
On the Notion of Naturalness in
Formal Modeling

Eduard Kamburjan1 and Sandro Rama Fiorini2

1 University of Oslo, Norway
eduard@ifi.uio.no

2 IBM Research, Brazil
srfiorini@ibm.com

Abstract. We investigate what it means for a formal model to be natu-
ral using theories from cognitive science and linguistics. Intuitively, nat-
uralness describes that the formal model fits the domain it is modeling
– it is not an intrinsic property of the formal model, but a property that
is assigned to it by some human interpreter who is making sense of it.
Our main observation is that for each formal model, two sense-making
processes are possible: First, the process that interprets the formal model
as a symbol in the application domain and assigns it a domain concept.
Second, the process that interprets the formal model as a symbol in
the engineering domain and assigns it a concept describing an engineer-
ing view. Naturalness is described as the similarity of these two mental
concepts, i.e., the cognitive complexity to map the domain concept to
the engineering concept. We discuss these ideas and formalize then us-
ing conceptual spaces, a similarity-based concept representation theory
based on cognitive semantics.

1 Introduction

Formal methods is a research field spanning programming languages, logics and
other formalisms. At its core, it provides tools for formal modeling, the develop-
ment of a formal representation of a system or a design, as well as tools for its
analysis. Despite the highly impressive machinery developed to analyze models,
there is little research on the modeling process itself. This is far from being an
irrelevant aspect – to-date, there is no way to precisely justify modeling decisions
and argue why one modeling language is more suited for one task over another.

Modeling studies are notoriously imprecise in this point, resorting on vague
descriptions that core concepts of the modeled domain are “naturally” expressed
in the chosen language or that the modeling language has a small “representa-
tional distance” (Stehr and Meseguer, 2004; Johnsen et al., 2018) or “is a good
match” (Kamburjan et al., 2018) for the domain. The common idea expressed
is that the mental concept of the modeler and the concept as formalized in the
language are somehow similar. These arguments are not about the mathematical
structure – at their core they are arguments about cognition: a formal model is

2 Eduard Kamburjan and Sandro Rama Fiorini

“natural”, if the mental process to recognize the structure of the domain in the
formal model requires little cognitive effort.

The contribution of this work is a cognitive view on formal modeling to
give a framework that allows us to reason about modeling decisions and about
cognitive processes during modeling. As our main focus, we make the notion of
naturalness more precise. To do so, we fix naturalness as the cognitive complexity
of the mapping from the mental concept that arises from interpreting the formal
model as an expression in the application domain to the mental concept that
arises from interpreting the formal model as an engineering artifact, i.e., based
on its functionality. For our framework we draw on three tools from cognitive
science and linguistics: (1) semiotics to describe the sense-making processes, (2)
conceptual spaces to represent mental concepts and (3) metaphorical mappings
to describe the relation of mental concepts.

After introducing the basic ideas behind semiotics in Section 2, we reflect in
Section 3 on the classical view on models as abstractions of reality. We then show
the inadequacy of the view that the essence of modeling is abstraction to explain
why formally equivalent models are perceived with different naturalness. We also
distinguish between non-perceptional and perceptional naturalness – the first is
concerned with the similarity of mental concepts, while the later is concerned
with more syntactic properties, such as code formatting. The focus here is on
non-perceptional naturalness.

We aim to provide a way to argue more precisely about modeling, based on
our experiences with formal methods – the choice of conceptual spaces is due to
their elegant mathematical structure, not a commitment to a model of cognition.
We introduce conceptual spaces and their use to describe metaphors in Section 4.
The Theory of Conceptual Spaces (Gärdenfors, 2004) is a concept representation
framework having conceptual similarity as its main feature. In Section 5 we then
use conceptual spaces to make the introduced notions more precise. Additionally,
we propose a framework for the mental processes when writing and reading
formal models and show where abstraction has its place during the modeling
process. Section 6 revisits the examples from previous section and discusses them,
and further examples, through the lens of newly introduced framework. Finally,
Section 7 concludes.

We do not target models in the broadest possible sense, but instead con-
centrate on a certain set of scenarios that form the core of use cases for formal
models: First, we assume that the formal model has a connection to a domain.
Such a connection can be direct, as in formalization of domains with ontologies,
or indirect, e.g., in a data model for a database or a programmed application.
Second, we distinguish between three roles in the modeling, i.e., the creation
of the formal model: (1) the domain expert who understands the domain, but
little of the formalism used for formal modeling; (2) the technical expert, who
understands the formalism, but little of the domain; and (3) the modeler whose
task is understanding both formalism and domain, as well as on communicating
with domain expert and technical expert.

On the Notion of Naturalness in Formal Modeling 3

A Note on Terminology. Due to the interdisciplinary nature of this work, some
of the terms are overloaded, most prominent “model” and “modeling”. To avoid
misunderstandings we use the term formal model for digital or physical artifacts
in some formal language and the term formal modeling for the cognitive process
that produces this artifact. We use the word “concept” for mental models (in
contrast to, e.g., Guizzardi (2005), where “model” is used instead). If “model”
is used without further specification, “formal model” is meant.

2 Background: A Very Short Primer on Semiotics

Semiotics is the study of signs: symbols, their meaning and the processes that
connect meaning and symbol. In this section, we give an overview over its main
notions, as far as we need them. More precisely, we adopt the triadic model
going back to Peirce (1935), with the terminology by Ullmann (1972) and some
adaptations to avoid name clashes with computer science notions. For a readable
general introduction we refer to Chandler (2017).

For our purposes, a sign is something that is interpreted as signifying some-
thing else to somebody. It consists of three components (Fig. 1): (1) a symbol,
the form the sign takes, which can be, e.g., a word, a sound or an image; (2)
a concept, the sense made from the sign, in our case a mental concept; and (3)
a thing, something the sign refers to, which can be, e.g., another sign or some
physical domain entity. The sense making process that connects symbol, concept
and thing is cognitive and needs an interpreter: “Nothing is a sign unless it is
interpreted as a sign” (Peirce, 1935, 2.172). We stress two details about this
model of signs: First, signs are not necessarily psychological – while in this work
the concept will indeed be a mental concept, this is not true of general signs.
Second, signs are triadic – they are not the sum of the diadic relations, but arise
from the interactions of all three components.

As an example, the word Tree is a symbol, the mental representation of trees
is a concept and physical trees are a thing. Together, they form a sign. For formal
modeling, we can see this triad as follows: the (real or thought-of) system is the
thing, the symbol is the formal model of it, and the concept is the mental view
of the modeler or reader.

Symbol
(language)

Thing
(reality)

Concept

re
pr

es
en

ts references

stands for

Fig. 1. Adopted semiotic triangle.

4 Eduard Kamburjan and Sandro Rama Fiorini

We introduce a more precise notion of concept in Sec. 4. For now we use them
as an intuitive term for “mental representation used in cognition”. Concepts may
have properties and have connections to other concepts. For example, the concept
“car” has the context of vehicles, the concept “Unit Test” is a concept in Java
programming, and the concept “guarded fragment” exists in first-order logic.

Things, i.e., the reality of domain entities, are not a central point in this
work. We assume that they exist and that agents can construct conceptual and
symbolic descriptions of domain entities. We will rather explore in more detail
the representation relation between symbol and concept. Similarly, we do not
discuss further that the mental concept is a sign in itself, beyond the observation
that the conceptual spaces we introduce in Sec. 4 are symbols on their own.

3 The Inadequacy of Abstraction for Explanation

A formal model is commonly defined along the lines of

A mathematical representation of a relevant part of a system, design or
domain, used for communication and/or a certain analysis.

For example, Peled (2001) defines modeling as “representing a system in terms
of mathematical objects that reflect its observed properties. [...] Modelling usually
involves the process of abstraction, i.e., simplifying the description of the system,
while preserving only a limited number of the original details.” Definitions of
modeling are often mere accessory to the formal method and defined ad-hoc –
for a more systematic definition of general models we turn to philosophy, where
Stachowiak (1972, p. 131-133)3 gives the following definition: A model stands for
an original (its Abbildungsmerkmal or mapping feature), a model is not covering
all attributes of the original (its Verkürzungsmerkmal or reduction feature, which
we identify with abstraction) and a model is standing for its original only for a
specific purpose (its Pragmatisches Merkmal or pragmatic feature).

In the rest of this work, we understand a formal model as a model in the
sense of Stachowiak, that is additionally expressed as some mathematical lan-
guage with formal syntax and an interpretation in terms of other mathematical
objects. For example, we consider both programming languages like Java or the
λ-calculus, as well as logics as mathematical languages.

Such definitions, which we call the abstraction-centered, are emphasizing the
the relation of a model to (a possibly perceived or thought-off) reality through
abstraction. A model is seen as a clear, partial representation of the world which
can be expressed using mathematics and used for a certain intent.

Abstraction-centered definitions are suited to describe what a formal model
is but are not able to explain why models are developed in the way they are in
practice. More often than not, models have elements that are unrelated to the
things being modeled. For example, consider the Java code in Fig. 2 that models
a car with some axles.4 The class is using a certain serialization framework to

3 We restrict ourselves to the above setting and do not investigate, e.g., epistemological
questions. English translations of the features are taken from Kühne (2006).

4 We consider Java as being formalized to a sufficient degree to consider it formal.

On the Notion of Naturalness in Formal Modeling 5

@XmlRootElement (name = ”Car”)
@XmlType(propOrder={” nrAxels ” , ”name” , ”pos” , ” v e l o c i t y ” })
public class Car {

private int nrAxels ;
private St r ing name ;
private Pair<Integer , Integer> pos ;
private Pair<Integer , Integer> v ;

public Car () {
this . nrAxels = 0 ; this . name = ”” ;
this . p o s i t i o n = null ; this . v e l o c i t y = null ;

}
public Car (int nrAxels , S t r ing name ,

Pair<Integer , Integer> pos ,
Pair<Integer , Integer> v) {

setNrAxels (nrAxels) ;
. . .

}
public void dr ive (Logger l og){

double d i s t = Math . s q r t (v . component1 ()∗ v . component1 () +
v . component2 ()∗ v . component2 ())

pos = new Pair<>(pos . component1 () + v . component1 () ,
pos . component2 () + v . component2 ()) ;

l og . l og (Leve l .ALL, ”Car ”+name+” drove ”+d i s t) ;
}

@XmlAttribute
public int getNrAxels (){ return nrAxels ; } // + other g e t t e r s
public void setNrAxels (int nrAxels){ this . nrAxels = nrAxels ;}
//+ other s e t t e r s

}

Fig. 2. A car with axles as a model in Java.

read and write objects as XML. There are several points that are not explained
by abstraction-centered views:

– The method drive takes as parameter a logging instance for debugging. Its
existence is not related to cars at all.

– The field nrAxles has a setter and is initialized with 0. Certainly a vehicle
with 0 axles is not a car, and once a car is build the number of axles does not
change5. Yet, marshaling in Java requires a default constructor and setters
for all fields.

5 We are sure the interested reader can find situations where the number of axles does
change in the lifetime of a car. We assume that this class is written for an application
that does not consider any of these situations.

6 Eduard Kamburjan and Sandro Rama Fiorini

There are modeling decisions in this code that we examine in detail in later
parts of this article. For now, it suffices to observe that the Java class Car is
related to the concept of a car through more than abstraction, as it has elements
that do not occur in the domain concept. Furthermore, we cannot separate them
clearly: the field nrAxles should be declared final, given our assumption that
the number of axles of a car does not change, but we cannot do that given the
marshalling requirements. In that case, a reader of this model might wonder
whether that is a feature of the domain or a feature of the language.

This brings us to the core of the problem: a model does not only have a
relation to our view on reality, it also has a relation to our view on the formalism.
The given code can be read in two ways: The first, which domain experts and
car enthusiasts would take, is the one of Car-as-cars, an expression of how the
modeler thinks about cars. The second, which technical experts would take, is
the one of Car-as-code, a construct that can be understood by examining how
the modeler thinks about Java (and further, technical context). If the technical
expert knows nothing about cars, it is as hard for him/her to judge its correct
abstraction just as it is hard for the domain expert to detect technical bugs in
it. The modeler, given the task to mediate between domain and formalism, is
caught in-between: to the modeler, the class is both Car-as-cars and Car-as-code.

This makes the modeling job more difficult: the domain expert is not fa-
miliar with XML marshaling – communicating requires the modeler to think of
the model only as an expression of the relevant parts of the domain concept car.
However, the expression is partially formed by the requirements of the formalism
and the domain expert must accept that nrAxles cannot be final. Communicat-
ing with other technical experts requires to think of the model only as a concept
within the engineering/language domain. This too can be challenging: the mod-
eler may willingly break established design patterns within the formalism so the
model is conceptually nearer to the domain.

Let us next make these notions more formal by using the semiotic framework
established in the previous section. We introduce three entities: (a) the notion of
a symbolic, formal model M; (b) a conceptual, mental structure Mδ denoting the
domain aspects coded in M; and (c) a conceptual, mental structure Mα denoting
the engineering, technical aspects coded in M. For example, considering that
M = Car then Mδ refers to the conceptualization of notion such as that cars
have axles, position and velocity; and Mα refers to the conceptualization of a
Java class with four attributes, with a drive method and so on. The semiotic
view is given in Fig. 3: M is the symbol for both sense-making processes. The
first sense-making process (of the domain expert) has the concept Mδ and real
cars as things, while the second one (of the engineering expert) has the concept
Mα. The modeler must perform, depending on the current situation perform
one of these sense-making processes or possibly switch from one to another. The
theoretical question when analyzing this situation is to relate the two sense-
making processes.

On the Notion of Naturalness in Formal Modeling 7

3.1 The Concept-Centered View on Models

We introduce now the first part of our contribution. Both domain expert and
technical expert do not ignore the other’s view, but for them one of the views
dominates. For the modeler, the domination effect is either not strong, does not
exist at all, or shifts depending on the situation. In any case, it is out of the
question to ignore one of them. This situation begs the question how the to two
sense-making processes of Fig. 3 interact within one agent. More precisely, with
this view on models, which we call concept-centered, the central question is:

Given a formal model M, how do M-as-a-domain-concept (Mδ) and M-
as-an-artifact-concept (Mα) relate to each other?

In this work, we explore what it means for M to be natural. As a start we say
that M is natural for a person if M-as-an-artifact-concept is easy to map on
M-as-a-domain-concept.

We stress that we indeed relate two concepts to each other and stress the
difference between M-as-an-artifact-concept and M: The former describes the
mental representation of M by properties from the engineering/formalism do-
main. The latter is just syntax.

Another aspect that is lost in abstraction-centered views is the choice of the
modeling language. This is especially true for programming languages, which are
(mostly) all Turing-complete and, thus, equally expressive and have the same
pragmatic feature (in the sense of Stachowiak). Abstraction is not able to act as
an explanation for the choice of the modeling language for a certain situation,
if several languages are able to support the needed analyses. We remind that
we understand abstraction as the relation between the model and the modeled
thing, not implementation-hiding constructs such as interfaces within parts of
the model.

"real" cars"real" JVM classes

Technical expert Domain expert

Fig. 3. The concept-centered view on models for two agents.

8 Eduard Kamburjan and Sandro Rama Fiorini

3.2 Concepts and Syntax

The concept-centered view on models is not antithetical to other views but rather
stresses cognitive processes related to modeling. We distinguish between the
mental processes concerned with concepts and the mental processes concerned
with deriving these mental concepts from perception.

The first class of processes describes the representation of concepts and their
processing; e.g., what constitutes a car and what is the relation of the concept car
with other concepts. The second class connects these processes with perception;
e.g., is the thing that one perceives representing the concept of cars. The dis-
tinction is not sharp, but it is useful in our context as it allows us to specifically
target syntactic questions. As an example, we give several logic characterizations
of the following statement:

A car has 4 wheels.

First, consider the following first-order formula:

∀x.
(
Car(x) → ∃w1, w2, w3, w4.(
hasPart(x,w1) ∧ hasPart(x,w2) ∧ hasPart(x,w3) ∧ hasPart(x,w4)

∧Wheel(w1) ∧Wheel(w2) ∧Wheel(w3) ∧Wheel(w4)

∧ w1 6= w2 ∧ w1 6= w3 ∧ w1 6= w4 ∧ w2 6= w3 ∧ w2 6= w4 ∧ w3 6= w4

))
There are several syntactical effects here that make it easy to grasp what

is modeled, before the stage where we can ask whether the model is natural or
not. I.e., syntactical effects describe how perceived structures give rise to the
model-as-a-concept:

– Conjuncts are grouped together in units that correspond to one statement,
e.g., ”all parts are wheels” corresponds to the second line,

– the order of these units is almost the same as in the description,
– the literal 4 occurs in both natural language description and formalization,
– indentation gives a clear structure that partitions the unit visually, and
– the variable names clearly related to their intended meaning.

We assume that the predicate and relation symbols are inherently meaningful
and that it is not sensible to have the predicate that expresses “x is a car” have
any other name. Next, we turn to the units in more detail. The unit

w1 6= w2 ∧ w1 6= w3 ∧ w1 6= w4 ∧ w2 6= w3 ∧ w2 6= w4 ∧ w3 6= w4

describes that the four variables are different. We imagine that readers familiar
with fist-order logic have not read all clauses in detail. Instead the pattern of
pairwise inequality is recognized and the unit is perceived as one statement.

On the Notion of Naturalness in Formal Modeling 9

Now, consider the following, equivalent first-order formula:

∀x.
(
Car(x) → ∃cake,Y6, x2,Schiff .(
Wheel(Schiff) ∧Y6 6= x2 ∧Y6 6= Schiff

∧ hasPart(x,Schiff) ∧ cake 6= Y6 ∧Wheel(Y6) ∧Wheel(x2)

∧ hasPart(x, x2) ∧ cake 6= ship ∧Wheel(cake) ∧ hasPart(x,Y6)

∧ hasPart(x, cake) ∧ x2 6= ship ∧ x2 6= cake
))

While one can see it represents the same concept once understood, it is
probably harder to derive the mental concept in the first place given how the
variables and restrictions are written. We call the distance of concept and formal
model perceptional naturalness. We will discuss this example in more details
when we have formalized perceptional naturalness. Next, we briefly discuss the
role of the language in more detail.

Formal models are expressed in some modeling language and the choice of
the language plays a role in how a concept is expressed. Thus, the choice of the
language has an influence on both the naturalness of the formal model and its
perceptional naturalness. We focus on naturalness here, for perceptional nat-
uralness it suffices to note that formal languages such as Whitespace or Mal-
bolge (Olmstead, 1998) and C are all equally expressive languages, yet Whites-
pace or Malbolge are highly unnatural in any sense of the word.

It is out of scope for this work to discuss computational thinking in de-
tail and to investigate the differences in programming paradigms; e.g., between
functional, declarative and imperative programming. Instead, we discuss in more
detail how the units introduced in the above example related to the role of lan-
guage. Returning to the four-wheeled car, we can give an alternative notation
for the same formula:

∀x. Car(x) → ∃w1, w2, w3, w4.
∧
i∈1..4

(
Wheel(wi) ∧ hasPart(x,wi)

)
∧
∧

i,j∈1..4
i6=j

wi 6= wj

Is this formula a first-order logic formula? Syntactically it is not, but it is
straightforward to expand all the introduced shortcuts and retrieve a “pure”
first-order formula6. We argue that it is still a first-order logic formula, instead
the shortcuts form a conceptual library of patterns that are employed anyway.
E.g., the grouping into units. Similar conceptual libraries are known in other
minimal languages, e.g., the church encoding of the natural numbers in the
lambda-calculus. Similarly to programming language libraries, these conceptual
libraries are a summary of useful patterns that are repeated in many programs.

6 Extensions of a simple formalism may be less straightforward than expected, as the
study of Quinlan et al. (2019) on the use of BNF grammars in practice shows.

10 Eduard Kamburjan and Sandro Rama Fiorini

When the modeler starts to express a concept in a certain language, the
conceptual (and programming) libraries are included in the expression. I.e., when
arguing about the naturalness of a formal model, the libraries must be included
in the discussion, as the concept must be adapted to both language and libraries.
In this sense, no programming or modeling language is truly minimal, it just gives
the user a bigger freedom in the choice of libraries in turn for a higher reliance
on these libraries.

3.3 A Complete View on Models

We have so far discussed two views on models: (1) The abstraction-centered view
emphasizes the relation of a formal model the thing it stands for. It emphasizes
the reduction feature. (2) The concept-centered view emphasizes the dual na-
ture of a formal method and the relation between M-as-a-domain-concept and
M-as-an-artifact. It emphasizes the mapping feature. For completeness’ sake,
we mention a third view that emphasizes the pragmatic feature, which we call
purpose-centered : A model is a mathematical expression made for a certain
(business-)purpose. In industrial practice, this view is more relevant than the
others: as businesses aim to make money, the availability of trained personal,
computational resources, etc. is critical in the choice of what language is cho-
sen and how a model is designed. I.e., one may have a model that is less natural
than possible and less abstract than possible, but no employee is able to produce
such a model in a reasonable amount of time and the model is good enough for
business-purposes.

4 Conceptual Spaces

To examine naturalness, we must be able to analyze the relationship between Mδ

and Mα; In search for tools to examine and describe these mental concepts we
turn to cognitive science. This research field is, among others and briefly summa-
rized, concerned with explaining and constructing cognitive activity. Cognitive
activity uses some information to reach some goals. While the nature of how
this information and these goals are represented mentally is an elusive mystery,
there are numerous theories of modeling representations. The following section,
and indeed this whole work, does, thus, not claim that the used notion of con-
cepts is “real”, in the sense that the cognitive activity uses conceptual spaces
for representation, they are a model for the representations.

The theory used here is the Theory of Conceptual Spaces of Gärdenfors (2004,
2014), which is based on geometric structures and motivated existing cognitive
phenomena, such as similarity7. In short, conceptual spaces (CS) are metric
spaces where concepts are represented as regions, objects as points and dimen-
sions are ways in which these can be compared. Similar concepts are grouped

7 This is in line with a tradition to describe concepts/categories not by common fea-
tures, but by distance between instances, following Wittgenstein’s family resem-
blance (Wittgenstein, 1953) and Rosch’ prototype theory (Rosch and Mervis, 1975).

On the Notion of Naturalness in Formal Modeling 11

closer together in a conceptual space. For example, the concept Apple could
be represented as a region in a CS where the dimensions are shape, color, and
weight. In this space, the region for Oranges would be closer to Apple than
Pineapple, for example. The relevance of Conceptual Spaces to our discussion
resides in its proposal as a framework for cognitive semantics. In cognitive se-
mantics, the meaning of linguistic expressions is given by mental entities, which
are grounded in reality through perception. Conceptual spaces provides a struc-
ture for such mental entities. That fits our view in which (symbolic) models,
such as Java classes, are interpreted as mental models of domain or technical
entities.

A considerable part of what makes

L
ig

h
tn

es
s

SaturationHue

CS a powerful representation frame-
work is the way in which the dimen-
sions of the metric space are struc-
tured. Certain dimensions, particularly
perceptual ones, always appear together,
forming quality domains. For exam-
ple, hue, saturation, and luminosity
(HSL) are integral8 to each other, forming a color domain (to the right). In ad-
dition to that, the Theory specifies that natural properties are convex regions in
quality domains. The notion of natural property is loosely defined as those natu-
ral for the purpose of usual problem-solving tasks. So, for example, the property
Red in the HSL space should be convex. Indeed, studies with color perception in
different cultures showed that regions for basic colors in HSL space are indeed
approximate convex regions (Sivik and Taft, 1994). Studies with other perceptual
domains paint a similar picture (Gärdenfors, 2004).

Complex concepts, such as Apple, can be more precisely defined as collections
of regions in quality domains. Those include perceptual domains, but can also
include non-perceptual domains, such as price and shelf life.

The Theory is not intended to be complete. One important aspect for our
discussion and that is not well established is related to conceptual spaces unique-
ness: how many conceptual spaces there are in an agent’s mind? Some works as-
sume a single a conceptual space with a high number of dimensions in which all
concepts are represented (e.g., Aisbett and Gibbon, 2001). Some works assume
smaller conceptual spaces, sometimes one for each concept (e.g., Fiorini and
Abel, 2013). Furthermore, distinct agents are normally assumed to have distinct
conceptual spaces, which can be aligned by mapping conceptual spaces to sym-
bolic structures and then by symbolic communication (Warglien and Gärdenfors,
2013). In this paper, we assume each agent (e.g. modeler or expert) has a collec-
tion of subjective conceptual spaces focused in specific topics, which may or may
not be result from the projection of a universal subjective conceptual space. We
also assume that structures of these conceptual spaces are mapped to language
structures, which can be communicated symbolically through written artifacts.
Furthermore, we assume that the decoding of these artifacts induce a conceptual
space.

8 I.e., it is not possible to assign a value to an object in one dimension without assigning
one in the others.

12 Eduard Kamburjan and Sandro Rama Fiorini

Other cognitive phenomena can be explained in terms of operations in con-
ceptual spaces. For example, taxonomic reasoning can be defined in terms of
region embeddings/projections. Contextual effects can be explained in terms of
dimension weighting (see Gärdenfors (2004) for more details).

Concept Composition. From the tools developed for Conceptual Spaces, we re-
quire those related to concept composition and introduce these next.

Only in the most simple case can we model the composition of two concepts
as their product space, i.e., intersection of the regions in their properties, because
only the most simple composition shares properties. This is, for example, the case
for “red car“, which is composed from “red things” and “car“. Such compositions
are described by intersecting the region for “red” in the color property of “car”
and leaving the rest of the concept of “car” unchanged.

A more common case is that while intersection can be applied to some regions,
other regions are incompatible. The classical example here is “stone lion”. The
material property of “lion” has an empty intersection with “stone”, so instead
the property is replaced. However, some of the properties of “lion”, namely all
which are concerned with living things, are not compatible with things made
of stone and are consequently removed from the composed concept. Indeed, the
only remaining property of “lion” is its shape.

A similar situation arises in natural language with metaphors, where the
composition of concepts cannot be described by removal, addition and inter-
actions of properties, as the concepts share no properties (Lakoff and Johnson,
1980). Metaphors are “mappings across conceptual domains” (Lakoff, 1993) that
preserve some cognitive structure not directly accessible on a lexical level, in-
stead they “preserve the cognitive topology (...) of the source domain, in a way
consistent with the inherent structure of the target domain.” (Lakoff, 1993).

The similarities between metaphors and models run deeper than their shared
property of mapping across domains. Both metaphors and models are, in the
words of Steen (2011),“not a matter of language but of thought“. A model is a
model because it is thought of as such; there is nothing in a Java program or a
first-order formula that gives it its mapping feature without a mind to perform
the mapping. Similarly, the adequacy of a model is a property that is inherently
non-lexical and cannot be judged without a cognitive approach.

To handle such situations in the Conceptual Spaces framework, (Gärdenfors,
2014, Ch. 13) describes two mechanisms: for shared domains, the concept is pro-
jected on the shared dimensions (in the example above, the lion is projected on its
“form” dimension). This is not abstraction, which is removing properties based
on the context of the formal modeling. For non-shared domain, a metaphorical
mapping is used: a homeomorphism between the regions of the two concepts,
i.e., an isomorphism preserving structural/topological properties. Through the
homeomorphism, structures from one domain can be applied in the other one,
which may not posses such structures.

On the Notion of Naturalness in Formal Modeling 13

5 Naturalness in Conceptual Spaces

We have so far established a semiotic view on models, argued that naturalness
must be explained as a relation between Mα and Mδ, and introduced Conceptual
Spaces and metaphors as a tool to describe such relations between concepts.

Now we can revisit the notions discussed in Sec. 3. To do so, we discuss mental
processes that relate artifacts and mental representations, which differ between
enmodeling as a mental process to generate a mental concept for a given context
(which, most likely, is more simple or suited) and encoding, for the process that
encodes this model in a formal model or symbol.

5.1 Redefining Mδ and Mα and other mental models

As we stated earlier, both Mδ and Mα are mental representations that base
the production/understanding of artifacts M. Taking Conceptual Spaces as our
framework for mental representation, we must then define their nature in terms
of conceptual constructs.

We start by introducing Cδ as a region in a conceptual spaces denoting the
full conceptualization of a domain concept. It spans properties in perceptual
and non-perceptual quality domains representing the overall experience a person
might have with exemplars of such concept. For example, for a car expert, Cδ

captures aspects related to specialist and common-sense knowledge about cars.
In contrast, Mδ is a region in a conceptual space constructed by domains and

subproperties derived from Cδ that are relevant to the task at hand. In our Java
car example, Mδ include domains regions related to axles, position and velocity.

Similarly, we introduce Cα a region in conceptual spaces denoting one’s gen-
eral knowledge about the constructs and structures in the target formal model.
In our Java example, Cα equates to the general notion one has of Java classes.
Points in this conceptual space denote individual possible Java objects. Its do-
main structure is more elusive, given its abstract nature. Examples of quality
domains include memory position, hash encoding and use of logging.

Finally, Mα represents the formalism and task-dependent mental model of
the M. While Mδ might be a property region on a domain denoting the range of
possible number of axles a car might have, Mα would have a counterpart region
on a integer domain with no region defined.

In the following, we use Cx/Mx when δ and α concepts are interchangeable.

5.2 The Place of Abstraction

We next discuss the relation of Mx and Cx and the process involved with their
construction. Modeling is a mental process that starts with a concept (i.e., a
region in a conceptual space) and ends with an (physical) artifact expressing this
concept in a certain context and a certain (formal) language. We hypothesize
that it consists of two main steps: enmodeling and encoding. In reverse, the
mental process that starts with an artifact and ends with a concept consists of
decoding and demodeling. Fig. 4 depicts these processes for Mx and Cx.

14 Eduard Kamburjan and Sandro Rama Fiorini

decoding

encoding

demodeling

enmodeling

Fig. 4. The mental processes and representations to produce and understand models.
The two right representations are cognitive spaces, denoted by blue axes.

Enmodeling. Enmodeling takes Cx and adapts it to the target context and target
language. Adaptation to the context is mainly abstraction: the removal and
rescaling of dimensions and properties that are not relevant for the context.
Adaption to the language is a more elusive process: we conjecture it to be similar
to the effects known in linguistics that language influences the way concepts are
formed and expressed in natural language. The result of enmodeling is again a
concept, a region in a conceptual space. Due to the adaption to the language, it
is not a subconcept of the one we started with.

Encoding. Encoding starts with the adapted concept and ends with the arti-
fact. It is the generation of artifacts from mental concepts after adaption of the
concepts. These two processes are not independent: obviously, enmodeling is in-
fluenced by the target language and is guided by the expression of concepts in
this language. Their relation is also not necessarily sequential, but we conjecture
that enmodeling starts before encoding, and that encoding ends after enmodel-
ing. For our discussion, it suffices to regard them as separate and ordered.

Decoding. Decoding starts with the artifact and ends with a adapted concept
that is specific to its context (i.e., the application in question where the artifact
is used). It is the opposite of encoding and the resulting concept still contains
traces of the artifact, as it is done in a certain language and context (which
the ending concept is adapted to). Decoding contains numerous mechanisms,
for example it is the part that is concerned with perception. It also may involve
higher cognition mechanisms, like memory.

Demodeling. Demodeling is the opposite process of enmodeling, it starts with a
concept that contains traces of the artifact language and ends with a full, not
context-specific context. It relates Mδ to a Cδ and has, as one of its main parts,
the task to recognize the modeled concept in the artifact. For example, it is
during demodeling, when the car expert recognizes the Java class as a specific
concept from the car domain. The moment when the car enthusiast recognizes
the Java class as something from the car domain is during decoding. The main
difference of enmodeling and demodeling is their direction w.r.t. complexity of
the concept: enmodeling reduces complexity (e.g., by removing a dimension),
while demodeling increases it.

Demodeling and enmodeling are not monolithic processes and contain sub-
processes which may take the opposite direction w.r.t. complexity as the overall

On the Notion of Naturalness in Formal Modeling 15

process. The exact subprocesses are, however, not of importance for the phenom-
ena we aim to describe here. The important detail is that (de/en)modeling and
(de/en)coding can be distinguished: (de/en)modeling is an internal transforma-
tion of mental concepts, while (de/en)coding is their relation with the artifact.

5.3 Formal Models as Metaphors

The end of the decode-demodeling process is a concept independent of the ar-
tifact, but in our setting with domain view and engineering view, there are two
process with one beginning, namely the artifact, and two ends.

This means that each involved person, engineer and domain expert, have their
own decoding and demodeling process when examining a single formal modeling
artifact. Not only are the processes different: the concepts are different as well.
At the end of the engineer’s demodeling, the concepts describe the artifact in
purely technical term. For example, it describes the class in terms of properties
of Java classes (e.g., final or not, number of fields) and is, in the extreme case
where the engineer has no knowledge about the modeled domain, free of any
domain dimensions.

If the artifact is examined by an engineer and a domain expert, the artifact
essentially becomes a message. Here, we are however interested in our modeler,
for whom the artifact is a concept in both the domain context and the technical
context. For enmodeling, the modeler also starts with Cδ. It is not possible to
start with Cα, as the main task is to model a domain situation, not to produce
(some) working code. For encoding, the modeler needs to operate on Mα, as
for this task the technical knowledge is dominant. Thus, Mδ is an intermediate
concept, constructed during enmodeling.

We refine our view on enmodeling into two steps: (1) abstraction, a process
that generates Mδ from Cδ by adapting it to the application scenario and (2)
adaptation, a process that reformulates Mδ by relating it to the chosen language
and technical framework. Similarly, when reading a model, the modeler decodes
the artifact into Mα, then disperses the technical framework to arrive at the
abstracted domain concept Mδ and finally relates it to the final concept Cδ.

Note that Cα is not constructed in this process. However, the modeler is able
to suppress the domain side and construct Cα directly from Mα, i.e., act as a
technical expert.

As discussed, these extreme views of the technical expert and the domain
expert are unlikely to occur. Every domain expert has some basic linguistic
knowledge and must be able to construct some Mα. However, due to the lack of
technical knowledge, Mα is rudimentary – it is comparatively hard to disperse
the language specifics of the model to reveal the underlying domain structures.

Metaphors. We see that formal modeling requires to compare the structure of
different concepts. Following up on on Lakoff’s observation that metaphors are
mappings across conceptual domains that preserve cognitive topology, we also see
that formal models are merely metaphors themselves: The structure of Mδ must
be preserved in Mα. To define naturalness we can, thus, use the mechanisms

16 Eduard Kamburjan and Sandro Rama Fiorini

disperse

adaption

decoding

encoding

generalization

abstraction

dem
ode

ling

enm
ode

ling

Fig. 5. The mental processes and representations for the formal method expert.

already discussed for concept composition and metaphors through conceptual
spaces.

It is interesting to note that when we see models as metaphors, we use the
structure of the formal model to explain effects in the domain. This is the op-
posite direction from metaphors in everyday use in computer science, which use
the structure of some “domain” to explain the formal model. For example, the
notion of a stack (Colburn and Shute, 2008) uses the structure of the domain
(being able to add on top) to illustrate the computational concept.

Signs. We have now two mental concepts for each sense-making process: the
“raw” concept and the adapted concept. The semiotic triad we use to intro-
duce semiosis, however, has no place for the adapted concept. Our solution is
that adapted concepts play a role in two sense-making processes, as illustrated in
Fig. 6: the adapted concepts. Mα and Mδ are a concept for the first sense-making
process (the one for en-/decoding) and a symbol for the second sense-making pro-
cess (the one for en-/demodeling). Such a sequence of two sense-making processes
which share the same thing and where one concept is the symbol of the other,
can be seen as an instance of “successive interpretants”(successive concepts) in
the Peircean theory of signs.

Java car

"real" JVM classes

"real" cars

Fig. 6. The semiotic relationships for formal models.

On the Notion of Naturalness in Formal Modeling 17

5.4 Naturalness and Perceptional Naturalness

The previous section established a framework for the cognitive processes for
formal modeling. Now we use the ideas from cognitive linguistics on concept
composition to define of notions of naturalness and perceptional naturalness.
Intuitively, a model is natural if it is a good metaphor: there is a metaphorical
mapping from Mα to Mδ that requires little cognitive effort to map structures
from the artifact-view to the domain-view. We now make our notion of natural-
ness more precise:

Let M and N be two formal models for the same aspect of a domain,
i.e., the same Mδ = Nδ. Let µ be a metaphorical mapping from Mα to
Mδ and ν the corresponding metaphorical mapping from Nα to Nδ.
We say that M is more natural than N if µ has a lower cognitive com-
plexity than ν.

In short: a model is more natural than another if it is easier to recover the domain
conceptual structure from the artifact conceptual structure. Cognitive complex-
ity denotes the effort needed to perform the metaphorical mapping, which in
our setting we interpret as the computational complexity of the metaphorical
mapping, if we see the metaphorical mapping as a function between two metric
spaces. Using the computational complexity in cognition has a certain appeal
when comparing the mind with computers (van Rooij, 2008), but here we do
not use it for general assumption about cognition, but to measure the complex-
ity of a certain cognitive task. For a more detailed discussion on computational
complexity effects in cognition we refer to Isaac et al. (2014).

In this setting, the complexity of the metaphorical mapping is harder to
grasp, as several components are moving: both conceptual spaces are influenced
by mental changes, i.e., they change their shape through learning. For example,
the space for the language gains more dimensions as the domain expert gains
more experience with it. Furthermore, operations within the mapping become
computationally cheaper if they are performed more often – analogously to re-
sults in natural languages, where less frequent language fragments have higher
complexity (in terms of the logic needed to formalize it) (Thorne, 2012). Thus,
the computational model in terms of needed operations may also change over
time. Consider the example of the first-order logic formula formalizing a car
with four wheels. The unit describing that the four wheels are different requires
conscious reading of all conjuncts for the novice, i.e., a linear complexity in the
length of the formula, but after more exposure to the usual patterns in logical
modeling, this is reduced into one reasoning step, i.e., constant complexity.

If we fix a threshold for low cognitive complexity, then we can give a definition
of naturalness that does not require a second model to compare with.

Let M be a formal model. Let µ be the metaphorical mapping from Mα

to Mδ. We say that M is natural if µ has a low cognitive complexity.

If we accept the P-cognition thesis that “cognitive capacities are limited to those
functions that can be computed in polynomial time” (van Rooij, 2008), than,

18 Eduard Kamburjan and Sandro Rama Fiorini

in our eyes, a sensible assumption would be that µ is natural if it is even less
complex than polynomial. One obvious candidate would be linearity, but we
leave this question open.

Let us return to the example in Fig. 2, in particular the number of axles. Let
us assume that in Mα, the field of a Java class, is represented as a property with
the dimensions “type” = integers, “modifier”=private and “name”=nrAxles.
Note that nrAxles here is purely symbolic and not connected to the concept of
axles at all. In Mδ the number of axles is just a single dimension over an interval
in the natural numbers.

The mapping µ is of low cognitive complexity: exactly one property is mapped
onto directly one dimension and both the name and type of the field are directly
related to the domain dimension. In terms of concept composition, one can sim-
ply perform a property replacement. The additional dimension of the modifiers
in the engineering domain can just be removed in the mapping – it must not be
disentangled from the other dimensions.

Now consider a Java class where the number of axles is modeled as following:

private int wheels ;
private int wheelsPerAxis ;
. . .
public int getAxles () { return wheels / wheelsPerAxis ; }

This is less natural: Mα now has three different properties and Mδ must in-
clude the notion of wheels, i.e., be more precise in its representation of axles. The
mapping is more complex: three properties are mapped onto one property. The
property of the method is furthermore more complex and involves arithmetic.

Next, let us examine the use of int as a type for the number of axles. It
is rather unnatural, because it allows to create Car instances that cannot be
mapped to points in the conceptual space Mδ for car; e.g., those with a negative
number of axles. This is obviously not a metaphor: the structure provided by the
formal model does not carry over the application domain. It is a consequence
of a, possibly conscious, modeling decision to use integers, as these are easily
available in the language, while, for example, ranges are not (in Java). This is an
example of how none of the processes is performed in isolation – the choice of the
target language already influences the enmodeling process. The use of integers is
still relatively natural, as (a) integers are often used to overapproximate ranges
and (b) one dimension is mapped onto one other.

Finally, we discuss the serialization framework. It is completely foreign to the
domain of cars, but some parts are more unnatural than others. The annotations,
such as @XmlAttribute are unnatural, but they are easy to ignore – the cognitive
mapping just removes the dimensions related to annotations. It is also unnatural
that nrAxels can be changed. But while it is also effectively removed in the
cognitive mapping, this requires more cognitive complexity compared to the
removal of annotations, because it models possible behavior that cannot be fully
ignored. Indeed, it contradicts the domain – and the cognitive mapping must
thus involve more domain reasoning why this contradicting behavior can be

On the Notion of Naturalness in Formal Modeling 19

ignored. We expect that over time, i.e., after working with the model for some
time, memory and association effects will make it more natural as the reason
becomes part of the memory.

Similarly, the cake variable in our FOL example increases complexity, as it
breaks the context: it implies that the context contains notions of baking, which
activates the wrong memories and makes it harder to understand what symbols
carry domain information and which do not. More generally, syntax highlighting
is a technique to increase perceptional naturalness by reducing the cognitive
burden required to build the concept Mα.

Perceptional Naturalness. While we support the idea that naturalness is mainly
associated with dispersion and adaption mappings, there are formal language
features that are more perceptual but that also influence how easily a formal
artifact can be understood. Consider the block structure in the first-order exam-
ple in Section 3 or the use of syntax highlighting. These are features of formal
models — some of them ad hoc — that helps decoding.

These effects are associated to what we call perceptional naturalness. In our
view, an artifact is perceptually natural if it has low decoding complexity. Since
decoding is outside the scope of our Conceptual Space-based framework (decod-
ing is not purely conceptual), we do not investigate decoding complexity further.

Note that the mutability of nrAxles above does not fall under perceptional
naturalness: the mutability of the field is unnatural, not the absence of a final
modifier and the presence of the setter. In general we consider most iconicity
effects to fall under perceptional resemblance, but iconicity plays little role for
the formal languages that we consider here. For example, the only iconicity in
the car formula is the occurrence of four different variables for the four wheels.

Further Details. Naturalness is defined in terms of understanding the model, i.e.,
how easy it is to disperse the language structure, but still related to adaption,
i.e., how easy it is to model something: natural pairs of concepts are easy to
compose (by replacing the domain properties by engineering properties) and
easy to decompose. It is able to explain why something is natural to express is a
certain way, as well as able to explain why something is natural to understand.

Naturalness is more important to the modeler than to the domain expert or
the technical expert: the technical expert is not interested in Mδ, except when it
relies on his common sense for explanations9. For the domain expert, the domain
view is dominant, so the domain expert decodes into Mδ almost directly, as the
domain expert has too few dimensions and properties to build a sensible concept
Mα. For the domain expert, there is no sharp difference between dispersal and
generalization – naturalness and perceptional naturalness merge.

6 Discussion

Consequences for Interdisciplinary Modeling Studies We once again stress that
naturalness is a purely mental notion and, as such, different for every person: it

9 For example, we can assume any programmer to have some knowledge about cars.

20 Eduard Kamburjan and Sandro Rama Fiorini

is not possible to reason about the naturalness of an artifact per se, as without
an interpreter no sense-making processes occur.

However, we can reason about naturalness is a restricted context beyond a
specific person: given a certain domain and application, we can assume that the
domain concepts have similar structures for different people working in a field,
due to common education and experiences. Thus, if one such person perceives a
model as natural, it is likely that this generalizes within the target group.

We can, thus, also make assessments of naturalness of formal modeling lan-
guages: a language is more natural than another, if there is a more natural model
in it. We can approximate this by trying to map the core concepts of the do-
main on constructs within the existing language. For example, consider a mail
service to send letters. It is more natural to model such a service using the actor
concurrency model than, let’s say, in a shared memory model with semaphores,
because the basic language feature of asynchronous messages shares structure
with sending a letter, because both may be reordered and require, in general, no
waiting for a response. In contrast, to model the same property requires a more
complex formulation when using semaphores.

This is, in essence, the underlying assumptions why domain-specific lan-
guages work in practice: if the vocabulary and constructs are fixed and the
target group shares education and experiences, then they find it natural to ex-
press themselves in it, i.e., to write natural formal models, if the language has
primitives for common relations and actions.

It follows from the above that the modeler is not able to judge the natural-
ness of the formal model until the modeler is trained enough to align the domain
concepts with the one of established domain experts. This confirms our expe-
riences in the common setting where the modeler starts as a technical expert
and acquires domain knowledge until the modeler can take the role of the me-
diating formal method expert: The first iterations of a formal model are mainly
useful to find out where the preliminary intuition of the formal method expert
is still wrong. Yet, we found early prototypical models of critical importance
to establish a successful interdisciplinary collaboration: these models train both
technical expert (i.e., the modeler to-be) and the domain expert to use models
for communication and, thus, lower the cognitive complexity needed for both
when working on common artifact. We conjuncture, based on these experiences,
that common decoding experiences are more important for formal modeling than
establishing common knowledge up front.

Lastly, we note that the metaphors established by the formal model can
transfer novel structures into the domain: For example, the notion of a logical
group is used recently for infrastructure in railways by Schön (2021), but stems
from its formal modeling as a common object-oriented pattern to group objects
for communication (Kamburjan et al., 2018).

Objective Naturalness. Our notion of modeling and naturalness is subjective,
relying on the inner workings of the mind, and we do not investigate objective
naturalness, which would directly connect the semiotic symbol with the semiotic
thing (Fig. 1). Indeed, it is questionable whether such a notion could exist. One

On the Notion of Naturalness in Formal Modeling 21

can argue that domains have inherent structure, which should be natural to
any model and modeler acquainted with the domain. This brings our discussion
back to the above point about domain-specific languages, which aim to provide a
natural model for any mind, and we stress that this is not the same as a natural
model without an involved mind, which does not exist in our framework10.

Empirical Evaluation of Naturalness. As such, any precise, objective assessment
the naturalness would have to rely on direct measurement of cognitive complexity
of individual artifact-person (or artifact-mind) pairs. That would in turn require
direct access to mental representations, which is still beyond the present state
of the art. On the other hand, indirect characterizations of naturalness across
formalisms, artifacts and mind types might still be possible within the realm of
experimental Cognitive Sciences. We let this issue for future work.

User Studies in Formal Methods. Formal methods, as well as related disciplines,
rarely perform user studies that target understanding and tend to reuse theories
from human-computer interaction. Consequently, they are restricted to usability
questions. For example, Hentschel et al. (2016) propose a new tool for interactive
theorem proving that is motivated by enabling the user to understand the formal
system better:

“To improve the efficiency of understanding intermediate proof situa-
tions, therefore, promises considerable gains in the overall human user
time spend...”

However, their study is purely performative and only investigates whether the
tool increases the performance with respect to time and correctness. It does not
investigate whether the tool indeed improves understanding.

Similarly, Harkes (2018) discusses the problems when evaluating domain-
specific languages, where the standard approach in that field is to discuss (1)
performance and (2) generality, because these are simple to measure and simple
to argue over. This problem of arguing about languages is particularly explicit
in the work of Myers et al. (2004) on natural programming, which argues that
programming languages and environments should be “natural”:

“By natural, we mean faithfully representing nature or life”

We regard this definition as little useful in practice, as it gives no detail to
why a model is more natural than another and ignores that naturalness differs
between individuals. Note, however, that Myers et al. are interested in program
development and are “aiming for the language and environment to work the way
that nonprogrammers expect”. They are not considering single models/programs.

While not a user study, the presentation of Leuschel (2017) is worth mention-
ing in this context: it argues that the reason why the B-method is so successful

10 In the semiotic framework there is no such thing as a model at all without an involved
mind, as a model is a sign and a sign needs an interpreter.

22 Eduard Kamburjan and Sandro Rama Fiorini

in modeling railway systems is that railway systems are modeled as graph struc-
tures and the B-method is well-suited to operate on such graph structures. We
interpret this as a naturalness argument in our sense: given a B-model, it is easy
to retrieve the domain view from the computational structures.

Further Related Work We are interested in formal models from the perspective
of cognitive linguistic and largely ignore the actual evaluation or runtime seman-
tics. Indeed, we do not require a computer or (runtime) semantics in the first
place. Tanaka-Ishii (2009) gives a more detailed view on programs, where the
symbols signify their semantics, which are, in turn, again signs. The sense-making
process in that setting is not mental, but physical. Other works on semiotics in
computing, such as the one by Andersen (1994), also focus on the relation of
the sign to the execution itself. In contrast, there is a tradition of Semiotic En-
gineering in Human-Computer Interaction (HCI) (de Souza and Leitão, 2009)
that sees computers as devices for communication, not computation and draws
some parallels between the development of programming and the evolution of
“natural” languages (Blackwell, 2017)11. This research has also resulted in some
cognitive guideline for dimensions for usability of programming languages envi-
ronments (Blackwell et al., 2001). From these dimensions Closeness of mapping
comes closest to naturalness. Similarly, for business processing modeling lan-
guages understandability has been investigated by Fahland et al. (2009).

Colburn and Shute (2008) investigate metaphors for programming, which has
a rich vocabulary of metaphors such as thread or throw/catch. They observe that
for programming, the metaphors are, in the terms of Indurkhya (1992), better ex-
plained through rather comparative theories. Comparative theories of metaphors
see metaphors as ways to emphasize and expose preexisting similarities between
two domains. In contrast, we use an interactive theory of metaphors, where
the metaphors creates the similarity. Furthermore, Colburn and Shute discuss
metaphors in the opposite direction: While formal models are computer scien-
tific structures that are metaphors for some domain, their metaphors are terms
from some domain for computer scientific structures. In subsequent work, this
approach is applied to types (Colburn and Shute, 2017). Metaphors are also used
widely in HCI (Blackwell, 2006).

Another connection between the philosophy of science and formal modeling
has been explored by Hähnle (2018), who notes that black boxes have, in general,
a negative connotation in philosophy, as they prevent the investigation of its
content, while they have, again in general, a positive connotation in computer
science, because they hide complexity.

Works in in Ontology Engineering in Computer Science also touch in some of
the notions we discussed here. Guarino (1998) proposed that ontologies specified
as logical theories should approximate the set of intended models (i.e. first-
order models) in the the domain, without investigating how the mismatch might
occur. Guizzardi (2005) suggests a similar distinction between mental models

11 On the problems of applying the theory of evolution to developments of programming
languages we refer to Crafa (2015).

On the Notion of Naturalness in Formal Modeling 23

of domain concepts and artifacts, as well as their representation as symbolic
specifications. Also, he summarizes a collection of mappings to characterize how
well a formal model covers a domain. However, the work also does not investigate
in more detail how artifact-specific constructs affect ontologies. Furthermore,
some works in ontology also incorporate Conceptual Spaces as a representation
construct (Guizzardi, 2005; Aisbett and Gibbon, 2001), however we go further
in representing the formal artifact itself.

7 Conclusion

This article presents a cognitive view on formal modeling motivated by the
observation that several effects in formal modeling that cannot be analyzed by
focusing on abstraction, i.e., the reduction feature of models.

At the core are two proposals. (1) That there are two sense-making pro-
cesses associated with a formal model, one that interprets the formal model as
a concept in the application domain and one that interprets it as a concept in
the engineering domain. We represent these mental concepts using conceptual
spaces. (2) That a model is more natural than another, if it is a better metaphor,
i.e., it retains more structure from the engineering view in the domain view.

The notion of naturalness is our main contribution: a formal model is more
natural than another if it is cognitively easier to map the extracted artifact con-
cept on the extracted domain concept. As naturalness is concerned with mental
processes starting and ending with mental concepts, we also introduce percep-
tional naturalness as a notion of complexity to measure the difference between
the artifact itself and the artifact concept it is decoded into. This captures a
wide range of effects of more syntactical nature, e.g., formatting and naming.

Contrary to prior work, we do not focus on programming, i.e., execution, or
user interfaces, but on a single aspect of formal modeling. We hope that a cog-
nitive view on formal modeling can lead to better designed modeling languages,
better designed qualitative user studies and help to build a body of experiences
in formal modeling.

Future Work. The natural next step is to design user studies to empirically test
our view. A promising start to do so is to investigate are common modeling expe-
riences for interdisciplinary modeling efforts. Furthermore, as we are motivated
by the difficulties of justifying and precisely argue about modeling decisions,
we also plan to reinvestigate recent successful formal modeling projects, namely
FormbaR (Kamburjan et al., 2018), the GeoAssistant (Din et al., 2019), and the
core ontology for robotics and automations (IEEE ORA WG, 2015; Fiorini et al.,
2017), in particular its positioning part (Carbonera et al., 2013), and present the
underlying modeling decisions using the framework presented here.

We conjecture that investigating the connection with semiotics in more detail
can give further insights into modeling. For example, the situation of the modeler
can be seen as multiple parallel signifying processes (cf. Bateman (2018, Fig. 2)).
Furthermore, the relation of Mδ and Cδ has similarities to the relation of the
dynamic and final interpretant of Peirce (Chandler, 2017).

24 Eduard Kamburjan and Sandro Rama Fiorini

Acknowledgements This work was partially supported by the Research Coun-
cil of Norway via the SIRIUS Center (237898) and the PeTWIN project (294600).
The authors thank Lars Tveito and Michael Lienhardt for feedback on early
drafts of this article.

Bibliography

Aisbett, J. and Gibbon, G. (2001). A general formulation of conceptual spaces
as a meso level representation. Artificial Intelligence, 133(1-2):189–232.

Andersen, P. B. (1994). A semiotic approach to programming, page 16–67. Learn-
ing in Doing: Social, Cognitive and Computational Perspectives. Cambridge
University Press.

Bateman, J. A. (2018). Peircean semiotics and multimodality: Towards a new
synthesis. Multimodal Communication, 7(1):20170021.

Blackwell, A. F. (2006). The reification of metaphor as a design tool. ACM
Trans. Comput. Hum. Interact., 13(4):490–530.

Blackwell, A. F. (2017). 6,000 Years of Programming Language Design: A Med-
itation on Eco’s Perfect Language, pages 31–39. Springer.

Blackwell, A. F., Britton, C., Cox, A., Green, T. R. G., Gurr, C., Kadoda, G.,
Kutar, M. S., Loomes, M., Nehaniv, C. L., Petre, M., Roast, C., Roe, C., Wong,
A., and Young, R. M. (2001). Cognitive dimensions of notations: Design tools
for cognitive technology. In Cognitive Technology: Instruments of Mind, pages
325–341. Springer.

Carbonera, J. L., Fiorini, S. R., Prestes, E., Jorge, V. A. M., Abel, M., Madha-
van, R., Locoro, A., Gonçalves, P. J. S., Haidegger, T., Barreto, M. E., and
Schlenoff, C. (2013). Defining positioning in a core ontology for robotics. In
IEEE/RSJ, pages 1867–1872. IEEE.

Chandler, D. (2017). Semiotics: The Basics. Routledge, 3rd edition.

Colburn, T. and Shute, G. (2008). Metaphor in computer science. Journal of
Applied Logic, 6(4):526–533.

Colburn, T. R. and Shute, G. M. (2017). Type and metaphor for computer
programmers. Techné: Research in Philosophy and Technology, 21:71–105.

Crafa, S. (2015). Modelling the evolution of programming languages. CoRR,
abs/1510.04440.

de Souza, C. S. and Leitão, C. F. (2009). Semiotic Engineering Methods for Sci-
entific Research in HCI. Synthesis Lectures on Human-Centered Informatics.
Morgan & Claypool Publishers.

Din, C. C., Karlsen, L. H., Pene, I., Stahl, O., Yu, I. C., and Østerlie, T. (2019).
Geological multi-scenario reasoning. In 32nd Norsk Informatikkonferanse,
NIK. Bibsys Open Journal Systems, Norway.

Fahland, D., Lübke, D., Mendling, J., Reijers, H. A., Weber, B., Weidlich, M.,
and Zugal, S. (2009). Declarative versus imperative process modeling lan-
guages: The issue of understandability. In BMMDS/EMMSAD, volume 29 of
Lecture Notes in Business Information Processing, pages 353–366. Springer.

On the Notion of Naturalness in Formal Modeling 25

Fiorini, S. R. and Abel, M. (2013). Part-whole relations as products of metric
spaces. In 2013 IEEE 25th International Conference on Tools with Artificial
Intelligence, pages 55–62. IEEE.

Fiorini, S. R., Bermejo-Alonso, J., Gonçalves, P. J. S., de Freitas, E. P., Alarcos,
A. O., Olszewska, J. I., Prestes, E., Schlenoff, C., Ragavan, S. V., Redfield,
S. A., Spencer, B., and Li, H. (2017). A suite of ontologies for robotics and
automation [industrial activities]. IEEE Robotics Autom. Mag., 24(1):8–11.

Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. MIT press.
Gärdenfors, P. (2014). The geometry of meaning: Semantics based on conceptual

spaces. MIT press.
Guarino, N. (1998). Formal ontologies and information systems. In Formal

Ontology in Information Systems, Proceedings of FOIS 98. IOS Press.
Guizzardi, G. (2005). Ontological foundations for structural conceptual models.

PhD thesis, University of Twente.
Hähnle, R. (2018). Colorful boxes. In The 7th Biennial Conference of the Phi-

losophy of Science in Practice, pages 147–148. Faculty of Arts and Philosophy,
University of Ghent.

Harkes, D. (2018). We should stop claiming generality in our domain-specific
language papers. The Art, Science, and Engineering of Programming, 3.

Hentschel, M., Hähnle, R., and Bubel, R. (2016). An empirical evaluation of
two user interfaces of an interactive program verifier. In ASE, pages 403–413.
ACM.

IEEE ORA WG (2015). IEEE standard ontologies for robotics and automation.
IEEE Std 1872-2015, pages 1–60.

Indurkhya, B. (1992). Metaphor and cognition. an interactionist approach. Stud-
ies in Cognitive System.

Isaac, A. M. C., Szymanik, J., and Verbrugge, R. (2014). Logic and complexity in
cognitive science. In Johan van Benthem on Logic and Information Dynamics,
pages 787–824. Springer.

Johnsen, E. B., Steffen, M., Stumpf, J. B., and Tveito, L. (2018). Resource-aware
virtually timed ambients. In IFM, volume 11023 of LNCS, pages 194–213.
Springer.

Kamburjan, E., Hähnle, R., and Schön, S. (2018). Formal modeling and analysis
of railway operations with active objects. Sci. Comput. Program., 166:167–193.

Kühne, T. (2006). Matters of (meta-)modeling. Softw. Syst. Model., 5(4):369–
385.

Lakoff, G. (1993). The contemporary theory of metaphor, page 202–251. Cam-
bridge University Press, 2 edition.

Lakoff, G. and Johnson, M. (1980). Metaphors we Live by. University of Chicago
Press.

Leuschel, M. (2017). The unreasonable effectiveness of B for data validation and
modelling railway systems. RSSRail, Keynote.

Myers, B. A., Pane, J. F., and Ko, A. J. (2004). Natural programming languages
and environments. Commun. ACM, 47(9):47–52.

Olmstead, B. (1998). Reference Malbolge interpreter.
https://www.lscheffer.com/malbolge interp.html, retrieved 29.10.2021.

26 Eduard Kamburjan and Sandro Rama Fiorini

Peirce, C. S. (1935). The Collected Papers of Charles Sanders Peirce. Harvard
University Press.

Peled, D. A. (2001). Software Reliability Methods. Springer.
Quinlan, D., Wells, J. B., and Kamareddine, F. (2019). BNF-style notation as

it is actually used. In CICM, volume 11617 of Lecture Notes in Computer
Science, pages 187–204. Springer.

Rosch, E. and Mervis, C. B. (1975). Family resemblances: Studies in the internal
structure of categories. Cognitive Psychology, 7(4):573–605.

Schön, S. (2021). Formalisierung von betrieblichen Regelwerken. In SRSS’21
Tagungsband. TU Darmstadt. In German.

Sivik, L. and Taft, C. (1994). Color naming: A mapping in the IMCS of common
color terms. Scandinavian journal of psychology, 35(2):144–164.

Stachowiak, H. (1972). Allgemeine Modelltheorie. Springer. in German.
Steen, G. J. (2011). The contemporary theory of metaphor — now new and

improved! Review of Cognitive Linguistics, 9(1):26–64.
Stehr, M. and Meseguer, J. (2004). Pure type systems in rewriting logic: Specify-

ing typed higher-order languages in a first-order logical framework. In Essays
in Memory of Ole-Johan Dahl, volume 2635 of LNCS, pages 334–375. Springer.

Tanaka-Ishii, K. (2009). Semiotics of Programming. Cambridge University Press.
Thorne, C. (2012). Studying the distribution of fragments of english using deep

semantic annotation. In 8th Workshop in Semantic Annotation ISA 8.
Ullmann, S. (1972). Semantics: An Introduction to the Science of Meaning. Basil

Blackwell.
van Rooij, I. (2008). The tractable cognition thesis. Cogn. Sci., 32(6):939–984.
Warglien, M. and Gärdenfors, P. (2013). Semantics, conceptual spaces, and the

meeting of minds. Synthese, 190(12):2165–2193.
Wittgenstein, L. (1953). Philosophical Investigations. Basil Blackwell, Oxford.

	On the Notion of Naturalness in Formal Modeling

