
Locally Static, Globally Dynamic Session Types1

for Active Objects2

Reiner Hähnle3

Technical University Darmstadt, Germany4

reiner.haehnle@tu-darmstadt.de5

Anton W. Haubner6

Technical University Darmstadt, Germany7

anton.haubner@stud.tu-darmstadt.de8

Eduard Kamburjan9

Technical University Darmstadt, Germany10

kamburjan@cs.tu-darmstadt.de11

Abstract12

Active object languages offer an attractive trade-off between low-level, preemptive concurrency13

and fully distributed actors: syntactically identifiable atomic code segments and asynchronous14

calls are the basis of cooperative concurrency, still permitting interleaving, but nevertheless being15

mechanically analyzable. The challenge is to reconcile local static analysis of atomic segments16

with the global scheduling constraints it depends on. Here, we propose an approximate, hybrid17

approach; At compile-time we perform a local static analysis: later, any run not complying to a18

global specification is excluded via runtime checks. That specification is expressed in a type-theoretic19

language inspired by session types. The approach reverses the usual (first global, then local) order20

of analysis and, thereby, supports analysis of open distributed systems.21

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory22

of computation → Object oriented constructs; Theory of computation → Type structures23

Keywords and phrases Session Types, Active Objects, Runtime Verification, Static Verification24

Digital Object Identifier 10.4230/OASIcs.Gabbrielli.2020.125

Funding This research is supported by the Constraint-Based Operational Consistency of Evolving26

Software Systems (COCoS) project, funded by the DFG as project 351097374.27

For Maurizio Gabbrielli:
“Les raisins, ou la mort!”28

1 Introduction29

Lately, programming languages based on actors and active objects (AO) attracted a lot of30

interest in both academia and industry. Active objects [11] are an object-oriented modeling31

formalism, extending the actor model of distributed systems [21]. One prominent representa-32

tive, the abstract behavioral specification (ABS) [24] language, was successfully applied in a33

variety of domains, ranging from railway operations [31] to cloud-based systems [40].34

One of the advantages of ABS is its rich analysis framework with tools based on dataflow35

and graph analyses [3], deductive verification [13], and behavioral types [18]. However, for36

the time being, there is no support for code generation from scheduling policies (except37

user-defined schedulers at the object level), or for runtime verification beyond simple assert38

statements. The reasons lie in the AO (ABS) concurrency model.39

Communication between Active Objects. An Active Object is a strongly encapsulated40

entity whose fields can only be accessed by getter and setter methods. Like an object in41

standard OO, an AO declares a set of methods, including constructors. Its peculiarity is that42

© Reiner Hähnle, Anton W.Haubner and Eduard Kamburjan;
licensed under Creative Commons License CC-BY

Recent Developments in the Design and Implementation of Programming Languages.
Editors: Frank S. de Boer and Jacopo Mauro; Article No. 1; pp. 1:1–1:24

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8000-7613
mailto:reiner.haehnle@tu-darmstadt.de
mailto:anton.haubner@stud.tu-darmstadt.de
https://orcid.org/0000-0002-0996-2543
mailto:kamburjan@cs.tu-darmstadt.de
https://doi.org/10.4230/OASIcs.Gabbrielli.2020.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Locally Static, Globally Dynamic Session Types for Active Objects

each method consists of syntactically marked atomic segments whose execution cannot be43

preempted. At most one task, executing the code of an atomic segment, is active at any time44

on the object’s single processor. The advantage is that each atomic segment functions as a45

sequential program and can be analyzed (method-)locally in a modular fashion. However, its46

scheduling condition may depend on the availability of results provided by other methods, not47

necessarily from the same object. But such synchronization patterns can only be understood48

from an object-local or even global (program-wide) perspective. This is bad news for the49

local analysis of atomic segments as well, because in general they require information about50

previously scheduled tasks in order to guarantee meaningful properties. This dependency is51

an obstacle to any modular, global analysis. While it is possible to write sufficiently strong52

local contracts [30], it is a difficult, manual task, which does not align well with a top-down53

design starting from global communication patterns. In consequence, the ability to verify54

closed systems (that do not interact with their environment) is limited. Even worse, the55

analysis of open ABS models is generally impossible.56

Additionally to cooperative method contracts [30], ABS currently uses Session Types [28,57

29] for the verification of communication patterns. Both approaches consist of a local part that58

analyzes the code of single methods and a global part, feeding into it, that analyzes scheduling,59

synchronization, and messages. The global part is significantly more imprecise than the local60

one, because it abstracts away from functional behavior. The local specification is related to61

the global specification via a process called projection (from objects down to methods and62

atomic segments): the composition principle of the analysis follows the composition principle63

of the AO concurrency model [19].64

Locally Static, Globally Dynamic Approach. In this paper we reverse the analysis sequence65

and partially move it from compile-time to runtime, resulting in a hybrid verification66

method. Specifically, local analysis is done statically, at compile-time, while global analysis67

is performed later at runtime. This is achieved by a modification of the workflow of session68

types: Classically, projection ensures that messages always arrive in their correct order.69

We retain projection, but only infer the correct message order per object, then construct a70

scheduler that enforces this order.71

Local static checks permit to verify open systems: a locally specified ABS model provides72

only methods that perform locally correct steps, while at runtime it is ensured that methods73

are called correctly and in correct order. The downside is, obviously, that global errors are74

only detected at runtime, however, in an open system this is the only option. The second75

limitation of our approach is that it is not designed to perform full functional verification of76

state invariants, unlike interactive, deductive verification [30]. We aim at a lightweight, fully77

automatic method that nevertheless allows to express non-trivial properties and facilitates78

top-down design of distributed systems.79

Yet, our approach does not modify the ABS concurrency model and requires as the single80

extension the availability of user-defined schedulers, i.e., the ability to reject certain task81

sequences. From the point of modularity, we can now verify object-local behavior. We82

implemented and evaluated our approach and illustrate with a case study that it is possible83

to ensure an open system always follows a given protocol.84

Structure. In Sect. 2 we introduce active objects, ABS, and a suitable notion of session85

types. Sect. 3 describes scheduler generation and instrumentation, Sect. 4 describes and86

evaluates the implementation. In Sect. 5 we discuss related approaches. Finally, Sect. 687

concludes and gives future work. For space reasons, here we can describe the main ideas88

only with a limited degree of precision. A fully formal treatment is found in the report [20].89

R.Hähnle, A.W.Haubner and E. Kamburjan 1:3

2 Active Objects and Session Types90

The concurrency model of AO, as explained above, rests on a syntactically identifiable notion91

of atomic code segments that cannot be preempted. Together with strong encapsulation, this92

ensures that an object’s state can only be modified by its own methods (including setters)93

and any state change must adhere to the local specification of an atomic segment. This is94

the basis to establish an object’s invariant by suitable, cooperative scheduling of methods95

and their atomic segments. To make this work it is necessary to call a method of another (or96

even the own) object without blocking.97

All active object languages, therefore, feature non-blocking, asynchronous method calls98

that return a future [4], a handle to the task executing the call.99

Prgm ::=
−→
ID
−→
CD Main ID ::= interface I

[
extends −→I

]
?{
−→
MS} Program, Interfaces

CD ::= class C
[
implements −→I

]
?
[
(
−→
T f)

]
?{
−→
FD
−−→
Met Run} Main ::= {s} Classes, Main

Run ::= Unit run() {s} FD ::= T f = e Run Method, Fields

MS ::= T m(
−→
T v) Met ::= MS {s; return e;} Signatures, Methods

s ::= while (e) {s} | if (e) {s} [else {s}]? | s; s
| case (e) {−−−−→e => s;} | await g | [T? e]? = rhs Statements

g ::= e? rhs ::= e | new C(−→e) | e.get | e!m(−→e) Guards and RHS’s

Figure 1 ABS grammar. T ranges over types, I over interfaces and C over classes.

The various AO languages differ in the details of how synchronization is performed, so100

we now turn to their specific realization in ABS. The syntax of ABS is given by the grammar101

in Fig. 1. With e we denote standard expressions over fields f, variables v and operators102

|, &, >=, <=, +, -, *, /. Additionally, we use an expression destiny to access the currently103

computed future. Types T are all interface names (ABS enforces programming to interfaces),104

type-generic futures Fut<T>, lists List<T>, Int, Unit, and Bool. We also assume the usual105

functions for lists, etc.106

In the final expression of the rule for rhs, the syntax for asynchronous method calls is107

shown (for simplicity, we leave out standard synchronous calls). As usual, a “!” replaces the108

dot. Asynchronous calls are always executable. Their result is a future of type Fut<T>, where109

T is the return type of m. The effect of an asynchronous call is to create a task to execute110

m’s body in e’s object o, to be scheduled at some time in the future. In case o is also the111

caller, obviously the calling method must first suspend, before the callee can be scheduled.112

Asynchronous calls occur only as right-hand side expressions, so the future is stored in a field113

(or variable) f. Once the result of the computation performed by m(−→e) is ready, it can be114

retrieved with the expression f.get. If the result is not ready, the get expression blocks the115

calling object. This can easily lead to a deadlock, so one typically guards a get expression116

with an await statement of the form await e?, where e’s type is of the form Fut<T>. The effect117

is that execution of the current task is suspended and only rescheduled after the result of e118

is ready. The await statement and the syntactic end of a method block are the only places,119

where task suspension in ABS can occur. This justifies the following definition:120

I Definition 1 (Atomic Segment). Code sequences starting either at the syntactic beginning121

of a method body or at the statement right after an await statement and ending either at the122

syntactic end of a method body or with an await statement, such that they contain at most123

the await statement at the end, are called atomic segment.124

Gabbr i e l l i ’ s Fes t schr i f t

1:4 Locally Static, Globally Dynamic Session Types for Active Objects

Generally, ABS programs follow a simple, but standard OO paradigm in any other aspect:125

A program contains a main method Main, interfaces
−→
ID and classes

−→
CD. Interfaces are126

standard, the main method contains a list of object creations. Classes can have parameters127 −→
Tf, these are fields being initialized during object creation. The parameter type may have128

the form Fut<T>, i.e., futures may be passed as arguments to other methods. Classes have129

fields
−→
FD, methods

−−→
Met, and a run method Run to start a process.130

I Example 2. Let us illustrate cooperative scheduling in ABS with the example in Fig. 2.131

The program models the behavior of a mail server with notification service. It consists of132

three objects created in the main block: a mail server m, a user interface u, and a notification133

service n, which knows both the mail server and the user interface. Then the notification134

service’s only method init() is run on n. The method has a single loop that periodically135

checks whether mail arrived and, if this is the case, notifies the user via interface u. Checking136

for mail and notifying the user require asynchronous calls to m and u, respectively, so we137

allocate suitable fields fCheckMail and fPopup of future type. Checking the mail must be138

finished before notification is handled. This is ensured by the await statement in Line 12. At139

this point, init() suspends. In the example, init() is the only method executing on m, so140

the processor will be simply idle, but it is conceivable that the main method starts other141

tasks on the mail server which at this point can be interleaved. Checking for mail is modelled142

by randomly choosing one of the literals Mail or NoMail as a return value.143

Once the response is available, the user is notified in case there is mail, otherwise, nothing144

happens. Since the call to popup() is asynchronous, in the absence of a defined scheduler, the145

sequence of multiple calls to popup() is not necessarily in the order of mail arriving. However,146

the code ensures that the number of completed or active calls to popup() is always less than147

the completed calls to checkMail(), that there can be at most one call to popup() between148

any two calls to checkMail(), etc. We will show that session types are suitable to specify149

such global behavior in a succinct way, which then can be enforced at runtime.150

Before we define session types for AO, we need to set up the machinery of user-defined151

schedulers needed to implement runtime checks.152

A user-defined scheduler [5] is a side-effect free function in ABS that takes as parameters153

(1) a list of schedulable processes and (2) several fields of its class. It returns either Nothing154

or Just(p), where p is one of the processes in the input list. The return value controls155

scheduling: if Nothing is returned, no process is scheduled, otherwise the chosen process is156

scheduled next. A process is represented as an abstract data type Process, i.e., an ADT157

that cannot be constructed manually. Instead one can access the future of a process with158

destinyOf(p) and its methodname as a String with method(p).159

Lists are also ADTs and nth(input,i) returns the i-th element. Keyword def is used to160

define a function with parameters that evaluates a result using standard expressions (and161

recursion). ABS does not support fully-fledged functional programming and only a fixed set162

of higher-order functions. For example, higher-order functions such as map and filter are163

part of the ABS standard library.164

I Example 3. Let us consider the following scheduler and class.165

def Maybe<Process> scheduler(List<Process> input, Int y, String m) =
if (y < 0 || y >= length(input)) Nothing else
if (method(nth(input,y)) != m) Just(nth(input,y)) else Nothing;

[Scheduler: scheduler(queue, y, m)]
class C(String m, Int y) { ... }

166

R.Hähnle, A.W.Haubner and E. Kamburjan 1:5

1 data Msg = Mail | NoMail;
2

3 class NotifyService
4 (MailServerI m, UII u)
5 implements NotifyServiceI {
6 Fut<Msg> fCheckMail;
7 Fut<Unit> fPopup;
8 Unit init(int bound) {
9 Int i = 0;

10 while (i < bound) {
11 fCheckMail = m!checkMail();
12 await fCheckMail?;
13 Msg response = fCheckMail.get;
14 case (response) {
15 Mail => fPopup = u!popup(i);
16 NoMail => skip;
17 }
18 i = i + 1;
19 }
20 }
21 }

22 class MailServer
23 implements MailServerI {
24 Msg checkMail() {
25 Msg result = NoMail;
26 if (random(2) == 1)
27 result = Mail;
28 return result;
29 }
30 }
31 class UI implements UII {
32 Unit popup(int id) {
33 println("You got mail! Id " + id);
34 }
35 }
36 { // Main block
37 MailServerI m = new MailServer() ;
38 UII u = new UI();
39 NotifyServiceI n
40 = new NotifyService(m,u);
41 await n!init(42);
42 }

Figure 2 Mail server example in ABS.

y and m, the field names and their types, must be identical in class and scheduler function167

to use the scheduler. The code above selects the y-th element in the input list, unless it is out168

of range or a process executing a method named m. The annotation [Scheduler: scheduler(169

queue, y, m)] connects scheduler and class. Whenever the scheduler is invoked, the input170

list is guaranteed to be non-empty.171

2.1 Session Types for Active Objects172

Session types specify and verify the behavior of a closed unit of communication, called173

a session. A session type specification consists of three parts: (1) global types, a global174

specification of the session, (2) local types, specifications for the endpoints in a session, and175

(3) a projection mechanism that generates a local specification for each endpoint participating176

in the communication from a global type. For checking that the whole unit adheres to its177

global specification, it suffices to check the local endpoints and, possibly, side-conditions on178

the unit. Additionally, the session type system needs some kind of mechanism to ensure that179

the local endpoints adhere to their local type.180

In the original formulation for the π-calculus [8] a session is centered around a channel,181

endpoints are the processes participating in the communication over the typed channel.182

To ensure that projection succeeds, a linearity check on the channel is performed as a183

side-condition of projection.184

For Active Objects, the situation changes: there are no channels and endpoints partic-185

ipating in any communication are not uniform, because the target of a method call is an186

object, but the target of a future read is a (terminated) process. As there are no channels, a187

linearity check to ensure that messages arrive in the right order is impossible.188

Session types for AO [28, 29] adopt and adapt the concepts of session types for channels:189

Unit of Communication: The unit of communication is described by a set of objects that190

Gabbr i e l l i ’ s Fes t schr i f t

1:6 Locally Static, Globally Dynamic Session Types for Active Objects

only contain pointers to each other.191

Endpoints: The notion of endpoint is two-fold. Both objects and processes are endpoints192

and the projection of a global session type first projects on the object and then projects193

one more time on the processes inside that object. The result of the first projection is an194

object-local type and the result of the second projection is a method-local type.1195

Order of Messages: To ensure messages arrive in the correct order, a static analysis can be196

used to determine whether the order of messages is total from the perspective of each197

object (but not globally).198

Here we remove the check on message order at the level of the type system and instead199

enforce it at runtime using the structure provided by the object-local type. Before we200

introduce syntax of global and local types, it is worth mentioning that we are only concerned201

with protocol adherence: Does the system implement the protocol described by the global202

type? We ignore deadlock freedom, which can be approached either with session types [29]203

or a dedicated deadlock checker for AO [15, 18, 25]. The system we introducing below is a204

slight variation of the session types in [29].205

2.1.1 Global Types206

Global types follow the structure of regular expressions and allow Kleene star-style repetition,207

sequence and branching. Branching is guarded by a single role that determines which branch208

of the protocol to follow. As single actions, the type defines a certain kind of interaction209

between two roles or a role and a process/future. To keep track of processes and futures210

within a protocol, we use tracked futures: references to the future of a specified method call.211

I Definition 4. Let p, q range over roles, t over tracked futures and C over ADT constructors.212

The syntax of global protocols GP and global types G is defined in Fig. 3. Specifications L·M213

are all optional.214

GP ::= 0 t−→p :m . G Global Protocol

G ::= p t−→q :m | p↓ tLCM | p↑ tLCM Call, Termination and Synchronization Action
| Rel(p, t) | skip Suspension and Empty Action
| p{Gi}i∈I | (G)∗ | G . G Branching, Repetition and Sequential Composition

Figure 3 Syntax of Global Session Types

The global protocol starts with 0 t−→p : m and specifies how the session is started. The215

call action p t−→q : m specifies a call from the object with role p to the one with role q on216

method m. This process is tracked by t in the rest of the type. The termination action217

p ↓ tLCM specifies that the object with role p terminates the process tracked by t and the218

return value has the outermost constructor C. The synchronization action p↑ tLCM specifies219

that the object with role p reads from the future tracked by t and reads a value with the220

outermost constructor C. The suspension action Rel(p, t) specifies that the object with role221

p suspends its currently active process until the future tracked by t is resolved. We stress222

1 The projection may also be done in one step [27], but this removes the object-local types which we are
investigating in this paper.

R.Hähnle, A.W.Haubner and E. Kamburjan 1:7

that t is not the tracked future of the suspended process. The empty action specifies no223

action and is needed to specify, e.g., branches without visible actions. Branching p{Gi}i∈I224

specifies that the object with role p chooses one of the branches Gi to continue the protocol.225

Finally, repetition and sequential composition are analogous to regular expressions.226

I Example 5. We continue Ex. 2. The roles of the protocol are named NS for the notification227

service, Mail for the mail server and GUI for the GUI. The intended behavior is specified228

by the following global type:229

0 t0−→NS :init .230 (
NS t1−→Mail :check . Rel(NS, t1) .231

Mail
{

Mail↓ t1LNewMailM . NS↑ t1LNewMailM . NS t2−→GUI :show . GUI↓ t2
Mail↓ t1LNoMailM . NS↑ t1LNoMailM

}
232)∗

. NS↓ t0233
234

The above example demonstrates the use of tracked futures and repetition, but it is235

strongly synchronized: The described synchronization structure enforces correct interaction236

order, no deviation due to the scheduler is possible. In contrast, consider the following237

scenario and global session type that is not strongly synchronized.238

I Example 6. The protocol describes four roles: a student S, a service desk D, a computation239

server C and a report generator R. The computation server computes the grade of a student,240

and sends it to the report generator, which in turn generates a report that is send to the241

service desk. The computation server notifies the student that its grade has been computed.242

The service desk may only serve the student after the report has arrived. This is specified by243

the following global protocol:244

0 t0−→C :compute . C t1−→R :toReport . C t2−→S :notify . R t3−→D :publish . R↓ t1245

. D↓ t3 . S t4−→D :request . D↓ t4 . S↑ t4 . S↓ t2 . C↓ t0246
247

Note that D is called on request and publish but no synchronization ensures that those248

messages arrive in the specified order.249

2.1.2 Local Types250

We distinguish object-local types, method-local types and scheduling types. Method-local251

and object-local types differ syntactically only in their passive choice operator and the252

specification of synchronization. Scheduling types describe the actions of the scheduler of a253

role and share their syntax with method-local types.254

I Definition 7. Let p range over roles and 0, m over method names, t over tracked futures255

and C over ADT constructors. The syntax of object-local types L is defined as follows:256

L ::= p?tm | p!tm | Put tLCM Receiving, Sending and Termination Action257

Get tLCM | Susp(t, t) | React t Synchronization, Suspension and Reactivation Action258

&t{Li}i∈I | ⊕ {Li}i∈I Passive and Active Choice259

skip | L . L | (L)∗ Empty Action, Sequential Composition and Repetition260261

The syntax of method-local types is analogous, but (1) the synchronization action takes no C262

specification and (2) passive choice takes the following form, called guarded passive choice:263

&t{Ci : Li}i∈I264

Gabbr i e l l i ’ s Fes t schr i f t

1:8 Locally Static, Globally Dynamic Session Types for Active Objects

The receiving action is the callee’s view on the global call action, p is the caller. Note265

that a method in ABS has no access to the caller, but we may access it in the scheduler.266

The sending action is the caller’s view on the global call action, p is the callee. The local267

termination action is the equivalent of the global termination action. The local suspension268

action Susp(t1, t2) specifies that the process computing t1 suspends until t2 is known. The269

reactivation action React t specifies reactivation of the process computing t. These two270

actions are the local view on the global suspension action, but (1) locally the suspending271

process is known and (2) one can infer, where the reactivation must happen. We use three272

choice operators:273

(Object-Local) Unguarded passive choice &t{Li}i∈I specifies that the object reacts to274

the choice stored in t. The choice is stored as the C parameter of the first Get action on t275

in the given branch.276

(Method-Local) Guarded passive choice &t{Ci : Li}i∈I specifies which constructor corre-277

sponds to which branch directly, as it is only indirectly encoded in the unguarded passive278

choice.279

Active choice ⊕{Li}i∈I specifies that the object or process in question chooses one of the280

branches to continue. It is not specified how the choice is made.2281

The remaining actions are analogous to their global counterpart.282

We introduce projection formally in the subsequent section, but provide examples of local283

types based on Ex. 5, 6 now to illustrate the differences among the various local types.284

I Example 8. Below is the object-local type of Mail in Ex. 5 followed by the method-local285

type of t1 and the scheduling type. The differences between the former are that (1) the286

method-local type contains no repetition, because the repetition is not visible to a single287

process and (2) the receiving action is omitted, because it is redundant when the tracked288

future is known.289 (
NS?t1 check . ⊕

{
Put t1LNewMailM
Put t1LNoMailM

})∗
Object-local type290

⊕
{

Put t1LNewMailM
Put t1LNoMailM

}
Method-local type291 (

NS?t1 check
)∗

Scheduling type292
293

The method-local type contains only the actions performed by the processes of a single method.294

A scheduling type contains only the actions needed for scheduling: empty, reactivation and295

receiving actions, as well as both kinds of branching, repetition and sequential compositions.296

The following is the scheduling type of D in Ex. 6: R?t3 publish . S?t4 request297

3 LSGD Session Types298

The verification workflow of our system takes a global type and generates an instrumented299

ABS program and a proof that each method is following its method-local type.300

First, we establish certain well-formedness conditions of the global type to ensure it301

describes a protocol that is realizable in the AO concurrency model.302

2 For guarded active choice we refer to Kamburjan & Chen [28].

R.Hähnle, A.W.Haubner and E. Kamburjan 1:9

Then, the global type is projected on each participating object. This results in an303

object-local type, describing the actions an object both expects and is obliged to perform.304

From the object-local type we generate (a) a session automaton that describes the order305

of scheduling actions and (b) a method-local type for each method. Scheduling actions306

include the receiving action (receiving method calls) and the rescheduling action (reacting307

to a resolved future).308

The session automaton is translated into a user-defined scheduler, which is added to the309

object together with fields and operations to keep track of the state.310

Each method is checked statically against its method-local type.311

For brevity, we give a simplified account of the implemented system [20] and omit some312

features, e.g., allowing interactions with objects that do not participate in the session.313

3.1 Session Automata314

Before defining the workflow, we introduce Session Automata [7]. Session automata are a315

class of register automata [33]: finite automata over an infinite alphabet. General register316

automata allow to store read values of infinite alphabets in registers and compare the register317

contents by equality. Session automata have the restriction that only fresh values can be318

stored, i.e., values that have not been seen in the input word so far. This matches our model319

when futures are regarded as data and allows one to decide whether two session automata320

accept the same language. In our system, the alphabet is the set of futures and we only store321

futures upon receiving a method call. This guarantees their freshness upon storage.322

I Definition 9. Let Σ be a finite set of labels, D an infinite set of data equipped with equality323

and k ∈ N. A k-Register Session Automaton is a tuple (Q, q0,Φ, F), where Q is the set of324

states, q0 ∈ Q its start state, F ⊆ Q the set of accepting states, and the transition relation is325

as follows:326

Φ ⊆
(
Q×Q

)
∪
(
Q× (Σ×D)× P({1, . . . , k})× {1, . . . , k} ×Q

)
327

Runs of session automata are defined over stores and data words. A transition either (1)328

only changes the state, but neither changes the store nor consumes a letter, or (2) changes329

the state upon reading the next letter by comparing the data with a register in its store and330

storing the read data.331

I Definition 10. A store σ : {1, . . . , k} 7→ D ∪ {⊥} is a function from register identifiers332

to data or the special symbol ⊥. The initial store σ0 maps all register identifiers to ⊥. A333

data word w = (a0, d0), . . . , (an, dn) is a finite sequence of pairs of labels and data. A run334

(q0, j0, σ0), . . . , (qm, jm, σj) of a k-register session automaton (Q, q0,Φ, F) on a word w of335

length n is a sequence336

s ∈ (Q× N× {1, . . . , k} 7→ D)∗337

where qi is the current state, σi the current store and ji the next letter. The sequence must338

start with (q0, 0, σ0) and satisfy the following condition for each position 0 < i < m:339

(qi, qi+1) ∈ Φ ∧ (ji = ji+1) ∧ (σi = σi+1)340

∨
(

(qi, (aji
, dji

), I, k, qi+1) ∈ Φ ∧ (ji = ji + 1) ∧ σi+1 = σi[k \ dji
] ∧ ∀l ∈ I. σi(l) = dji

)
341
342

In the following we set D = Fut and Σ = {invREv} ×Met ∪ {condREv}.343

Gabbr i e l l i ’ s Fes t schr i f t

1:10 Locally Static, Globally Dynamic Session Types for Active Objects

I Example 11. The following 2-register session automaton models the scheduling type of D344

in Ex. 8. The two stores of the futures in registers ri are used to model reactivation.345

1start 2 3
(invREv, publish)

d 7→ r0

(invREv, request)
d 7→ r1346

For brevity, we write (q, (invREv, m), q′) and (i, (condREv), q′) for transitions with the347

given label and say that register i is either written or read. We never write to or read from348

more than one register in a single transition.349

3.2 Projection350

Projection generates (1) a method-local type per participating method in the session and (2)351

a special object-local type, called scheduling type, for each role. The scheduling type describes352

the order of operations controlled by the scheduler, i.e., process start and rescheduling.353

Projection consists of four steps: pre-analysis, projection on a role, projection on a tracked354

future, and generation of a scheduling type from an object-local type.355

Pre-analysis: Reject obviously malformed types and annotate the global type with informa-356

tion used in later steps, for example, which future is currently being computed.357

Projection on Role: Generate an object-local type that describes the view of a role on the358

global type.359

Projection on Tracked Future: Generate a method-local type that describes the view of a360

process on the object-local type.361

Generation of Scheduling Type: Generate the scheduling type that describes the operations362

performed by the scheduler of an object.363

3.2.1 Pre-Analysis364

Pre-analysis of a global type checks that it specifies a feasible protocol in the AO concurrency365

model. It generates an annotated global type G〈σ〉, where σ describes the specified state of366

a role before and after performing the specified action. We refrain from introducing all the367

formal details and only describe the checked properties of a global type.368

Future Freshness: Each tracked future identifies exactly one call action. For example, the369

following type fails pre-analysis and is rejected, because t is not fresh in the second call.370

0 t−→p :m . p t−→q :n . p↓ t . q↓ t371

Actor Activity: A call action can only be specified when the callee is not specified as currently372

executing a method and a suspending action can only suspend a process when it is specified373

as being active. For example, the following global type contains two errors: the call of374

t2 must wait until p is terminated and the suspension action of p cannot suspend any375

process.376

0 t0−→p :m . p t1−→q :n . q t2−→p :o . p↓ t0 . Rel(p, t1) . q↓ t1 . p↓ t2377

The following is one possible “debugged” version that passes pre-analysis:378

0 t0−→p :m . p t1−→q :n . Rel(p, t1) . q t2−→p :o . p↓ t2 . q↓ t1 . p↓ t0379

R.Hähnle, A.W.Haubner and E. Kamburjan 1:11

Resolution Analysis: A future can only be read if it has terminated before and is accessible380

to the reading role.3381

Scope Analysis: Repetition introduces scopes into the specification, as a process is started382

exactly once and terminated exactly once. For example, the following type is not correctly383

scoped, because it allows situations where (1) n is never called, and thus t1 cannot be384

terminated and (2) where n is called multiple times and it is not specified how many of385

those processes are terminated and in which order:386

0 t0−→p :m . (p t1−→q :n)∗ . p↓ t1 . q↓ t0387

The scope analysis checks that (1) every tracked future that is started within a repetition388

is resolved within the same repetition; (2) every tracked future that is resolved within389

a repetition is started within the same repetition; (3) every tracked future that is390

synchronized upon within a repetition is started within the same repetition; (4) for every391

role the active tracked future and the set of suspended tracked future before and after392

the repetition are the same. (5) every tracked future that is started within a branch is393

resolved within the same branch; (6) every tracked future that is resolved within a branch394

is started within the same branch;395

During pre-analysis each global type, except sequence, is annotated with an abstract396

state σ. An abstract state is a mapping from roles to a pair (AState,SState), where AState397

is either Active(t), expressing that the role is currently specified as executing the process for398

t or Susp if it is currently specified inactive. SState is a set of pairs of tracked futures (t, t′),399

expressing that there is a suspended process for t waiting for t′. Pre-analysis ensures that400

there are no t1, t2 with (t1, t), (t2, t) ∈ SState in any abstract state for any role, i.e., there401

are never two processes of one role waiting for the same future.4402

3.2.2 Global Projection403

The projection of global types on a role is defined in Fig. 4. Projection is a partial function404

G�p. It checks that any action is specified to happen when the role performing this action405

is active and has a process that can perform the communication. The result of projection is406

an object-local type, annotated with abstract states.407

The initial action results in a receiving action for the callee and skip for any other role.408

Similarly, the projection of a call action is a receiving action for the callee and a sending409

action for the caller.410

Projection of the termination action has three cases: (1) If projected on the terminating411

role, it is ensured that this role is active and can perform the action. The result is a local412

termination action. (2) If projected on a role waiting for the tracked future of the action, it413

is ensured that this role is inactive. The result is a reactivation action. (3) Projection on any414

other role results in skip. Projection fails if, for example, the terminating role is inactive.415

Projection of synchronization results in a local synchronization action for the specified416

role and skip for any other role. It is checked that the specified role is active. The suspension417

action is analogous. Projection of skip is the identity, projection of branching results in418

an active choice for the specified role (which must be active) and a passive choice over the419

currently active future of the choosing role for any other role. Projection of the repetition420

3 On passing data in Session Types for Active Objects, we refer to [27].
4 Because it is not specified in which order they should be reactivated. If such a specification were given,

that order could be reflected in the projected object-local type.

Gabbr i e l l i ’ s Fes t schr i f t

1:12 Locally Static, Globally Dynamic Session Types for Active Objects

0 t−→q :m〈σ〉 � p =
{

0?tm〈σ〉 if p = q
skip otherwise

q t−→r :m〈σ〉 � p =


r!tm〈σ〉 if p = q
q?tm〈σ〉 if p = r
skip otherwise

q↓ tLCM〈σ〉 � p =


Put tLCM〈σ〉 if p = q ∧ σ(p)(Active(t),SState)
React t′〈σ〉 if p 6= q ∧ σ(p)(Susp,SState) ∧ (t, t′) ∈ SState
skip if p 6= q ∧ σ(p)(Susp,SState)∧ 6 ∃t′. (t, t′) ∈ SState

q↑ tLCM〈σ〉 � p =
{

Get tLCM〈σ〉 if p = q ∧ σ(p) = (Active(t′),SState)
skip otherwise

Rel(q, t) � p =
{

Susp(t′, t)〈σ〉 if p = q ∧ σ(p) = (Active(t′),SState)
skip if p 6= q

q{Gi}i∈I〈σ〉 � p =
{
⊕{Gi � p〈σ〉}i∈I if p = q ∧ σ(p) = (Active(t),SState)
&t{Gi � p〈σ〉}i∈I if p 6= q ∧ σ(q) = (Active(t),SState)

(G)∗〈σ〉 � p =
{

(L)∗〈σ〉 if G�p = L 6= skip
skip otherwise

(G1 . G2)�p = (G1 �p) . (G2 �p) skip � p = skip

Figure 4 Projection of global type on roles

repeats the projection of the inner part if it performs some action. Otherwise, the repetition421

is replaced with an empty action. Finally, projection of sequential composition is sequential422

composition of the projected types. We assume that structural congruence is used to remove423

superfluous empty actions and branching.424

3.2.3 Local Projection425

Local projection generates a method-local type from an object-local type for each tracked426

future. Each tracked future is introduced by a call action, so we can easily connect method-427

local types to methods. For simplicity, we demand that each method has only one type.428

Local projection must invert the relation between passive choice and synchronization.429

A global type specifies first the choice and marks the future of the choosing role during430

global projection. Afterwards, the future is resolved and may be synchronized upon. Locally,431

however, the method synchronizes first and then branches depending on the read value.432

Local projection handles this by pulling out the prefix of all branches from a passive choice433

up to the synchronization action over the choosing future.434

I Definition 12. Let t be a tracked future and Li a set of object-local types. The prefix for t435

of some object-local L is defined as the shortest type Lt that ends in Get tLCM: The function436

splitt(L) returns the prefix and the remaining postfix of a type.437

splitt(L) = (Lhead,C,Ltail) such that438

Lhead = L̂ . Get t, L̂ contains no Get t, and L ≡ L̂ . Get tLCM . Ltail439
440

The function splitt({Li}i∈I) returns the common prefix and the remaining postfixes of all441

input types. Note that the function may be undefined.442

splitt({Li}i∈I) = (Lhead, {(Ci,Li
tail})) such that splitt(Li) = (Lhead,Ci,Li

tail)443

Projection L〈σ〉�p t of an annotated local type L〈σ〉 on t for role p is given in Fig. 5. It444

removes receiving and reactivation actions, is the identity on any other non-composed action445

R.Hähnle, A.W.Haubner and E. Kamburjan 1:13

L〈σ〉�p t = L if σ(p) = ((Active(t),SState)
and L ∈ {p!t′ m, Put t′LCM, Get t′LCM, Susp(t′, t′′), skip}

p?t′ m�p t = React t′ �p t = skip
(L1 . L2)�p t = (L1)�p t . (L2)�p t

(L)∗ �p t =


L�p t if t is introduced within L
(L′)∗ if L�p t = L′ 6= skip and t is not introduced within L
skip otherwise

⊕{Li}i∈I �
p t = ⊕{Li �

p t}i∈I

&t′{Li}i∈I �
p t =

{
L�p t . &t′{Ci : L̂i �p t}i∈I if splitt′({Li}i∈I) = (L, {(Ci, L̂i)})
&t′{Li}i∈I �p t = Lj �p t if j ∈ J and t is introduced in Lj

Figure 5 Projection of local types on tracked futures

⊕{Li}i∈I <⊕ {Li}i∈I∪J &t{Ci : Li}i∈I > &t{Ci : Li}i∈I∪J

(L)∗ <(L̂)∗ if L < L̂

L1.L2 <L̂1.L̂2 if Li < L̂i

⊕{Li}i∈I <⊕ {L̂i}i∈I if Li < L̂i

&t{Ci : Li}i∈I <&t{Ci : L̂i}i∈I if Li < L̂i

L ≡⊕ {L} L ≡ skip . L L ≡ L . skip
L . ⊕ {Li}i∈I ≡ ⊕ {L . Li}i∈I ⊕ {L, skipi}i∈I ≡ L

Figure 6 Subtype relation and structural congruence of method-local types

and propagates on sequential composition and active choice. For passive choice, the above446

split is applied, unless the projection future is introduced in only one branch. Repetitions447

outside a single method run are removed.448

3.2.4 Scheduling Type449

Given a projected object-local type L, the scheduling type S(L) is generated by replacing all450

termination, synchronization, suspension and sending actions with skip and using structural451

congruence (see Fig. 6) to simplify the result.452

3.3 Locally Static453

Method-local types are checked statically. This ensures that if every process is scheduled454

correctly, then the process will perform its local view on the protocol correctly. Before we455

present the type system itself, we define typing contexts and auxiliary functions.456

The subtype relations <, ≤ and structural congruence are standard, see Fig. 6. Structural457

congruence allows to add and remove skip actions. An active choice with a single branch can458

be simplified to the content of the branch. The interesting rules for subtyping are the ones459

for branching: Active branching may drop branches, as the implementing role may never460

take a subset of its possible choices. Its dual, passive branching, may add branches instead.461

We use two typing contexts: ∆ maps locations (fields and variables) to roles, Γ maps462

Gabbr i e l l i ’ s Fes t schr i f t

1:14 Locally Static, Globally Dynamic Session Types for Active Objects

tracked futures to pairs of locations or the symbol ⊥. the ∆ context ensures that a method463

interacts with the correct endpoints, while Γ keeps track of futures and their read values.464

We use some auxiliary functions and predicates:465

The function ΓA removes all fields from the pairs in the image of Γ.466

The function constr(e) returns the outermost constructor of expression e.467

The function def(C) returns the declaration of class C.468

The predicate inter(s,Γ) holds if the statement s contains no get, no return, no await, and469

writes into no location that is in a pair in the image of Γ.470

The predicate p ∈ G or p ∈ L holds if the role p occurs in the type.471

The predicate e ∈ imΓ holds if the location e is in any pair in the image of Γ.472

The type system is shown in Fig. 7. Rule T-main checks that the main block sets up the473

session correctly: Each role is assigned to exactly one object and the corresponding class is474

checked against the projected type on this role. Also, each parameter of a class is assigned475

such that the passed variable has the correct role (the fij are the fields declared in def(Ci)).476

Lastly, the sole called method is correctly specified and called on the correct object. The477

rule T-class checks that each role needed for the object-local type is available in some field478

and checks each method against its method-local type.479

∀i. ∃p ∈ G. ∆(vi) = p ∀p ∈ G. ∃i. ∆(vi) = p
∆i(fij) = ∆(vij) ∆i ` def(Ci) : G � ∆(vi) ∆(vk) = p

T-main
` {Ii vi = new Ci(vij);vk!m();} : 0 t−→p :m . G

∀p ∈ L. ∃i. ∆(fi) = p ∆, ∅ ` sk : L �p t mk is the method of t in L
T-class ∆ ` class C(Ii fi){Tj fj = ej; Tk mk(Tkl vkl){sk}} : L

∆,Γ ` s : L L ≡ L̂′ ≤ L̂
T-≤

∆,Γ ` s : L̂
∆,Γ ` s2 : L inter(s1,Γ)

T-; ∆,Γ ` s1;s2 : L
constr(e) = C

T-return ∆,Γ ` return e; : Put tLCM
T-skip ∆,Γ ` skip : skip

∆,Γ ` s1;s3 : L
∆,Γ ` s2;s3 : L

T-if ∆,Γ ` if(e){s1}else{s2}s3 : L

∆, Γ̃ ` s1 : L1

∆, Γ̃ ` s2 : L2T-while ∆,Γ ` while(e){s1}s2 : (L1)∗.L2

∆,ΓA ` s : L Γ(t′) = (e,_)
T-await ∆,Γ ` await e; s : Susp(t, t′).L

Γ(t) = (e2,_) ∆,Γ[t 7→ (e2, e1)] ` s : L e1 6∈ imΓ
T-get ∆,Γ ` e1 = e2.get; s : Get t.L

∆,Γ[t 7→ (e1,⊥)] ` s : L ∆(e2) = p e1 6∈ imΓ
T-! ∆,Γ ` e1 = e2!m(e); s : p!tm.L

Ci = Cj → ∆,Γ ` si : Lj .L ∀j. ∃i. Ci = Cj Γ(t) = (_, e)
T-case ∆,Γ ` case(e){Ci=>si}i∈Is : &t{Cj : Lj}.L

Figure 7 Static Type System

Rule T-≤ is used for structural congruence and sub-typing. The construction of a syntax-480

directed variant of the type system without a special rule for subtying is standard. Rule T-;481

drops a prefix that performs no communication and modifies no location stored in Γ. Rule482

T-return checks that the sole remaining action is a Put action and that the correct constructor483

R.Hähnle, A.W.Haubner and E. Kamburjan 1:15

is returned. Rule T-skip closes the proof if the empty program skip is left and no further484

action is required. This is needed to typecheck loop bodies, where we can always add skip at485

the end. Rule T-if splits the derivation into two branches. The type is not changed. Rule486

T-while checks a loop against the Kleene star. The context Γ̃ removes all fields and variables487

modified in the loop body. Rule T-await checks that the correct future is synchronized on488

and removes all fields from the context. Rule T-get checks that the correct future is read and489

stores the information where the read value is available in the context. It ensures that no490

relevant read value or future is overwritten. Rule T-! checks that the correct method on the491

correct role is called and stores the information where the future is available in the context.492

It ensures that no other relevant read value or future is overwritten. Rule T-case checks a493

case statement against a passive choice by mapping each branch of the statement against494

some branch of the type. It is ensured that for every specified choice an implemented branch495

exists and that the read value is indeed stemming from the future containing the choice.496

A rule for assignments to copy futures or their read values is easily added, but requires to497

keep track of a pair of sets of locations and, for simplicity, we refrain from introducing this.498

3.4 Globally Dynamic499

The globally dynamic part consists of two steps: first, we translate an object-local type into500

a session automaton, then we translate the session automaton into a user-defined scheduler.501

3.4.1 Automaton Extraction502

The structure of the translation follows the standard translation of regular expressions into503

finite automata.504

I Definition 13. Let L be a projected object-local type with k tracked futures. Let pos(t) be505

the register assigned to t. The translation of L into a k-register session automaton is denoted506

A(L) and defined as follows:507

A receiving type p?tm is translated into an automaton with two states and a single transition508

that reads invREv, m and stores the read future in pos(t):509

1start 2
(invREv, m)

d 7→ pos(t)
510

A reactivation type React (t) is translated into an automaton with two states and a single511

transition that reads condREv and matches the read future with the one stored in pos(t).512

1start 2
condREv
d
.= pos(t)

513

Branching, sequence and repetition are the standard translations of alternative, concate-514

nation and Kleene star into finite automata.515

After this construction, standard ε-transition elimination is performed.516

I Example 14. Consider the following scheduling type [29]:517

L =
(
p?t0 m0 . p?t1 m1 . React (t0)

)∗
518

Its translation A(L) is as follows (the translation yields an ε-transition from state 4 to state519

1, which is eliminated to give the depicted automaton):520

Gabbr i e l l i ’ s Fes t schr i f t

1:16 Locally Static, Globally Dynamic Session Types for Active Objects

1start 2 3 4
(invREv,m0)
d 7→ r0

(invREv,m1)
d 7→ r1

condREv
d = r0

(invREv,m0)
d 7→ r0521

For formal soundness arguments, we again refer to [20]. Intuitively, the extraction is522

sound because the language accepted by the automaton is the same language as the one523

generated by the object-local type. Not every extracted session automaton is deterministic,524

because the input object-local type may not be deterministic, for example:525

&t

{
p?m
p?m . q?n

}
526

After receiving a call on m, this type cannot predict which branch to take. We do allow527

non-deterministic schedulers, but the implementation issues a warning. A simple syntax528

check on the automaton can exclude them.529

3.4.2 Translation and Integration530

Given a session automaton, we can finally extract a user-defined scheduler and add instru-531

mentation code to ensure correctness.532

IDefinition 15. Let C be a class that is checked against an object-local type that is transformed533

to a scheduling type L. The instrumented class CI is constructed as follows:534

We add a field Int q = 0; that models the current state of the scheduling automaton.535

For each register ri we add a field “Maybe<Fut<Any>> ri = Nothing;”.536

The scheduler is as in Def. 16.537

For each method m we collect all transitions (qi, (invREv, m), qi′)i∈I with written register538

reg(i) and add the following as the first statement of m:539

case this.q {
qi1 => this.rreg(i1) = Just(destiny); this.q = qi′

1
;

...
qim => this.rreg(im) = Just(destiny); this.q = qi′

m
;

}

540

This statement saves its future in the given register and updates the automaton state. The541

generated scheduler ensures that no default branch is needed.542

For each class C we collect all transitions (qi, (condREv), qi′)i∈I with read register reg(i)543

and add the following as the first statement after each await statement in any method:544

case this.q { qi1 => this.q = qi′
1
; . . . qim => this.q = qi′

m
; }545

Again, the generated scheduler ensures that no default branch is needed and the registers546

do not need to be checked against destiny.547

I Definition 16. The generated scheduler ensures that the initializing method with the548

hidden name .init() is always executed first. The function filter is one of the higher-order549

functions in ABS and takes a function of the form (params) => code as its first parameter550

and a list as its second.551

R.Hähnle, A.W.Haubner and E. Kamburjan 1:17

def Maybe<Process> scheduler(List<Process> list,
Int q,
Maybe<Fut<Any>> r1,
Maybe<Fut<Any>> r2) =

if (filter((Process p) => method(p) == ".init")(queue) != Nil)
headOrNothing(filter((Process p) => method(p) == ".init")(queue))

else case q {
1 => headOrNothing(

filter((Process p) => contains(set["publish"],method(p)))(list));
2 => headOrNothing(

filter((Process p) => contains(set["request"],method(p)))(list));
}

Figure 8 Scheduler generated from Ex. 11.

def Maybe<Process> scheduler(List<Process> list, Int q,
Maybe<Fut<Any>> r1, . . ., Maybe<Fut<Any>> rn) =

if(filter((Process p) => method(p) == ".init")(queue) != Nil)
headOrNothing(filter((Process p) => method(p) == ".init")(queue))

else scheduler_body(list, q, r1, . . ., rn);

552

After executing the initializer, the scheduler makes a case distinction over the states 1, . . . ,m553

of the scheduling automaton:554

def Maybe<Process> scheduler_body(List<Process> list, Int q,
Maybe<Fut<Any>> r1, . . ., Maybe<Fut<Any>> rn) =

case q { 1 => transition1; . . . m => transitionm; }
555

The transition transitioni from a state i is modeled as follows: Let m1, . . . , mn1 be the556

method names that have outgoing transitions from i labeled with invREv. Let r’1, . . . , r’n2 be557

the registers that the read future is compared with in outgoing transitions from i labeled with558

condREv. The first case checks that the future is allowed and not yet stored, the second case559

checks that the future is in one of the registers.560

headOrNothing(filter((Process p) =>
(contains(set[m1,. . .,mn1],method(p)) && !contains(set[r1,. . .,rn],destinyOf(p)))
|| contains(set[r’1,. . .,r’n2],destinyOf(p))
)(list))

561

We return the first process that is in the list and matches, a random scheduler is a straight-562

forward modification.563

I Example 17. The (beautified) scheduler generated from Ex. 11 is shown in Fig. 8:564

3.5 Soundness and Stateful Session Types565

Soundness. Soundness of the type system follows directly from the soundness theorem566

given for the original, purely static systems [27, 28]:567

I Theorem 18. Let Prgm be a well-typed ABS program and GP a global protocol. If568

` Prgm : GP and every object is instrumented with the scheduler type derived by the `569

relation, then every terminating and non-deadlocking run of Prgm has a trace where the570

communication events for each object are in the same order as specified in GP.571

Gabbr i e l l i ’ s Fes t schr i f t

1:18 Locally Static, Globally Dynamic Session Types for Active Objects

Our notion of soundness is not based on subject reduction and progress. Soundness of our572

system is only concerned with protocol adherence, not with deadlock freedom, as discussed573

above. Adding deadlock checks in session types complicates the system further [28] for little574

gain, as external tools can be used. We assume that the data types have been checked, so575

there is no need for a progress theorem. It is similar to session fidelity [22], which expresses576

the same intuition in terms of operational semantics.577

Neither do we use a subject reduction theorem. Instead, we give a denotational semantics578

to session types and regard them as specifications of traces in monadic second-order logic: Any579

type GP can be translated into a formula C(GP) expressing that the communication events580

for each object are in the same order as specified in GP. Soundness is then a model-theoretic581

notion that every trace tr generated by GP is a model of C(GP):582

` Prgm : GP→ ∀tr. Prgm ⇓ tr→ tr |= C(GP)583

This model-theoretic treatment of session types allows an elegant connection to symbolic584

execution and dynamic logic [27] at the cost of an elaborate semantics [14] which we refrain585

to introduce for space reasons. This semantics is based on merging of local traces, which586

inhibits us from giving a straightfoward subject reduction theorem.587

Stateful Session Types So far, our session types do not constrain the execution state or588

passed data, except the outermost constructor of return values. We implemented an extension589

of the presented system, where each global call action is annotated with a property. This590

annotation is preserved during object-local projection and moved to the termination action591

during projection on a tracked future. Regarding instrumentiation, it results in a simple592

assert statement for the dynamic check.593

I Example 19. We specify that a call of role p to a method m results in a postcondition594

that ensures the return value being larger than field f:595

. . . . p t−→q :mLthis.f < resultM596

The return value is saved in a dedicated variable result and an assert is added afterwards.597

If the final statement was “return e;” before, it now is598

Int result = e; assert(this.f < result); return result;599

If it depends on the state of the scheduler which postcondition has to be checked, a case600

statement over the possible values of q is added. This approach is slightly less expressive601

than other stateful session types for AO [26, 28], but has the benefit that there is no need to602

translate first-order logic formulas into expressions.603

4 Implementation and Evaluation604

Our system is implemented on top of a slightly modified5 version of the ABS compiler [43, 39].605

Source code and all examples are accessible at https://github.com/ahbnr/SessionTypeABS.606

As discussed, we do not handle full ABS and demand that the main block initializes a whole607

session, each interface plays exactly one role and no objects are created after initialization.608

The session type is specified in an ASCII variant of Def. 4 in a separate file alongside the other609

5 Blocking schedulers and access to the future of a process are not yet part of the master branch of ABS.

https://github.com/ahbnr/SessionTypeABS

R.Hähnle, A.W.Haubner and E. Kamburjan 1:19

1 2 3 4 5 10 30 50 70 80 10
0

30
0

50
0

70
0

90
0

repetitions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

us
er

 m
od

e
ex

ec
ut

io
n

tim
e

[s
]

plain
enforcement

Figure 9 Execution times of the unmodified
(blue) and modified (orange) model for different
amounts of repetitions.

1 2 3 4 5 10 30 50 70 80 10
0

30
0

50
0

70
0

90
0

repetitions

0

10000

20000

30000

40000

m
ax

im
um

 m
em

or
y

re
sid

en
t s

et
 si

ze
 [K

B]

plain
enforcement

Figure 10 Maximum memory resident set size
of the unmodified (blue) and modified (orange)
model for different ammounts of repetitions.

model source files. The ABS compiler is used for parsing and (data-)typechecking the input610

model. The AST is then used for the static check and enriched with the instrumentation611

from the scheduling type. The resulting AST is passed back to the ABS compiler, which612

parses and typechecks it again.613

We evaluate the impact of our modifications on the performance of Erlang-based simula-614

tions (the standard backend) of ABS models. The experiments are performed on a synthetic615

benchmark, where one object implementing the role p repeatedly calls two methods on616

another object of role q in a fixed order. The session is specified by the this global type:617

0 t−→p :init .

(
p

tm1−−→q :m1 . q↓ tm1 . p
tm2−−→q :m2 . q↓ tm2

)∗
. p↓ t618

All reported data resulted from executing the model multiple times and averaging the619

measurements. Reported execution times designate the required run time in user-mode of620

the Erlang simulation of a model until termination on a Arch Linux system running Kernel621

5.3.7 with a i5-4300U@2.9GHz CPU and 4GiB RAM.622

Effect of Increased Object Communication. By changing the number of times the repeat-623

able section of the session type is executed, we observe the behavior of the model simulation624

when the number of calls from p to q increases. We observe that the user-mode execution time625

of the simulations is nearly constant and mostly equivalent for the modified and unmodified626

version of the model for up to 100 repetitions, see Fig. 9. For higher numbers of repetitions,627

execution time increases for both version, but execution time of the modified model grows to628

increasing multiples of the execution time of the unmodified one. The maximum memory629

resident set size of the Erlang processes develops similarly, see Fig. 10, although the memory630

size of the modified model does not grow as rapidly as the execution time.631

Comparison to Manual Synchronization. Instead of letting the generated schedulers632

enforce the execution order of methods, we now require p and q to synchronize every call633

by inserting an await-statement after each interaction. Even though execution time of the634

unmodified and modified model still increases for a high number of repetitions, there is635

now little difference between them, see Fig. 11. The overhead of synchronization is roughly636

equivalent to or lower than the version relying on the generated schedulers.637

Testing the Reordering Capabilities of the Scheduler: In the previous experiments the638

scheduler never delayed activating a process, because there was always one in the queue which639

Gabbr i e l l i ’ s Fes t schr i f t

1:20 Locally Static, Globally Dynamic Session Types for Active Objects

1 2 3 4 5 10 30 50 70 80 10
0

30
0

50
0

70
0

90
0

repetitions

0.0

0.2

0.4

0.6

0.8

1.0
us

er
 m

od
e

ex
ec

ut
io

n
tim

e
[s

]

plain
enforcement

Figure 11 User-mode execution times when
using await statements. Unmodified model in
blue, modified model in orange.

1 2 3 4 5 10 30 50 70 80 10
0

30
0

50
0

70
0

90
0

repetitions

0

500

1000

1500

2000

2500
delays
calls of scheduler

Figure 12 The number of times a scheduler has
been invoked (orange) in contrast to the number
of times it could not activate any waiting process
(blue).

could immediately be scheduled. We now disable static verification, deliberately reverse the640

calls in the model source and put duration statements after each call, causing a delay in641

the execution.6 We do not use synchronization and calls always arrive out of order at q642

and with enough inactivity in between them so that the scheduler of q frequently has to643

delay activation of a process until an acceptable one is available. Here, the modified and644

unmodified model always complete in almost the same execution time, presumably since645

the duration statements induce enough idle time to contain the overhead of the schedulers.646

However, we now observe that the scheduler successfully delays and reorders calls, see Fig. 12.647

Discussion. A certain overhead must always be expected from instrumentation, but we648

deem the observed overhead acceptable. The generated schedulers only result in noteworthy649

overhead when a large number of processes is in the object queue. We conjecture that this650

effect is mostly an artifact of how the queue is represented for the user-defined scheduler.651

5 Related Work652

There is a considerable number of papers combining static and dynamic verification, a653

complete overview is out of scope for this work. We refer to, for example, the introduction of654

Ahrendt et al. [2] and only review directly related approaches here.655

The StaRVOOrS [1, 9] tool combines static and dynamic verification of Java programs as656

follows: First, it attempts to prove certain properties statically using deductive verification657

and then it transforms failed proofs into runtime monitors. The static analysis is used to658

ensure that as little as possible is checked dynamically. StarVOOrS distinguishes between659

data and control-flow properties. The static analysis is mainly reducing the need for the660

computationally heavy data properties (e.g., all values of an array are non-zero) as far as661

possible, while monitoring control-flow properties can be done statically.662

Our approach can be seen from a similar perspective: the object scheduler is handling the663

control flow inside an object, while the added assert statements are handling data properties.664

The type checker ensures that inside a method, only data properties need to be checked at665

runtime. It is straightforward to see how the ongoing integration of Session Types into the666

6 Explicit time behavior is realized in Timed ABS [5] and here only used for evaluation.

R.Hähnle, A.W.Haubner and E. Kamburjan 1:21

Crowbar prover using Behavioral Program Logic [26] can be used to discard as superflous667

assert statements statically.668

The literature on session types includes approaches that handle protocols as (partially)669

dynamic types or mix static and dynamic checks otherwise. The conceptually closest to our670

approach is by Bocchi et at. [6], who also use distributed runtime enforcement, but introduce671

new components (for example, a queue) to do so. Completely dynamic approaches to session672

types are available for the Python language [12] and an actor model [35]. Other, less related,673

approaches are:674

Gradual session types [23] transform a dynamically checked dyadic session type for675

channels gradually to a statically checked one during development. The dynamic check676

for linearity that is central to gradual session types for channels has no direct counterpart677

in our system for AO, because the projection mechanisms differ on a technical level.678

Certain combined approaches, e.g., for Scala [38], draw the line between static and679

dynamic by performing only the linearity check at runtime and any other check statically.680

A further type-based approach is typestate [41]. In contrast to session types, it was681

developed mainly for OO imperative programs. Typestate models that an object can change682

its interface, i.e., the set of exposed methods, over time. This was done statically in the683

original work and was subsequently gradualized [42] to combine static and dynamic type684

checking. A variant of typestate for concurrent Java, developed by Gerbo & Padovani [17],685

dynamically reports violations after injecting monitoring code. The object scheduler in our686

approach can be seen as a variant of typestate, but it is generated, not specified.687

Choreographies [8] bear similarity to session types, being global specifications with a688

projection mechanism. However, they are mainly used to generate code via a correctness-689

by-construction approach. This also combines static and dynamic aspects, but reverses the690

direction: instead of dynamically ensuring that the static checks are sound, it is statically691

ensured (by code generation) that the dynamic behavior is structured correctly. The692

distinction between static and dynamic parts becomes even more prominent in the work of693

Gabbrielli et al. [16, 36, 37], where dynamic choreographies are used to generate a dynamic694

structure to update the structure of the application or include of new participants.695

6 Conclusion696

What should be the takeaway message from this work? First, the formalism of session types,697

first developed in the context of the π-calculus, and so far mainly used in theoretical investi-698

gations, appears in our context as a rather versatile and surprisingly practical specification699

mechanism. It is easily conceivable to find a more user-friendly, less mathematical notation700

for the global types in Fig. 3 and add IDE support.701

Second, with the runtime checking approach, session types for AO can form the theoretical702

basis for top-down development of open distributed systems (with cooperative concurrency).703

Third, as shown here and in [27], session types integrate well with static checking of704

logical properties. The semantic link is a straightforward translation from session types into705

logic , while the type systems syntactically ensures to place assertions at suitable locations.706

Future Work. We plan to adopt the StaRVOOrS approach to partially reduce the need707

for assert statements on method-local level. We are investigating the use of the product line708

mechanism of ABS [10] to add the monitors, instead of using manual code injection. Using709

product lines enables a uniform treatment of code injection in ABS and the injection and710

removal of runtime monitors at runtime [40]. Furthermore, we plan to investigate the use of711

Timed Session Types [34] for Timed ABS and Hybrid ABS [32].712

Gabbr i e l l i ’ s Fes t schr i f t

1:22 Locally Static, Globally Dynamic Session Types for Active Objects

References713

1 Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace, and Gerardo Schneider. Verify-714

ing data- and control-oriented properties combining static and runtime verification: theory715

and tools. Formal Methods Syst. Des., 51(1):200–265, 2017.716

2 Wolfgang Ahrendt, Marieke Huisman, Giles Reger, and Kristin Yvonne Rozier. A broader717

view on verification: From static to runtime and back (track summary). In ISoLA (2), volume718

11245 of Lecture Notes in Computer Science, pages 3–7. Springer, 2018.719

3 Elvira Albert, Puri Arenas, Antonio Flores-Montoya, Samir Genaim, Miguel Gómez-Zamalloa,720

Enrique Martin-Martin, German Puebla, and Guillermo Román-Díez. SACO: static analyzer721

for concurrent objects. In Erika Ábrahám and Klaus Havelund, editors, TACAS 2014, volume722

8413 of Lecture Notes in Computer Science, pages 562–567. Springer, 2014.723

4 Henry G. Baker and Carl E. Hewitt. The incremental garbage collection of processes. In724

Proceeding of the Symposium on Artificial Intelligence Programming Languages, number 12 in725

SIGPLAN Notices, page 11, August 1977.726

5 Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia727

Tarifa. User-defined schedulers for real-time concurrent objects. ISSE, 9(1):29–43, 2013.728

6 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.729

Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.730

7 Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. A fresh approach731

to learning register automata. In Marie-Pierre Béal and Olivier Carton, editors, Developments732

in Language Theory: 17th Intl. Conf. DLT, Marne-la-Vallée, France, volume 7907 of LNCS,733

pages 118–130. Springer, 2013.734

8 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered735

programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.736

9 Jesús Mauricio Chimento, Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider. Star-737

voors: A tool for combined static and runtime verification of java. In Ezio Bartocci and738

Rupak Majumdar, editors, RV 2015, volume 9333 of Lecture Notes in Computer Science, pages739

297–305. Springer, 2015.740

10 Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and Rudolf Schlatte. Variability741

modelling in the ABS language. In Bernhard K. Aichernig, Frank S. de Boer, and Marcello M.742

Bonsangue, editors, FMCO 2010, volume 6957 of Lecture Notes in Computer Science, pages743

204–224. Springer, 2010.744

11 Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crys-745

tal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-746

Reyes, and Albert Mingkun Yang. A survey of active object languages. ACM Comput. Surv.,747

50(5):76:1–76:39, 2017.748

12 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.749

Practical interruptible conversations: distributed dynamic verification with multiparty session750

types and python. Formal Methods Syst. Des., 46(3):197–225, 2015.751

13 Crystal Chang Din, Richard Bubel, and Reiner Hähnle. Key-abs: A deductive verification tool752

for the concurrent modelling language ABS. In Amy P. Felty and Aart Middeldorp, editors,753

Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,754

Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer755

Science, pages 517–526. Springer, 2015.756

14 Crystal Chang Din, Reiner Hähnle, Einar Broch Johnsen, Ka I Pun, and Silvia Lizeth Tapia757

Tarifa. Locally abstract, globally concrete semantics of concurrent programming languages.758

In TABLEAUX, volume 10501 of Lecture Notes in Computer Science, pages 22–43. Springer,759

2017.760

15 Antonio Flores-Montoya, Elvira Albert, and Samir Genaim. May-happen-in-parallel based761

deadlock analysis for concurrent objects. In FMOODS/FORTE, volume 7892 of LNCS, pages762

273–288. Springer, 2013.763

R.Hähnle, A.W.Haubner and E. Kamburjan 1:23

16 Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. Guess who’s coming:764

Runtime inclusion of participants in choreographies. In Mário S. Alvim, Kostas Chatzikokolakis,765

Carlos Olarte, and Frank Valencia, editors, The Art of Modelling Computational Systems: A766

Journey from Logic and Concurrency to Security and Privacy - Essays Dedicated to Catuscia767

Palamidessi on the Occasion of Her 60th Birthday, volume 11760 of Lecture Notes in Computer768

Science, pages 118–138. Springer, 2019.769

17 Rosita Gerbo and Luca Padovani. Concurrent typestate-oriented programming in java.770

In Francisco Martins and Dominic Orchard, editors, Proceedings Programming Language771

Approaches to Concurrency- and Communication-cEntric Software, PLACES@ETAPS 2019,772

Prague, Czech Republic, 7th April 2019, volume 291 of EPTCS, pages 24–34, 2019.773

18 Elena Giachino, Cosimo Laneve, and Michael Lienhardt. A framework for deadlock detection774

in core ABS. Software and Systems Modeling, 15(4):1013–1048, 2016.775

19 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan. Who carries the burden of modularity?776

In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,777

Verification and Validation, 9th Intl. Symp., ISoLA 2020, Rhodes, Greece, LNCS. Springer,778

October 2020.779

20 Anton W Haubner. Semi-dynamic session types for ABS. Bachelor thesis, Technical University780

of Darmstadt, 2019. Available at https://github.com/ahbnr/SessionTypeABS/blob/master/781

thesis/thesis_final_pdfa.pdf.782

21 Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for783

artificial intelligence. In Proceedings of the 3rd International Joint Conference on Artificial784

Intelligence, IJCAI’73, pages 235–245. Morgan Kaufmann Publishers Inc., 1973.785

22 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.786

In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-787

SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,788

California, USA, January 7-12, 2008, pages 273–284. ACM, 2008.789

23 Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. Gradual session790

types. Proc. ACM Program. Lang., 1(ICFP):38:1–38:28, 2017.791

24 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS:792

A core language for abstract behavioral specification. In Bernhard K. Aichernig, Frank S.793

de Boer, and Marcello M. Bonsangue, editors, FMCO 2010, volume 6957 of Lecture Notes in794

Computer Science, pages 142–164. Springer, 2010.795

25 Eduard Kamburjan. Detecting deadlocks in formal system models with condition synchroniza-796

tion. ECEASST, 76, 2018.797

26 Eduard Kamburjan. Behavioral program logic. In TABLEAUX, volume 11714 of Lecture798

Notes in Computer Science, pages 391–408. Springer, 2019.799

27 Eduard Kamburjan. Modular Verification of a Modular Specification: Behavioral Types as800

Program Logics. PhD thesis, Technische Universität Darmstadt, 2020.801

28 Eduard Kamburjan and Tzu-Chun Chen. Stateful behavioral types for active objects. In802

Carlo A. Furia and Kirsten Winter, editors, iFM 2018, volume 11023 of Lecture Notes in803

Computer Science, pages 214–235. Springer, 2018.804

29 Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen. Session-based compositional805

analysis for actor-based languages using futures. In Kazuhiro Ogata, Mark Lawford, and806

Shaoying Liu, editors, ICFEM 2016, volume 10009 of Lecture Notes in Computer Science,807

pages 296–312, 2016.808

30 Eduard Kamburjan, Crystal Chang Din, Reiner Hähnle, and Einar Broch Johnsen. Asyn-809

chronous cooperative contracts for cooperative scheduling. In SEFM, volume 11724 of Lecture810

Notes in Computer Science, pages 48–66. Springer, 2019.811

31 Eduard Kamburjan, Reiner Hähnle, and Sebastian Schön. Formal modeling and analysis of812

railway operations with active objects. Sci. Comput. Program., 166:167–193, 2018.813

32 Eduard Kamburjan, Stefan Mitsch, Martina Kettenbach, and Reiner Hähnle. Modeling and814

verifying cyber-physical systems with hybrid active objects. CoRR, abs/1906.05704, 2019.815

Gabbr i e l l i ’ s Fes t schr i f t

https://github.com/ahbnr/SessionTypeABS/blob/master/thesis/thesis_final_pdfa.pdf
https://github.com/ahbnr/SessionTypeABS/blob/master/thesis/thesis_final_pdfa.pdf
https://github.com/ahbnr/SessionTypeABS/blob/master/thesis/thesis_final_pdfa.pdf

1:24 Locally Static, Globally Dynamic Session Types for Active Objects

33 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,816

134(2):329–363, 1994.817

34 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for818

multiparty conversations. Formal Asp. Comput., 29(5):877–910, 2017.819

35 Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. Logical Methods in820

Computer Science, 13(1), 2017.821

36 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.822

Dynamic choreographies - safe runtime updates of distributed applications. In Tom Holvoet823

and Mirko Viroli, editors, COORDINATION 2015, volume 9037 of Lecture Notes in Computer824

Science, pages 67–82. Springer, 2015.825

37 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.826

Dynamic choreographies: Theory and implementation. Log. Methods Comput. Sci., 13(2),827

2017.828

38 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In Shriram829

Krishnamurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented830

Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages831

21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.832

39 Rudolf Schlatte and abstools Contributors. Modified branch of the abstools compiler version833

1.8.1 - github source repository. https://github.com/ahbnr/abstools/tree/thisDestiny.834

Accessed: 2019-10-29.835

40 Rudolf Schlatte, Einar Broch Johnsen, Jacopo Mauro, Silvia Lizeth Tapia Tarifa, and In-836

grid Chieh Yu. Release the beasts: When formal methods meet real world data. In Frank S.837

de Boer, Marcello M. Bonsangue, and Jan Rutten, editors, It’s All About Coordination - Essays838

to Celebrate the Lifelong Scientific Achievements of Farhad Arbab, volume 10865 of Lecture839

Notes in Computer Science, pages 107–121. Springer, 2018.840

41 Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for841

enhancing software reliability. IEEE Trans. Software Eng., 12(1):157–171, 1986.842

42 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In Mira843

Mezini, editor, ECOOP 2011 - Object-Oriented Programming - 25th European Conference,844

Lancaster, UK, July 25-29, 2011 Proceedings, volume 6813 of Lecture Notes in Computer845

Science, pages 459–483. Springer, 2011.846

43 Peter Y. H. Wong, Elvira Albert, Radu Muschevici, José Proença, Jan Schäfer, and Rudolf847

Schlatte. The ABS tool suite: modelling, executing and analysing distributed adaptable848

object-oriented systems. STTT, 14(5):567–588, 2012.849

https://github.com/ahbnr/abstools/tree/thisDestiny

	Introduction
	Active Objects and Session Types
	Session Types for Active Objects
	Global Types
	Local Types

	LSGD Session Types
	Session Automata
	Projection
	Pre-Analysis
	Global Projection
	Local Projection
	Scheduling Type

	Locally Static
	Globally Dynamic
	Automaton Extraction
	Translation and Integration

	Soundness and Stateful Session Types

	Implementation and Evaluation
	Related Work
	Conclusion

