] that embeds hybrid pro-

grams into its modalities. Hybrid programs are defined by a simple

while-language. extended with a statement for ordinary differential

equations (ODEs). Such a statement evolves the state according to

some dynamics for a non-deterministically chosen amount of time.

Definition 3.1 (Syntax of 𝑑L). Let 𝑝 range over predicate symbols

(such as �, ≥), 𝑓 over function symbols (such as +,−) and x over

variables. Hybrid programs 𝛼 , formulas 𝜑 and terms 𝑡 are defined

by the following grammar.

𝜑 ::= 𝑝 (𝑡) | ¬𝜑 | 𝜑 ∧ 𝜑 | ∃x. 𝜑 | [𝛼]𝜑

𝑡 ::= 𝑓 (𝑡) | x dt := 𝑓 (𝑑𝑡) | 𝑡 | (𝑡)′

𝛼 ::= x := 𝑡 | x := * | 𝛼 ∪ 𝛼 | 𝛼∗ | ?𝜑 | 𝛼 ;𝛼 | {𝛼} | x = dt&𝜑

Modalities may be nested using the ? operator and all ODEs

are autonomous. The semantics of hybrid programs is as follows:

Program x := 𝑡 assigns the value of 𝑡 to x. Program x := * assigns

a non-deterministically chosen value to x. Program 𝛼1 ∪ 𝛼2 is a

non-deterministic choice. Program 𝛼∗ is the Kleene star. Program
?𝜑 is a test or filter. It either discards a run (if 𝜑 does not hold) or

performs no action (if 𝜑 does hold). Program 𝛼1;𝛼2 is sequence and

{𝛼} is a block for structuring. Finally, the ODE x = dt&𝜑 evolves the

state according to the given ODE in evolution domain 𝜑 for some

amount of time. The evolution domain describes where a solution

is allowed to evolve, not the solution itself. The semantics of the

first-order fragment is completely standard. The semantics of [𝛼]𝜑
is that 𝜑 has to hold in every post-state of 𝛼 if 𝛼 terminates. We

stress that if 𝛼 is an ODE, then this means that 𝜑 holds throughout

the whole solution.

Example 3.2. The following formula expresses that the dynamics

of bouncing ball with position x and velocity v are below 10 before

the ball reaches the ground, when starting with a velocity of 0 and

a height below 10.

0 ≤ x ≤ 10 ∧ v � 0 → [x′ = v, v′ = −9.81&x ≥ 0]x ≤ 10

Events can be expressed as usual by an event boundary created

between a test and an evolution domain. The following program

models that the ball repeatedly bounces back exactly on the ground.(
{x′ = v, v′ = −9.81&x ≥ 0}; ?x ≤ 0; v := −v ∗ 0.9

)∗

We identify HABS variables and fields with 𝑑L variables and

denote with trans(e) the straightforward translation of HABS ex-

pressions into 𝑑L terms. Standard control flow (such as while and
if) is encoded using the operators above [31].

4 REGION-BASED VERIFICATION
First, let us make more precise what we mean by object invariants.

Classically, an object invariant has to hold whenever a method

starts or ends. This is not sufficient for hybrid systems, because

whenever a method terminates, the dynamics may change the state

during a time advance and result in a state where the invariant does

not hold. We, thus, introduce object invariants as a property that

has to hold (1) whenever a method starts or ends and (2) whenever

time advances. This also includes the case where time advances but

a process is active. This ensures that an object is safe, even if its

discrete part is deadlocked.

Having fixed the notion of object invariants, we can now examine

how this effects traces. For simplicity, let us ignore get and duration
statements for now. It is clear that we have to verify the state directly

after a method releases control. Additionally, all the states that are

part of the trace before the next process is scheduled. We must,

thus, express that the invariant is preserved by the dynamics until

the next process is scheduled.

To do so, it is critical to give an overapproximation of the states

following a suspension/termination. If more about these states is

known, then the verification becomes more precise but less compo-
sitional. We give three techniques, each with a different trade-off

between compositionallity and precision.

Basic Regions As a baseline, we can use true to describe all

states. We introduce this in Sec. 4.1 as basic regions. This
technique is the least precise, but the most compositional

one.

1 class C{
2 physical{ ... }
3 { this!c(); }
4 Unit m(){ ...; this!n();}
5 Unit n(){ await x >= 10; }
6 //controller
7 Unit c() { await duration(2); ...; this!c();}
8 }

Figure 9: Post-region of C.m. The arrows are (partial) traces
after C.m terminates. The checkered region is locally con-
trolled by the call to C.n. The shaded region is struturally
controlled by C.c. Both these areas are not relevant for veri-
fition: the post-region is only the white region.

Locally Controlled Regions A more precise approximation

is possible by analyzing the calls of a method. We remind
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that all methods are suspending-leading. If we know that a

method m is called before the last suspension/termination,

then the guard g of m describes the state where the called

process is scheduled at the latest. It suffices to show that the

object remains save until g holds. The object may schedule

a process earlier (e.g., if called from the outside), but this

process may then also assume the invariant. We introduce

this as locally controlled regions in Sec. 4.2. This technique

is more precise than using basic regions, but eventually less

compositional: if a method m is removed, all methods calling

m must be repoven because their post-regions changes, even

if m has no contract.

Structurally Controlled Regions Finally, if a controller is

used in the class, then its suspension conditions also describe

conditions when the next (controller) process is scheduled at

the latest. We introduce this as structurally controlled regions

in Sec. 4.3. This technique is even more precise than using

locally controlled regions, but eventually even less composi-

tional: removal of a controller requires to reprove all other

methods, as all post-regions change.

Example 4.1. Consider the class and illustration in Fig. 9. After m

terminates, safety has to be established for all states until the next

process is scheduled. The upper (checkered) region cannot be part

of these states — as m called n, at the latest when x >= 10 holds this

process will run. This is the locally controlled region. Similarly,

after at most 2 time units, the controller will run. This is the right

(shaded) region, the structurally controlled region. Thus, any of

the dynamics (pictured as lines) must only establish safety for the

unshaded region. This is the post-region of m. Note that we do not

verify the post-region itself, but all dynamics inside the post-region.

Specification. We specify objects with object invariants andmeth-

ods with simple method contracts directly in HABS using expres-

sions. Extracting post-conditions from futures is described in [20]

and not specific to hybrid active objects.

Objects. Object invariants are specified as an annotation at the

physical block. Additionally, we specify a creation condition that

has to hold once an instance is created. Both creation condition

and object invariant can only refer to the fields of the specified

class, not to the fields of referenced objects. We refer to the creation

condition of a class C with initC and to the invariant with invC.

Methods. Amethod may be annotated with a pre-condition and a

post-condition. The pre-condition is denoted prem and can only refer
to the parameters of the method. The post-condition is denoted

with postm and may refer only to fields and the special symbol

result for the return value. Fig. 11 gives an example.

4.1 Basic Regions
The proof obligation adds the translation of the method body into

a surrounding logical formula. The translation itself is straightfor-

ward, but as 𝑑L allows only to verify post-conditions, we must

encode suspensions, object creations and method calls differently.

E.g., to deal with pre-conditions, we test whether it holds at the

point the call is made. If it does, no further action is made. If it

does not hold, we set a special variable cll to 1. The pre- and

post-conditions encode that cll is always 0, i.e., all conditions hold.

trans𝑏 (s1; s2) =trans𝑏 (s1); trans𝑏 (s2)
trans𝑏 (if(e){s1}else{s2}) =if (trans(e)){trans𝑏 (s1)}else{trans𝑏 (s2)}

trans𝑏 (while(e){s1}) =while(trans(e)){trans𝑏 (s1)}
trans𝑏 (v = e) =v := trans(𝑒)

trans𝑏 (return e) =result := trans(𝑒)
trans𝑏 (v = e.get) =

{
{?𝜓 } ∪ {?¬𝜓 ; fail}

}
;v := *

trans𝑏 (await g) =
{
{?𝜓 } ∪ {?¬𝜓 ; fail}

}
;havoc;?(trans(g) ∧ invC)

trans𝑏 (v = e!m(e
1
, . . . )) ={

{?prem (e1, . . . )} ∪ {?¬prem (e1, . . . );fail}
}
;

v := *

trans𝑏 (v = new C(e
1
, . . . )) ={

{?initC (e1, . . . )} ∪ {?¬preC (e1, . . . );fail}
}
;

v := *

trans𝑏 (duration(e)) =
t := 0;

{
{?𝜓 (e)} ∪ {?¬𝜓 (e); fail}

}
;

t := 0;{ode, t′ = 1&t ≤ trans(e)};?trans(e)

Figure 10: Translation of HABS-statements into𝑑L programs.

Let trigm be the differential guard of m if such a guard exists and

true otherwise (analogously for translation of guards trans(g)). Let
sm be the method body of m without the leading suspension. In the

special case of init this is the initial block followed by all field

initializations.

Basic regions are suited to verify objects which have to be stable

without an explicit control loop or a specific order of method calls.

They do not use any additional information about the program and

can be a sound fallback if no better regions can be computed.

Theorem 4.2 (Basic Regions). Let C be a class with dynamics
ode. Let

𝜓 = invC ∧ [ode&true]invC
𝜓 (e) = invC ∧ [ode, t′ = 1&t ≤ e]invC
fail = cll := 1 havoc = f1:= *; . . . f𝑛:= *; for all fields f𝑖

Translation trans𝑏 of statements is given in Fig. 10. Class C is safe if
the formula

initC ∧ cll � 0 →
[
trans𝑏 (sinit)

] (
cll � 0 ∧𝜓

)
is valid and for each method m in C the following formula is also valid:

invC ∧prem ∧ cll � 0 →
[
?trigm; trans𝑏 (sm)

] (
postm ∧ cll � 0∧𝜓

)
If all classes are safe and the following formula for main block s0 is
valid,

cll � 0 →
[
trans𝑏 (s0)

]
cll � 0

then invD holds in every state of every locally terminating, time-
divergent trace of every object 𝑜 realizing any class D, whenever (1) 𝑜
is inactive or (2) time advances. The pre-condition of a method holds
in every prestate and the post-condition in every poststate.

Proof Idea. Let\ be a trace as required by the theorem.We need

to show that invC holds at all \ (𝑥), 𝑥 ≥ 0 and that the invariant
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holds whenever a process is descheduled (note that not all these

states may occur in the trace, as they can be not final).

We may assume each pre-condition, as they are part of discrete

part of HABS: their soundness is shown in [20] and requires the

third proof obligation.

For 𝑥 = 0, the statement follows from the validity of the first

proof obligation. Let 𝐷 be the set of time points where a discrete

rule was applied. Let succ(𝑖) be the successor of 𝑖 ∈ 𝐷 in𝐷 . Now, we

chop the trace \ into segments \𝑖 = [\ (𝑖), \ (succ(𝑖))]. I.e., subtraces
that model exactly the states between two discrete steps. For this to

work, we observe that (1) we only consider time-divergent traces,

so 𝐷 is countable and (3) we do not allow strong inequalities in

guards, so the interval is always well-defined.

The rest of the proof is an induction on𝐷 . The base case is the run

of the first process, it may assume the invariant (as it starts at 𝑥 = 0)

and the translation ensures that once it hits the first suspension the

invariant holds (as otherwise the proof would fail). We must now

show that the invariant holds in [\ (min𝐷), \ (succ(min𝐷))]. We

have just shown \ (min𝐷). We observe that succ(min𝐷) must be

reached following the class dynamics — this is exactly the second

proof obligation. The induction step is analogous.

The core of the translation is the formula𝜓 . It checks that the

invariant holds in the current state and does so forever. Its variation

𝜓 (e) checks that the invariants holds for the next e time units.

The first formula expresses that the object is created in a state

such that it remains safe. The formulas for methods express that if

the method is run in a safe state, then the state is safe afterwards

and remains safe. The formula for the main block only checks that

pre-conditions are adhered to.

The translation of sequence, branching, iteration and side-effect

free assignment is straightforward. Calls and creation realize the

aforementioned pattern and set cll to 1 when the pre-condition is

not adhered to. Terms initC (. . . ) and prem (. . . ) are the pre-condition
instantiated for the concrete call parameter expressions. Transla-

tion of duration first checks that the invariant holds when the state

evoles for the given amount of time and then advances the state for

the rest of the method. Translation of a get checks for 𝜓 , as time

may advance until the future is resolved. In the translation of await,
which works as the one for get, we also remove all information

about the fields except that the guard and the invariant holds using

havoc. This is needed because the state may have evolved.

It is standard to consider only time-divergent runs. The use of

locally terminating runs corresponds to partial correctness and is

necessary because the box modality only verifies its post-condition

in case of termination. The post-condition of the method contract

only has to hold in the post-state itself.

Example 4.3. Fig. 11 describes a simple class where the field v is

specified to follow limited growth with limit bnd and growth rate

rate. It is specified that the value of v is always between 0 and bnd

and the rate is between 0 and 1. Both rate and bound can be reset,

but the bound can only be increased. The rate has to observe the

specified interval. The bound is set after a dynamic check, because

the field is not visible from the outside, while the new growth rate

is specified with a method pre-condition. Note that safety relies

on the fact that the method contract is adhered to. The four proof

1 interface Element {
2 Unit inBound(Real nB);
3 [HybridSpec: Requires(nR > 0 && nR < 1)]
4 Unit inRate(Real nR);
5 [HybridSpec: Ensures(0 < result)]
6 Real outV();
7 }
8

9 [HybridSpec:
10 Requires(inV > 0 && inB > inV && inR < 1 && inR > 0)]
11 [HybridSpec:
12 ObjInv(v > 0 && bnd > v && rate < 1 && rate > 0)]
13 class Element(Real inV, Real inR, Real inB) implements

Element{
14 physical{
15 Real rate = inR : rate' = 0;
16 Real bnd = inB : bnd' = 0;
17 Real v = inV : v' = rate*(bnd-v);
18 }
19 Unit inBound(Real nB){ if(nB >= bnd) bnd = nB; }
20 Unit inRate(Real nR){ this.rate = nR; }
21 Real outV(){ return this.v; }
22 }

Figure 11: Controlled limited growth.

obligations are as follows:

init ∧ cll � 0 →
[
?true; bnd := inB; rate := inR; v := inV

]
phy (1)

𝐼 ∧ cll � 0 →
[
?true; if(nB ≥ bnd)bnd := nB

]
phy (2)

𝐼 ∧ cll � 0 →
[
?true; result := v

] (
phy ∧ 0 < result

)
(3)

𝐼 ∧ 0 < nR <1 ∧ cll � 0 →
[
?true; rate := nR

]
phy (4)

Where

𝐼 ≡ v > 0 ∧ bnd > v ∧ rate < 1 ∧ rate > 0

init ≡ inV > 0 ∧ inB > inV ∧ inR < 1 ∧ inR > 0

phy ≡
(
(𝐼 ∧ cll � 0

∧ [rate' = 0, bnd' = 0, v' = rate ∗ (bnd − v)&true]𝐼
)

The above proof obligations can be automatically closed by

KeYmaera X. We can improve the analysis slightly by excluding

methods which obviously do not influence the invariant. This is a

simple version of frames [12].

Lemma 4.4. Lem. 4.2 holds also if no proof obligations are generated
for methods that (1) do not assign to any field that is read in the
invariant, (2) make no method calls, (3) create no object, and (4) have
no Ensures specification.

Basic regions are more compositional than the component-based

system of [22], where any change to the class requires the whole

class to be reproven. For basic regions, only an added or modified

method needs to be (re)proven.

Lemma 4.5. Let C be a safe class according to Thm. 4.2. Let C− be C
with some method removed4 and C+ be C with some method added.
4
I.e., it is removed from the class and all calls to it are replaced by skip.
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1 class Tank {
2 [HybridSpec: ObjInv("x >= 3 & x <= 10")]
3 physical{ Real x = 5: x' = v; Real v = -1; v' = 0;

}
4 { this!down(); }
5 Unit down(){ await x <= 3; v = 1; this!up(); }
6 Unit up(){ await x >= 10; v = -1; this!down(); }
7 }

Figure 12: Water Tank with Local Control

(1) C− is safe.
(2) To verify C+, only the proof obligation of the new method has

to be shown.

If another class calls the added method, only the proof obligation of
the calling methods has to be shown to make the calling class safe.

4.2 Locally Controlled Regions
Next, we use the call structure for more precision: Methods called

within m are guaranteed to be in the process pool afterwards — the

negation of their condition can be added to the post-region. We

call such regions locally controlled, as each process locally starts

another process to limit its post-region.

Example 4.6. Consider the class in Fig. 12. It models a water tank

with two event boundaries, one for the upper limit and one for the

lower limit. The invariant holds, as whenever the water is rising,

method up is active and will react before the tank overflows and

analogously for down.

We use again a special variable t to model time advance, and

some auxiliary structures. Function trans𝑢 translates statements

but also keeps track of the functions which are guaranteed to be

schedulable at a suspension. It is defined in Fig. 13.

Additionally, ttrigg is the external trigger of g. If g is a differential
guard, then ttrigg is the translation of the guard expression. If g is

a duration guard with parameter e then

ttrigg = t ≥ trans(e)

Otherwise, ttrigg = false. We denote the external trigger of the

leading guard of m with ttrigm. We use weak negation to preserve

event boundaries. It is defined as normal negation, except for weak

inequalities:

(¬̃𝑡1 ≤ 𝑡2) = 𝑡1 ≥ 𝑡2 (¬̃𝑡1 ≥ 𝑡2) = 𝑡1 ≤ 𝑡2

The major difference to Thm. 4.2 is that the translation keeps

track of the methods called so far and adds their extended trigger

to the controlled region at the termination and suspension of a

method. To do so, 𝜓 is extended with a parameter CM, the set of

called methods that are guaranteed to be considered for scheduling

at the next suspension. This set is computed on-the-fly during

translation.

Theorem 4.7 (Locally Controlled Regions). Let C be a class
with dynamics ode. Let t be a fresh variable. Let

𝜓 (CM, g) = invC ∧
[
t:=0; ode, t′ = 1&

(
¬̃ttrigg ∧

∧
m∈CM

¬̃ttrigm

)]
invC

𝜓 (CM) = invC ∧
[
t:=0; ode, t′ = 1&

( ∧
m∈CM

¬̃ttrigm

)]
invC

C is safe (with locally controlled regions) if the formula

preC ∧ cll � 0 →
[̂
s
] (
cll � 0 ∧𝜓 (CM)

)
(with trans𝑢 (sinit, ∅) = (̂s,CM)) and for each method m in C the
formula

invC∧prem∧cll � 0 →
[
?trigm; ŝm

] (
postm∧invC∧𝜓 (CM)∧cll � 0

)
(with trans𝑢 (sm, ∅) = (ŝm,CM)) is valid. If all classes in a program
are safe and the following formula for the main block is valid,

cll � 0 →
[
trans𝑏 (smain)

]
cll � 0

then invD holds in every state of every locally terminating, time-
divergent trace of every object 𝑜 realizing any class D, whenever (1) 𝑜
is inactive or (2) time advances. The pre-condition of a method holds
in every prestate and the post-condition in every poststate.

trans𝑢 (s1; s2,CM) = (ŝ1;ŝ2,CM2)
where trans𝑢 (s1,CM) = (ŝ1,CM1) and trans𝑢 (s2,CM1) = (ŝ2,CM2)

trans𝑢 (if(e){s1}else{s2},CM) = (if (trans(e)){ŝ1}else{ŝ2},CM1 ∩ CM2)
where trans𝑢 (s1,CM) = (ŝ1,CM1) and trans𝑢 (s2,CM1) = (ŝ2,CM2)

trans𝑢 (while(e){s},CM) = (while(trans(e)){̂s},CM1 ∩ CM)
where trans𝑢 (s, ∅) = (̂s,CM1)

trans𝑢 (v = e,CM) = (v:= trans(𝑒),CM)

trans𝑢 (v = e.get,CM) =
({
{?𝜓 (∅)} ∪ {?¬𝜓 (∅); fail}

}
;v :=*,CM

)
trans𝑢 (await g,CM) =

({
{?𝜓 (CM, g)} ∪ {?¬𝜓 (CM, g); fail}

}
;havoc;?trans(g), ∅

)
trans𝑢 (v = e!m(e

1
, . . . ),CM) =({

{?prem (e1, . . . )} ∪ {?¬prem (e1, . . . );fail}
}
;

v :=*,CM
)
if e ≠ this

trans𝑢 (v = this!m(e
1
, . . . ),CM) =({

{?prem (e1, . . . )} ∪ {?¬prem (e1, . . . );fail}
}
;

v :=*,CM ∪ {m}
)

trans𝑢 (v = new C(e
1
, . . . ),CM) =({

{?initC (e1, . . . )} ∪ {?¬preC (e1, . . . );fail}
}
;

v :=*,CM
)

trans𝑢 (duration(e)) =
t := 0;

{
{?𝜓 (e)} ∪ {?¬𝜓 (e); fail}

}
;

t := 0;{ode, t′ = 1&t ≤ trans(e)};?trans(e)

Figure 13: Translation of HABS-statements into𝑑L programs.
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Proof Idea. The proof is analogous, except that we use that the

reachable states from a state in 𝐷 cannot be models for any guard

of a called method, except on the event boundary.

An important detail is that the translation of uncovered get
statements uses True as the uncontrolled region. As the future

access may deadlock, this ensures that in this case the object the

object is in a safe state and remains so forever. The main block is

translated using basic regions, as it cannot contain calls to its own

(implicit) object.

Contrary to basic regions, we cannot use a single modality by:

[s] (invC ∧ [ode&true]invC) ⇐⇒ [s; ode&true]invC
because the post-region may be empty. In this case, e.g., if a method

with a leading guard true is called, the second modality simplifies to

true. The used obligation still ensures the invariant in the poststate.

Removal of a method requires to reprove all calling methods.

Lemma 4.8. Let C be a safe class according to Thm. 4.7. Let C− be C
with some method m−removed and C+ be C with some method added.

(1) To verify C−, only the proof obligations of methods calling m−

must be closed.
(2) To verify C+, only the proof obligation of the new method has

to be shown.
If another class calls m+, only the calling methods have to be reproven.

Beyond mutually recursive structures, locally controlled regions

can verify classes with a single controller and no further methods.

Example 4.9. The controller in Fig. 14 checks the water level of a

tank every
1

2
seconds, so every process has to establish safety only

for that time frame.

1 [HybridSpec: Requires("3.5<=inVal<=9.5")]
2 class TankTick(Real inVal){
3 [HybridSpec: ObjInv("3<=x<=10 & -1<=v<=1")]
4 physical{
5 Real x = 5: x' = v;
6 Real v = -1; v' = 0;
7 }
8 { this!ctrl(); }
9 Unit ctrl(){

10 await duration(1/2);
11 if(x <= 3.5) v = 1;
12 if(x >= 9.5) v = -1;
13 this!ctrl();
14 }
15 }

Figure 14: Timed water tank.

4.3 Structurally Controlled Regions
Locally controlled regions are not a sufficiently precise proof princi-

ple in general. Consider Ex. 2.1. The method for the lower boundary,

down, does not establish safety by its recursive call, as the level may

rise above the upper boundary. Similarly, if a method is added to

Ex. 4.9, it cannot use the information from ctrl. To amend this, we

use that in controlled classes the controllers can always be sched-

uled if their condition holds. Their conditions, thus, can be used in

a more precise computation of the post-region.

Intuitively, the following theorem extends Thm. 4.7 to make use

of the fact that controllers are always running. This is done by

extending𝜓 (CM) and𝜓 (CM, g) to add the regions defined by the

controllers into account.

Theorem 4.10 (Structurally Controlled Regions). Let all
variables range as in Thm. 4.7. Let CtrlC be the set of controllers in C.

Thm. 4.7 holds if𝜓 (CM) is replaced by the following definition:

𝜓 (CM) = invC ∧
t:=0; ode, t′ = 1&

©«
∧

m∈CtrlC∪CM
¬̃ttrigm

ª®¬
 invC

And analogously for𝜓 (CM, g).

While this increases precision, modularity suffers: removal of a

controller requires to reprove all methods in the class. This is to be

expected, as a controller influences every post-region.

Lemma 4.11. Let C be a safe class with structurally controlled
regions. Let C− be C with some method m− removed and C+ be C with
some method added.

(1) If m− is a controller then all methods of C− have to be reproven.
(2) If m− is not a controller then Lem. 4.8 holds.

5 ZENO BEHAVIOR
Post-regions allow us to analyze another property than safety: Local

Zeno behavior. Under local Zeno behavior we understand that a

class exhibits Zeno behavior when run in isolation, i.e., infinitely

many discrete steps in finite time. We can exclude such behavior if

the post-region of every method (and every suspension) has some

constant minimal size — this means that after a process terminates,

the object advances some minimal time.

Definition 5.1. Let 𝜒 be a time-convergent run and 𝑜 an object

within. We say that 𝑜 is locally modified by a transition if (1) some

process is scheduled and (2) this process is not resulting from a

message from another object. Object 𝑜 is locally Zeno within 𝜒 if 𝑜

is modified only locally by infinitely many transitions in 𝜒 .

Global Zeno can be defined by dropping condition (2). Global

Zeno is a property of the overall program, while local Zeno is an

inherent design error in a single class.

Example 5.2. The bouncing ball in Ex. 2.1 is locally Zeno. The

timed water tank in Ex. 4.9 is not locally Zeno.

The above definition only considers scheduling events for Zeno

to exclude non-termination: E.g., we do not consider a non-terminating

loop without await and duration statements Zeno. The reason

for this is that we consider non-termination and Zeno as differ-

ent phenomena that express different underlying problems: Non-

termination is a purely discrete behavior that happens in a hybrid

context, while Zeno behavior is inherently hybrid and happens

when discrete and continuous behavior interact.

To analyze local Zeno, we need to check at least the controllers

to ensure that after a controller terminates, always some minimal

times passes before the next controler runs. However, this is not
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sufficient, e.g., for mutual recursion of other methods. But even

general cycle detection in the call graph (in the style of Non-Zeno

loops for hybrid automata [35]) does not allow us to detect all

interactions between internal await diff statements.

To check local Zeno, we, thus, check that for every suspension

there is a lower bound 𝑡0 such that after every execution of m at least

𝑡0 time units pass where the dynamics are inside the (uncontrolled)

post-region. For brevities sake, we give the proof obligation only

for methods without internal await.
Intuitively, each proof obligation expresses that at least 𝑡0 sec-

onds may pass without a discrete step being taken.

Theorem 5.3 (Local Zeno Freedom). Let C be a safe class (acc.
to Thm. 4.10) where every await is leading. Let trans𝑢 (sm, ∅) =

(ŝm,CM). If for every method m the following formula is valid, then
there is no object of C in any program (that adheres to creation and
method pre-conditions) that is locally Zeno.

invC ∧ prem →

∃𝑡0 .
(
𝑡0 > 0 ∧

[
?trigmŝm; 𝑡 := 0; ode, 𝑡 ′ = 1&𝑡 ≤ 𝑡0;

]∧
m∈CtrlC∪CM

¬̃ttrigm
)

6 IMPLEMENTATION
We implemented the procedures in Sec. 4 and Sec. 5 in the Chisel
tool

5
. Chisel reuses the HABS parser. The tool parses the input file,

checks which class is controlled and which methods are open. The

user can select to verify all classes, only one class, only one method

or only the main block. Additionally, the user may select which

algorithm for region computation is to be used. It then translates a

class into a set of KeYmaera X proof obligations and automatically

tries to verify them. Failed proof attempts can be retrieved by the

user and Chisel allows to annotate proof scripts to manually apply

a tactic instead of the automatic procedures: Such tactics are output

by KeYmaera X after a proof is closed.

[HybridSpec: Tactic("expandAllDefs; master; DEs(1)")]
Unit method(){ ... }

All examples in this work are uploaded with the source code

of the tool and can be closed fully automatically. Reverification

of the water tank shows that the new approach is more suited

for automated proving: The previous system required interaction

to close Ex. 2.1[22, Fig. 2] but our new tool Chisel can verify it

fully automatically. The reason is that the concurrency model and

scheduling is now implicit for the prover, while it was encoded

directly in the 𝑑L formula before and required to retrieve two

additional loop invariants. While the previous system only handled

controlled classes where await is only allowed as the first statement

of a method, Chisel covers the the complete language (except

additional data types).

Chisel can be used in combination with Crowbar, the verifica-
tion tool for ABS implementing the Behavioral Program Logic [19]:

While Chisel verifies hybrid classes, Crowbar verifies non-hybrid

classes and allows one to use arbitrary data types and function

5
Additionally to the compiled tool linked above, the source code is available under

https://github.com/Edkamb/chisel-tool/.

definitions in non-hybrid classes. Both tools support method con-

tracts as cooperative contracts [20] and interactions are handled

automatically by this mechanism.

7 RELATEDWORK AND CONCLUSION
This is the first work to successfully generalize specification and

verification principles for object-oriented language to a hybrid

setting. Instead of verifying an object invariant by using it as a

post-condition of a method, we instead use it as an invariant for

the post-region: the states reachable from the post-state method

when following the given dynamics. Verification of hybrid systems

is hard, but we show that by using an object-oriented programming

languages as a host for hybrid behavior, it is possible to use the

additional structure provided by the language to improve composi-

tionality of verification.

RelatedWork. There are only few programming languages for hy-

brid systems with full-fledged formal semantics. The best examined

one is the algebraic language of 𝑑L [31–33]. Its minimal structure

requires that compositionality is encoded in elaborate proof struc-

tures [23, 24, 27]. Whiledt [34] is a hybrid while-language with a

verification condition generator [14], but compositionality is not

examined. For other languages, such as HybCore [11], verification

is not considered. Most hybrid languages, e.g., Hybrid Rebeca [17]

have as semantics only translations into hybrid automata.

For hybrid automata, composition of semantics has been in-

vestigated since the beginning by parallel composition [3] or by

marking some variable as input or output ports, e.g., in hybrid I/O

automata [25], which can be used to build a hierarchical model

made of components [7] for model checkers. Composition has also

been investigated for model checking hybrid automata by assume-

guarantee reasoning to decompose systems [9, 16]. Such approaches

are similar to method contracts, but rely-guarantee reasoning for

hybrid automata does not encapsulate of data and method calls, but

abstractes of components executed in parallel.

FutureWork. Concerning the Zeno analysis, possible future work
includes a global Zeno notion and analysis for Hybrid Active Ob-

jects, as well as a precise characterization of both local and global

Zeno. Besides the Zeno analyses, we plan to investigate the gener-

alization of program analyses for object-oriented and distributed

models, e.g., resource [8] or deadlock analyses [15, 18] for more

precise post-regions. A deadlock and a global Zeno analysis would

allow to reason about total correctness of HABS programs. A fur-

ther principle from discrete languages, dynamic frames [12], shows

premise to generalize well and significantly increase precision. We

are developing a post-region based verification system for hybrid

automata and integrating Modelica into the physical block.
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