
Language-Based Testing for Knowledge Graphs

Tobias John1 , Einar Broch Johnsen1 ,
Eduard Kamburjan2,1 , and Dominic Steinhöfel3

1 University of Oslo, Oslo, Norway
{tobiajoh,einarj}@ifi.uio.no

2 IT University of Copenhagen, Copenhagen, Denmark
eduard.kamburjan@itu.dk

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
steinhoefel@cispa.de

Abstract. Knowledge graphs rely on a vast ecosystem of software tools,
such as parsers, APIs and reasoners. Yet, tool developers have little sup-
port to ensure tool reliability. Here, we demonstrate how recent advances
in test case generation for highly structured and constrained inputs can
support software developers in the semantic web field. We develop input
generators for RDF Turtle and the OWL EL profile, and report on nu-
merous bugs we found in parsers, reasoners and APIs of widely used tools
and libraries, as well as imprecisions in standards and documentation.
We provide actionable insights on using automated testing to increase
the reliability of software tools for knowledge graphs.

Keywords: Automated Testing · RDF · OWL EL · Reasoning.

1 Introduction

Knowledge graphs (KGs) [45] are used in business-critical applications, sup-
ported by a rich ecosystem of standards, technologies and software tools [39].
Nevertheless, quality considerations are mostly concerned with data or ontol-
ogy quality [103, 107], and rarely consider the software tools that underlie the
application. Software reliability, however, is as important as the quality and
reliability of the data that this software processes to establish reliability and
maintainability of the overall application. Indeed, the increasing use of digital
methods in other fields heavily relies on correct and reliable software. Misuse
of digital tools and software can lead to unexpected threats to validity and has
already had consequences in fields such as, e.g., biology, economics, physics, end
anthropology [24,67,92]. KGs, with their wide range of applications, should pro-
vide confidence when used—especially if they themselves are used to improve
confidence in an overall application, e.g., to counteract gaps or hallucinations in
neuro-symbolic AI [26,97].

In the semantic web field, the challenges of integrating and maintaining KG
tools, such as reasoners, are well recognized [43,52,74], yet there is little support
for the tool developers. To tackle this problem, we here investigate the applica-
bility of the most widespread and important software quality method: Testing.

https://orcid.org/0000-0001-5855-6632
https://orcid.org/0000-0001-5382-3949
https://orcid.org/0000-0002-0996-2543
https://orcid.org/0000-0003-4439-7129

2 John et al.

We propose a method to automate the testing procedure by generating input
data [3] for software that operates on KGs and ontologies. Automated test case
generation has found bugs in very mature, yet highly complex software classes:
SMT solvers [13,106], databases [2, 5], compilers [18], and others [64].

KGs pose a challenge for input generation, even if restricted to RDF and
associated technology, such as OWL: They are highly structured, yet subject to
numerous constraints. For example, if the generated test cases are to target a
certain OWL profile, one needs to impose restrictions on the ontology used as
a test case. We base our work on recent advances in language-based approaches
to automated testing, namely grammar-based fuzzing with complex semantic
invariants [93, 94]. Fuzzing techniques massively generate test inputs to cover
as much as possible of the input space. With the notable exception of symbolic
execution-based white box techniques, this is done with little to no knowledge
about the system-under-test [112].

In this paper, we present two input grammars with constraints that generate
either arbitrary RDF or an ontology in the OWL EL profile, and generate random
inputs based on these constraint grammars for two different studies.

RDF-TTL: The first grammar generates arbitrary RDF graphs in Turtle syn-
tax, which we use to find bugs in the frontend (parser and selected methods)
of the often used OWL-API [47] and Apache Jena [31]. Here, we use as test
oracle the generic oracle whether the application crashes with an exception.

OWL EL: The second grammar generates ontologies in the OWL EL profile,
which we use to find bugs in the EL reasoners bundled with the Protege
editor [68]: HermiT [35], Pellet [89], and ELK [59]. Here, we use differential
testing [90]: The ontology is analyzed by all reasoner tools, which must re-
turn the same result. If the reasoners do not agree, we investigate manually
whether the disagreement is due to a completeness or soundness issue.

Even in the absence of precise testing oracles, we found bugs in all considered
tools, as well as imprecisions in error reports and the RDF-Turtle standard; these
bugs have been reported and partially fixed by the respective maintainers. Our
results demonstrate that language-based testing can already be used to increase
and investigate the quality and reliability of software for KGs.

We hope that this study will contribute to increase the software quality
of both existing and newly developed tools. To this end, we discuss both our
findings in light on the specifics of the field, and give actionable insights for
further studies. To summarize, our main contributions are (1) the first systematic
study on finding bugs in KG applications based on language-based testing, (2) a
documentation of several found bugs in mature applications operating on RDF
and OWL, and (3) two input grammars for further studies and (4) actionable
insights for improving the reliability of KG applications.

Paper overview. This paper is structured as follows. Section 2 discusses related
work, background on testing, and introduces the used ISLa tool [93], Section 3
gives two examples for input grammars and test oracles. Section 4 reports on
the found bugs, Section 5 discusses our findings and Section 6 concludes.

Language-Based Testing for Knowledge Graphs 3

2 Background

2.1 Fuzzing: Breaking Things With Random Inputs

Testing is concerned with running a program with a test input and examining
the program’s behavior. If the program does not behave as expected, you have
discovered a bug. The hidden challenges in this simple principle are: (1) How do
we find test inputs that effectively trigger bugs? and (2) How do we tell whether a
behavior is expected? The first of these problems is the test generation problem.
The second is the oracle problem. Let us take a look at test input generation.
What is so difficult about that? At first sight, not much, really. If you do not
want to generate test inputs by hand, you can use fully random inputs. This was
exactly the idea behind the very first fuzzer by Miller et al. [66].

Miller and his team managed to crash roughly every third tested application,
including tools like Emacs and the c-shell. This tremendous success does not
mark the end of research on input generation. The problems Miller et al. discov-
ered were relatively shallow—adding serious input validation would fix them. To
find more complex bugs, we need test data that reaches deeply into the struc-
tures of a program. For example, to crash the program if x == 17: fail(), one
needs to hit 1 out of 264 Integers on a 64-bit system. Since Miller’s days, fuzzing
evolved. The most “heavyweight” successors are symbolic execution-based white
box fuzzers [15, 36, 37, 86]. These fuzzers collect conditions along the path trig-
gered by an input. By negating one of these conditions and using constraint
solvers, they come up with an input following a different path. These fuzzers
are incredibly powerful—which makes them incredibly difficult to build in a way
that scales. The most popular approach these days follows a pragmatic middle
way. Coverage-based evolutionary fuzzing [11,30] obtains “gray box” information
from the tested program: Not detailed conditions, but some kind of coverage in-
formation. For example, code lines. These fuzzers mutate inputs they have seen
before and retain those that cover new code.

Both black and gray box approaches suffer from a problem that their white
box competition gracefully avoids: That of fuzz blockers [32]. To not crash the
program if x != 17: fail() ... by reaching the first fail(), we again must hit
1 out of 264 values for x. To meaningfully continue fuzzing, the fuzz blocker
fail() must be fixed first. Otherwise, our fuzzing campaign cannot progress.

The second challenge in automated software testing is that we must distin-
guish successful from failing program runs—automatically. We call a procedure
that performs this task a test oracle. Fuzzing usually relies on a very simple type
of oracle. That a program crashes or seemingly fails to terminate while your
computer’s fans crank up is “obviously” bad.

Barr et al. [7] distinguish three categories of oracles. This “crash oracle” com-
mon in fuzzing is an example of an implicit test oracle that relies on general,
implicit knowledge. Everyone who has written a unit test preceded by asser-
tions, has used specified test oracles. The third category consists of derived test
oracles; for example, differential testing [90] uses a different program that should
behave the same as the program-under-test. While this requires to have two pro-

4 John et al.

grams with the same functionality, it is commonly used by companies operating
in safety-critical domains: They implement twin systems following the informal
specification of the main system. However, those twins are implemented by dif-
ferent teams and in different technologies. If the original and the twin system
behave differently, this is a failure. Finally, metamorphic oracles [19]—another
kind of derived oracle—exploit properties of the tested program’s domain. Com-
mutativity of addition is such a property in the domain of a calculator. If a
different results for a+ b and b+ a are returned, that is a bug.

2.2 Language-Based Testing with ISLa

One major challenge for fuzzers when it comes to complex tools such as compilers
or solvers, is to generate structured input—feeding randomly generating strings
to a parser will not result in a deep penetration of the program. The same holds
for programs operating on knowledge graphs and ontologies, such as reasoners.

For this reason, there are numerous fine-grained variations of the general
theme of black, gray, and white box fuzzers. Hybrid fuzzers [95, 110], for exam-
ple, combine white and gray box approaches to perform well while still reaching
well-guarded program parts. In this paper, we use a particular breed of black box
fuzzer: a specification-based input generator. Like Miller et al., we treat the pro-
gram as a black box. However, we exploit knowledge about the input language of
a program to generate meaningful input. Specification-based testing optimizes
input space coverage, assuming that this measure is correlated to code cover-
age [41]. The advantage of this method over white box methods is that it does
not require complex instrumentation and constraint solving. On the other hand,
evolutionary fuzzers frequently fail to reach program paths guarded by complex
constraints (which motivated hybrid fuzzing). If we solve these constraints at the
specification level, we can bypass this difficulty—and still find complex bugs.

A popular approach to specify input languages is to use context-free gram-
mars (CFGs). [44,46,78] While CFGs have a formal methods background, they
don’t scare away mainstream programmers. Parser generators such as ANTLR
and language descriptions in RFCs are all based on CFGs. A CFG-based fuzzer
iteratively expands the start nonterminal symbol <start> of a CFG by picking a
random expansion rule. This process stops when only terminal symbols that can-
not be further expanded are left. For an arithmetic expression grammar, <start>
might first become <expr> + <expr>, then (<expr> ∗ <expr>) + <num>, etc., until
finally resulting in a terminal expression like (2 ∗ (3 − 1)) + 4.

Grammars are a beautifully simple formalism for specification-based fuzzing.
However, beauty and simplicity never come for free. Imagine you want to test a
C compiler with a CFG for C programs. Most of your C programs will result in
an error message like “use of undeclared identifier.” They contain expressions like
int x = y; with a variable y that was not properly declared. You can still test
the compiler’s parser component, but not the more interesting, deeper layers.

ISLa (Input Specification Language) [93, 94] is a specification language and
constraint solver that allows you to refine the language of your CFG with ad-
ditional constraints. In the case of C programs, you might want to add the

Language-Based Testing for Knowledge Graphs 5

constraint “all identifiers used in an expression occur on the left-hand side of
some previous declaration.” The ISLa language supports “all” and “some” con-
straints over grammar symbols. In ISLa, they are called “forall” and “exists.” An
ISLa constraint for a simple C-like grammar could look as follows:

forall <var > vUse in <expr >: exists <decl > assgn:
(before(decl, vUse) and assgn.<lhs > = vUse)

An ISLa language specification consists of two parts: A syntactic one—the
grammar—and a semantic one—the constraints. The ISLa language-based test-
ing tool takes such a specification and produces inputs of the right structure that
satisfy all the given constraints. In the C example, all variables inside <expr> trees
are guaranteed to be declared in some <decl> tree occurring before. In this paper,
we use ISLa grammars and constraints to specify the RDF Turtle syntax and
the OWL functional syntax.

2.3 Related Work

Testing Graph Databases and Knowledge Graphs. In recent years, several meth-
ods have been proposed to test graph databases, mostly the underlying database
management systems for labeled property graphs [50, 54, 58, 63, 113, 114, 116] or
database management systems for RDF triple stores [108]. We are only aware of
one method that tests applications working with RDF data [55].

All methods generate random graphs as input and most methods do this by
generating random nodes and relations that are later randomly assigned labels.
A few methods generate the random graph by applying a number of random mu-
tations to an initial graph [55,63,116]. Most methods use all randomly generated
knowledge graphs for testing. For systems with long run times, a mechanism to
filter for and only use relevant KGs was proposed in [55].

Concerning the test oracle, most methods aim to identify logic bugs, i.e. bugs
that do not result in any error message. To do so, differential testing [50,113,114]
as well as metamorphic testing [54, 58, 63, 108, 116] are used. Competitions are
also applying differential testing implicitly; in particular, the OWL Reasoner
Evaluation in 2015 [75] reported several bugs in OWL reasoners discovered by
different answers to the same input.

There is no approach to test application and tools for knowledge graphs that
do not rely on the specific structure given by the database management systems.

Knowledge Graph Synthesis. Traditional methods for generating random graphs
are usually based on the Erdős-Rényi model [28] or on the Barabási-Albert
model [1]. Such methods are still used today and are able to generate very
large graphs [17, 73]. However, they lack a representation for the semantics of
the nodes and edges.

There are mainly two approaches to generate random knowledge graphs,
i.e. graphs with semantic labeling: data-driven and schema-driven approaches.
Data-driven approaches use existing data, such as tabular database data [38],

6 John et al.

execution traces [4] or existing reference graphs [20, 80, 84, 104, 109] to generate
new graphs. Some of these approaches use generative neural networks for the
generation [84, 104, 109]. Schema-driven approaches use provided schema infor-
mation to generate graph data that conforms to the specified schema [6,29,102].

While most approaches are domain-independent, some are tailored towards
specific applications, such as social networks [4,76,79] or molecular graphs [84].
We present in our work domain-independent generators.

We are only aware of two existing approaches that generate graphs that
contain not only data but also schema information [51, 77]. Both approaches
limit the type of schema information that can be encoded. In particular, some
features of RDF and OWL are missing, such as data relations and language tags.
Additionally, their set of operators does not represent any defined OWL profile.

To the best of our knowledge, all previous approaches for generating knowl-
edge graphs build the graph structure explicitly; in contrast, our work relies on
the provided grammar for the input format of the knowledge graph.

Testing. There are several areas of automatic test case generation that target
software that share similarities with software for knowledge graphs.

As knowledge graphs are a way to structure data, testing of database man-
agement systems is closely related. While the test cases, i.e. databases, can be
created based on schema information [49] or on provided queries [9, 23], finding
an oracle to evaluate the test runs is a challenge. One of the earliest techniques is
differential testing [90], which remains relevant until today [22,34,57]. In recent
years, metamorphic testing has gained popularity as an alternative [82, 83, 91].
There is some work on generating test cases to maximize coverage [115].

One of the oldest areas where the input of a structured language is required
is compiler testing [18]. Similarly to generating knowledge graphs as test inputs,
it is important to generate test cases with a semantic difference, not only test
cases that are syntactically different. Another similarity is that compilers, like
OWL reasoners, often contain a lot of complex optimizations, which make the
tool faster but can be a source of bugs. Many approaches to compiler testing are
based on the grammar of the input language [12,40,62,78,88,111] but mutation-
based fuzzing is also a common, more recent alternative [25,33,61,69]. Differential
testing is a common way to build the oracle, where there is not only work on com-
paring between different compilers [87, 96], but also between different versions
of the same compiler [42, 96] and between different optimizations of the same
compiler [8,70]. Again, metamorphic testing is a common alternative [60,85,98].

A third area of interest is the fuzzing of SMT solvers. Similar to OWL reason-
ers, these tools perform a logical analysis where trust in the result is absolutely
crucial. They also form the basis of many applications. Fuzzing SMT solvers is
a rather recent field that helped to uncover dozens of bugs in state-of-the-art
solvers, justifying the need for such testing methods. Fuzzing of SMT solvers
is either grammar-based [14, 105] or mutation-based [65]. Again, methods for
differential testing [14,105] and metamorphic testing [65,106] are used.

Language-Based Testing for Knowledge Graphs 7

3 Testing Knowledge Graph Applications

Classifying Knowledge Graph Applications. There are numerous applications
operating on knowledge graphs and ontologies, and as the concrete testing strat-
egy depends on the program, we distinguish three classes of software. In the
following, we focus on the RDF/OWL technology stack.

Generic Tools: Generic tools take as input any knowledge graph or ontology
as defined by the RDF or OWL standards for input syntaxes. APIs such
as the OWL-API [47] and frameworks such as Apache Jena fall under this
class, including their parsers and generic functions. Similarly, editors such
as Protégé [68] fall under this class.

Specialized Tools: Specialized tools take as input any knowledge graph or on-
tology in an OWL profile or RDF that is defined explicitly and outside the
tool. For example, EL reasoners take as input any ontology in the OWL EL
profile, which is specified as part of the standard. Similarly, knowledge graph
construction tools may assume that the input confirms to a certain vocabu-
lary [21], and SHACL shapes may be employed to enforce this assumption.
Such tools build on generic tools.

Integrated Applications: An integrated application is a program where the
knowledge graph or ontology is not the main input, but an auxiliary input.
Testing integrated applications is most complex for both input generation
and testing oracle. The input is a subset of RDF/OWL that is not explicitly
defined and explicit testing oracles require knowledge of the application.

We conduct two fuzzing campaigns, one for generic tools, one for specialized
tools, namely EL reasoners. For integrated applications, we refer to John et
al. [55], where several case studies illustrate the challenges and possible solutions.

Campaign 1: RDF-TTL. Campaign 1 focuses on generic tools, namely the RDF
Turtle parsers of the OWL-API and Apache Jena, the most widely used open
source tools. As the basis for the ISLa specification, we use the grammar and
restrictions for RDF 1.1 Turtle, which are provided in the corresponding standard
[16, Sec. 6.5]. The campaign uses the implicit crash oracle to check whether we
can crash the parser.

Campaign 2: OWL EL. Campaign 2 focuses on specialized tools, namely the
three EL reasoners bundled with Protégé, which is the most widely used editor:
HermiT [35], ELK [59] and Pellet [89]. EL reasoners are assumed to be stable [74],
so we assume that less blocking bugs will occur by restricting the input ontologies
to the OWL EL profile. As input, we generate random ontologies in the OWL
EL profile, using the functional syntax of OWL, and with a restricted number of
IRIs. As the basis for the ISLa specification, we use the grammar for ontologies in
the OWL EL profile, which is provided in the corresponding standard [48, Sec. 2,
Sec. 6]. Figure 1 shows a simplified excerpt of the grammar that we provided to
ISLa. We included all non-terminals described in the grammar from the standard
and thus are able to produce all structures of ontologies in the OWL EL profile.

8 John et al.

<ontology> ::= "Ontology (" <declarations> " " <axioms> ")"
<axioms> ::= <axiom> | <axiom> "\n" <axioms>
<axiom> ::= <classAxiom> | <assertion> | <dataTypeDefinition> | [...]
<classAxiom> ::= <subClassOf> | <equivClasses> | <disjointClasses> | [...]
<equivClasses> ::= "EquivalentClasses(" <classExpr> " " <classExpr> ")"
<classExpr> ::= <Class> | <objectOneOf> | <dataHasValue> | [...]
<objectOneOf> ::= "ObjectOneOf(" <Individual> ")"
<dataHasValue> ::= "DataHasValue(" <ObjectProperty> " " <literal> ")"
<literal> ::= <typedLiteral> | <stringNoLang> | <stringWithLang>
<stringNoLang> ::= <QuotedString>
<stringWithLang> ::= <QuotedString> <LanguageTag>

Fig. 1. Excerpt from the grammar for our RDF-TTL campaign.

We employ two differential testing oracles: (1) we ask all reasoners to check the
input for consistency, and (2) we ask all reasoners to derive all possible axioms
and check whether they derive the same.

If any of the reasoners answers differently, we investigate manually which
answer is wrong. As an additional target, we also use the ontology as input to
the classifier of the OWL-API to check whether the API correctly detects that
it is in the OWL EL profile.

4 Application

In the following, we describe the two testing campaigns in detail. The test case
generators for the two testing campaigns are implemented based on ISLa. The
oracle for both campaigns, which calls the different system-under-test and logs
anomalies, is implemented using Java. The implementation, including the ISLa
grammars and constraints, the test cases, logged anomalies and produced bug
reports, is available online [56]. During the setup of the testing pipeline, we run
the initial experiments on a personal computer with an Intel i7-1165G7 CPU
@ 2.80GHz running Ubuntu 22.04 with a RAM limit of 8GB. The main test
runs are performed on a server with an Intel Xeon Gold 6240 CPU @ 2.60GHz
running Ubuntu 22.04 with a RAM limit of 4GB.

4.1 RDF-TTL Testing Campaign

Test Case Generator. To set up the test case generator for the RDF 1.1 Turtle
file format [16], we slightly modify the grammar: First, we exclude SPARQL-
style prefix definitions, as this triggers an already known bug [72, issue 1149],
which would be a blocking bug. Secondly, we restrict the grammar to use a fixed
set of literals, i.e. IRIs, numbers, strings, blank node labels, language tags and
prefixes. This is to enforce that the same symbols are used in several axioms,
as ISLa otherwise generates inputs where each symbol is used once. Thirdly, we

https://github.com/owlcs/owlapi/issues/1149

Language-Based Testing for Knowledge Graphs 9

modify the starting rule to generate at least ten statements and add all prefix
definitions in the beginning. This is to avoid a discovered issue during initial
testing (see below).

Systems-under-Test and Procedure. We test the Turtle parser of the OWL-API
(version 5.5.0) and the Turtle parser of Apache Jena (version 5.1.0). We use the
most recent versions of the tools at the time when the testing started. Already
while specifying the grammar, we identified an imprecision in the current RDF
Turtle standard that impacted the design of our test case generator. Initial test-
ing of the setup on a laptop revealed five issues, and we subsequently restricted
the grammar to not use the features that trigger some found anomalies. Finally,
we performed the main test run for 24 hours, producing and evaluating 27,665
test cases. This larger test run did not reveal additional anomalies. Thus, we
found anomalies resulting in five bug reports.

4.2 OWL EL Testing Campaign

Test Case Generator. We make similar adjustments to the grammar as before.
Firstly, we again restrict the grammar to use four different names for classes,
individuals, simple object properties, potentially non-simple object properties,
data properties, predefined data types, custom data types, language tags, strings,
annotation properties and annotation values, respectively. Secondly, the gram-
mar is modified to encode some of the constraints on the EL profile that are not
contained in the original grammar, e.g., the restrictions on complex roles and
the restriction on the minimal number of arguments for HasKey axioms. Initial
testing showed that the encoding in the grammar leads to faster generation times
than providing the constraints to ISLa. We do not encode all of the constraints,
namely that cyclic definitions of properties are forbidden and the global restric-
tions on the EL profile [48]. Thus, we also generated test cases that are not in
OWL EL, which the profile checker and reasoners are expected to reject.

Systems under Test. We test the reasoners HermiT (v.1.4.5.519), Pellet/Openllet
(v.2.6.5), ELK (v.0.6.0) and the EL-profile checker of the OWL-API (v.5.5.0).
We use the most recent versions of the tools at the time when the testing started.
We test two capabilities: checking the consistency of an ontology, and inferring
all axioms of the following types: SubClass, DisjointClasses, EquivalentClasses,
ClassAssertion, PropertyAssertion, SubObjectProp, SubDataProp, Equivalent-
ObjectProp, EquivalentDataProp, as well as characteristics of object and data
properties, e.g. functionaliy or symmetry. As the ELK reasoner does not support
the inference of all of these types of axioms, the oracle checks if the inferred
axioms of ELK are a subset of the axioms inferred by the other reasoners.

Test Procedure. Initial test runs already revealed some anomalies and for the
main test run, the oracle for the EL-profile checker is adjusted to not identify
the same anomalies again. The main test run was performed for 10 hours, pro-
ducing and evaluating 1,557 test cases. Out of those, 516 test cases contain at

10 John et al.

576

74

452

45

5

62
7
5

297

87

61
7

42
3

132

31
29
9

96

51
24
5
2

1
4

39
21
1

O5
O4

H5

H3

H4

O2
O1
O7
O4
O4

E1

H6
O6

consistency

inference

exception

not EL

HermiT*

Openllet*

ELK*

other

ELK*

HermiT*
Openllet*

HermiT
Openllet

other

other

other

Fig. 2. Classification of 576 found anomalies. Legend: * = result of this tool is outlier,
= anomaly is not a bug but due to limitations of the tools, italic labels = IDs from

Table 2 for bug in this class.

least one anomaly. The test cases are manually classified according to which
tools’ output does not conform to the output of the other tools and patterns in
the anomalies.Because of the high number of anomalies, not all anomalies were
investigated individually, instead we examined at least one test case in each class.

Some classes turn out to not be bugs of the reasoners but rather mirror
specific reasoning limitations of the reasoners. We do not examine unclassified
anomalies with very different behavior of the tools as this indicates the occur-
rence of several anomalies at the same time, which we already examine indi-
vidually in other classes. While investigating the anomalies, the input files are
simplified, i.e. axioms and parts of axioms that do not affect the result are re-
moved. Classes, individuals and properties are renamed to make the files easier
to understand. This last step can be seen as a form of metamorphic testing and
indeed revealed one of the bugs, which is discussed in detail in Section 4.3.

Found Anomalies. The initial test runs revealed eight anomalies in Openllet,
Hermit and the EL-profile checker. The main test run resulted in 16 classes con-
taining 576 anomalies. Out of those, 420 are proper anomalies, i.e. anomalies not
resulting from tool limitations. An overview of the classification of the anomalies
is depicted in Figure 2. Investigating representatives of the different classes of
anomalies lead to 15 newly discovered bugs in total.

4.3 Found Bugs

Overall, our testing methodology revealed 21 previously unknown bugs. Tables 1
and 2 provide an overview of these bugs. We found bugs in all systems that we

Language-Based Testing for Knowledge Graphs 11

Table 1. All bugs found in the RDF-TTL campaign. The issueIds refer to the corre-
sponding trackers for the OWL-API [72], Apache Jena [53] and RDF [81] Legend: S =
Soundness, D = Documentation, ◦ = confirmed, but not fixed. Only bug A4 is logical.

Tool/Std. ID IssueId Type Fixed? Summary

OWL-API
A4 1155 S Value for empty prefix set without definition
A5 1151 S ◦ Empty list not always parsed correctly
A6 1152 D ✓ Raised warning too unspecific

Apache Jena J1 2715 S ✓ Parsing some floating point numbers fails

RDF 1.1/1.2 R1 59 D ✓ Placing of prefix definitions not restricted

tested. In particular, all tested reasoners contain at least one of the found bugs.
We reported the bugs in 16 issues in the repositories of the tested tools, except
for HermiT where no bug tracker is publicly available. The detailed reports
for those bugs (as well as all other bugs) can be found in our supplementary
material [56]. One interesting observation is that most of the found bugs are
logical bugs, i.e. bugs that do not lead to any exception or warning but the
computed result is incorrect. Logical bugs are particularly important to find, as
there is no indication of their presence for users of the tools. To illustrate the
kinds of bugs we found, we discuss a few different classes of bugs using examples.

Imprecision of Standard. One bug (R1 in Table 1) was already discovered when
formalizing the grammar and constraints of the Turtle format. It is an under-
specification of the RDF 1.1 Turtle Standard that was also present in the working
draft for RDF 1.2 Turtle [101] at the time we performed the testing. The stan-
dard does not define whether used prefixes have to be defined before they are
used: It states that the prefix has to be defined outside its use, instead of before.
Due to our report, the working draft for RDF 1.2 Turtle has been clarified and
such input files are not allowed [100].

Parsing Files. Six of the discovered bugs occur in the tested parsers. One exam-
ple is shown in Figure 3 (1), which corresponds to A5 in Table 1. The file can not
be parsed due to the second line, which contains an empty relation for <iri1>.
Instead, an exception is thrown. A second example is shown in Figure 3 (2),
which corresponds to J1 in Table 1. The file can not be parsed by Apache Jena:
The combination of a sign followed by a dot, without having a leading zero,
is allowed according to the standard but could not be parsed by Apache Jena.
Instead, an exception is thrown.

Parser-related bugs were also found in the EL-checker of the OWL-API:
While the OWL EL profile allows the use of language tags, the parser combines
strings and attached language tags into one objects of type rdfs:langString. The
EL-check subsequently rejects the ontology because of the presence of this data
type, effectively forbidding the use of language tags.

https://github.com/owlcs/owlapi/issues/1155
https://github.com/owlcs/owlapi/issues/1151
https://github.com/owlcs/owlapi/issues/1152
https://github.com/apache/jena/issues/2715
https://github.com/w3c/rdf-turtle/issues/59

12 John et al.

Table 2. Bugs from the OWL EL campaign. ID refers to labels in Fig. 2. IssueId
refers to the corresponding issue trackers [27,71,72]. The bugs for HermiT can be found
in our supplementary material [56]. O1, H1, H2, A1, A2 and A3 were discovered during
initial testing (see Fig. 2). All but O6 and H6 are logical bugs. Legend: S = Soundness,
SC = Soundness (consistency), SI = Soundness (inference), C = Completeness, D =
Documentation, E = Exception.

Tool ID IssueId Task Type Summary

Pellet

O1 85 Reasoner SC Equivalence to bottom property is missing
when range of property is empty

O2 87 Reasoner SI Incorrectly infers asymmetry of property
from a single triple

O3 88 Reasoner SI Incorrect equivalence with bottom class
O4 89 Reasoner S Renaming of variables leads to change in

consistency check
O5 90 Reasoner SC Ignores language tags when checking for

equivalence of literals
O6 91 Reasoner E Null-pointer exception on invocation
O7 92 Reasoner SI Incorrectly infers irreflexivity of property

from single triple

ELK E1 71 Reasoner SC Ignores language tags when considering
equivalence of literals.

HermiT

H1 — Reasoner C Missing owl:Thing class assertion of de-
clared individual when no class is declared

H2 — Reasoner D Warning about malformed input missing
and computed result has SI issue

H3 — Reasoner C Functionality of property missing when
property range is a singleton

H4 — Reasoner SI Incorrect sub-object-property relation
caused by unrelated subclass axiom

H5 — Reasoner C Data-property assertion missing when us-
ing singleton in equivalent-classes axiom

H6 — Reasoner E Exception when using only rdfs:Literal in
data-type intersection

OWL-API
A1 1158 Parser S Forbidden data type is wrongly detected

because of incorrect parsing of string with
language tag as rdfs:langString

A2 1159 Parser D Too few arguments are detected because
the list of arguments is interpreted as set

A3 1160 EL-Checker S Defining new data type is incorrectly
marked as violation (only use is forbidden)

Consistency. Four bugs are cases where the reasoners do not correctly assess the
consistency of the ontology. We found three such bugs in Pellet/Openllet and
one in ELK. The latter (E1 in Table 2) is shown in Figure 4. The ontology is
wrongly classified as inconsistent by ELK: The root cause for the bug is again an

https://github.com/Galigator/openllet/issues/85
https://github.com/Galigator/openllet/issues/87
https://github.com/Galigator/openllet/issues/88
https://github.com/Galigator/openllet/issues/89
https://github.com/Galigator/openllet/issues/90
https://github.com/Galigator/openllet/issues/91
https://github.com/Galigator/openllet/issues/92
https://github.com/liveontologies/elk-reasoner/issues/71
https://github.com/owlcs/owlapi/issues/1158
https://github.com/owlcs/owlapi/issues/1159
https://github.com/owlcs/owlapi/issues/1160

Language-Based Testing for Knowledge Graphs 13

<iri1> <iri2> <iri3> ; ; .

(bug A5)

<iri1> <iri2> +.7 .

(bug J1)

Fig. 3. Turtle files that trigger bugs in parsers: (A5) OWL-API, (J1) Apache Jena

Prefix(:=<http://www.example.org/reasonerTester#>)
Ontology (

Declaration(Class(:B)) Declaration(Class(:A))
Declaration(DataProperty(:dr)) Declaration(NamedIndividual(:a))
EquivalentClasses(DataHasValue(:dr "s1"@fr) :A :B)
DisjointClasses(DataHasValue(:dr "s1"@en) :A)
ClassAssertion(:B :a))

Fig. 4. Consistency bug in ELK (bug E1)

insufficient treatment of the language tags. ELK treats the two strings "s1"@fr
and "s1"@en as the same entity, even though they must be treated as different
literals. This leads to the incorrect inference that :B is an empty class and, due
to the class assertion ClassAssertion(:B :a), that the ontology is inconsistent.

One consistency bug for Openllet/Pellet (O5) is shown in Figure 5. The
ontology contains a functional data property :dp. Hence, the intersection of the
two classes described with DataHasValue is empty and therefore both cannot be
equivalent to owl:Thing. Despite this, Openllet classifies the ontology incorrectly
as consistent. The consistency assessment is correct, if one removes the language
tag @en. Therefore, this bug is also due to incorrect handling of language tags.

Soundness of Inference. Five of the bugs are cases where the reasoners infer ax-
ioms that are not entailed by the ontology. These bugs were found in HermiT and
Pellet/Openllet. Figure 6 shows one occurrence of such a bug for Pellet/Openl-
let, which corresponds to O4 in Table 2. The ontology contains only one axiom
and declares an individual :a that is not mentioned in the axiom. Nevertheless,
it is inferred that the axiom ClassAssertion(:C :a) is entailed by the ontology.
Interestingly, changing the name of the declared class, the individuals or the
properties leads to a correct inference, i.e., the bug disappears. We see this puz-
zling behavior of Pellet/Openllet for several different inputs, some of which lead
to an incorrect consistency assessment.

Prefix(:=<http://www.example.org/reasonerTester#>)
Ontology (

Declaration(DataProperty(:dp)) FunctionalDataProperty(:dp)
EquivalentClasses(owl:Thing DataHasValue(:dp "s1"@en) DataHasValue(:dp "s2")))

Fig. 5. Consistency bug in Pellet/Openllet (bug O5)

14 John et al.

Prefix(:=<http://www.example.org/reasonerTester#>)
Ontology (

Declaration(Class(:C)) Declaration(ObjectProperty(:qsim))
Declaration(NamedIndividual(:a)) Declaration(NamedIndividual(:d))
EquivalentClasses(ObjectHasSelf(:qsim) ObjectOneOf(:d) :C))

Fig. 6. Inference/soundness bug in Pellet/Openllet (bug O4)

Prefix(:=<http://www.example.org/reasonerTester#>)
Ontology (

Declaration(DataProperty(:dp)) Declaration(NamedIndividual(:a))
EquivalentClasses(ObjectOneOf(:a) DataHasValue(:dp "data")))

Fig. 7. Inference bug: completeness bug in HermiT (bug H5)

Completeness of Inference. Three of the bugs are cases where the reasoners do
not infer an axiom although it is entailed by the ontology. All these bugs were
found in HermiT. Figure 7 shows one input, which corresponds to H5 in Table 2.
The ontology defines a data property :dp and an individual :a. Furthermore,
two classes are the same: (i) the class containing only the individual :a and
(ii) the class of individuals occurring as the subject in an assertion with the
data property :dp and the object "data". One can therefore infer the assertion
DataPropertyAssertion(:dp :a "data") from the ontology. However, HermiT does
not infer the axiom when asked to compute all inferred assertions.

5 Discussion

Effects in Bug Finding. As to be expected, we found bugs in parts of the gram-
mars which are less often used in general, in particular language tags. However,
it was not expected that several issues are related to different interpretations of
the standard (cf. R1) or are part of the field folklore but are not documented in
an obvious place (cf. A2 the issue that the grammar defines arguments as lists
of parameters, but the parser silently converts them into a set).

Several issues were related to documentation, where the error report was due
to incorrect usage of the tool, but did not point out what exactly the problem is
(cf. H6). In fact, unclear error messages are a common problem that goes deeper
than wording, but also touches on exposure of concepts [99], and we see these
results as a first indication that this is also the case for knowledge graphs.

One might assume that unsound inferences would always lead to wrong con-
sistency classifications, but changing the input to detect such a consistency bug
failed for HermiT. When we added axioms to achieve inconsistency, the set of
inferred axioms did indeed become inconsistent, but when asked for consistency
of the ontology the result was still correct. We did succeed constructing a consis-
tency bug for ELK (E1) from an unsound inference. This indicates that further
testing efforts for reasoners will require more in-depth knowledge about internals.

Language-Based Testing for Knowledge Graphs 15

Limitations. While we discovered bugs in all involved tools, and uncovered an
imprecision in the RDF-TTL 1.1 standard, our work does not give an overview
over the state of software quality for knowledge graphs or ontologies. Neither did
we consider commercial tools or conducted a systematic approach to selection of
the tested software, nor did we cover all functions of the tools that we selected.
Similarly, the oracles are kept simple. Our aim is to demonstrate that software
quality in applications on knowledge graphs and ontologies can be improved
using automated testing with acceptable effort to do so, and the found bugs and
ease of setup confirm that this is indeed the case.

Actionable Insights. The first insight gained from our study is that automated
testing with derived oracles can be setup with little effort, thus increasing the
quality of the tools in knowledge graph and ontology research. For the generic
and specialized tool classes, grammars are reusable; for example, any tool op-
erating on EL ontologies can build on the grammar and constraints presented
here. Implicit oracles do not require any setup, and differential testing is easily
applicable whenever a new software is evaluated against other tools. Thus, even
academic software, often suffering from quality and maintenance problems, can
be improved without much training in testing or software development. Further-
more, we see a great potential in metamorphic testing, especially for reasoners.
As one of the bugs above witnesses, renaming variables can lead to differences
in the classification, but closure under renaming of variables or reordering of
axioms is a property that should be assumed for any reasoner.

The second insight is that fuzzing can be used to increase the overall quality
of software in the field, thus increasing the confidence in the tools and avoiding
compromising the results of studies that build on them. For specialized applica-
tions and specified test oracles, developers must be involved, but such campaigns
can be conducted by others to lessen the load of work on the developers.

6 Conclusion

Software reliability, or software quality in general, is an underestimated and
underappreciated factor when it comes to knowledge graphs, yet reliability is
critical for the acceptance of this technology. This work is the first systematic
bug finding study for this class of software and reports on bugs in all consid-
ered tools and imprecisions in standards and documentation. This demonstrates
that automated testing has reached a state where it can be applied to graph
data. Based on our actionable insights and discussion of the specific challenges
of bugs in presence of reasoning, we hope that the quality of the software tai-
lored to handling ontologies and knowledge graphs can be increased. For future
work, it remains to investigate further testing techniques, in particular greybox
fuzzing [10] and other approaches that are building on coverage to estimate how
much of the program has been already tested.

Acknowledgments. This work was partially supported by the EU projects REMARO
(956200) and SM4RTENANCE (101123490).

16 John et al.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews
of modern physics 74(1), 47 (2002)

2. Alvaro, P., Rigger, M.: Automatically testing database systems: DBMS testing
with test oracles, transaction history, and fuzzing. ACM Queue 21(6), 128–135
(2024)

3. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies
for automated software test case generation. J. Syst. Softw. 86(8), 1978–2001
(2013)

4. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: LinkBench:
a database benchmark based on the Facebook social graph. In: Interna-
tional Conference on Management of Data (SIGMOD Conference). pp. 1185–
1196. ACM (2013). https://doi.org/10.1145/2463676.2465296, https://doi.org/
10.1145/2463676.2465296

5. Ba, J., Rigger, M.: Keep it simple: Testing databases via differential query plans.
Proc. ACM Manag. Data 2(3), 188 (2024)

6. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat,
N.: gMark: Schema-driven generation of graphs and queries. IEEE Trans. Knowl.
Data Eng. 29(4), 856–869 (2017). https://doi.org/10.1109/TKDE.2016.2633993,
https://doi.org/10.1109/TKDE.2016.2633993

7. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: A survey. IEEE Trans. Software Eng. 41(5), 507–525 (2015)

8. Béra, C., Miranda, E., Denker, M., Ducasse, S.: Practical validation of bytecode to
bytecode JIT compiler dynamic deoptimization. J. Object Technol. 15(2), 1:1–26
(2016). https://doi.org/10.5381/JOT.2016.15.2.A1

9. Binnig, C., Kossmann, D., Lo, E., Özsu, M.T.: QAGen: Generating query-aware
test databases. In: International Conference on Management of Data (SIGMOD
Conference). pp. 341–352. ACM (2007). https://doi.org/10.1145

10. Böhme, M., Pham, V., Nguyen, M., Roychoudhury, A.: Directed greybox fuzzing.
In: Conference on Computer and Communications Security (CCS’17). pp. 2329–
2344. ACM (2017)

11. Böhme, M., Pham, V., Roychoudhury, A.: Coverage-Based Greybox Fuzzing as
Markov Chain. IEEE Trans. Software Eng. 45(5), 489–506 (2019). https://doi.
org/10.1109/TSE.2017.2785841

12. Boujarwah, A.S., Saleh, K., Al-Dallal, J.: Testing syntax and semantic coverage
of Java language compilers. Inf. Softw. Technol. 41(1), 15–28 (1999). https://
doi.org/10.1016/S0950-5849(98)00075-5

13. Bringolf, M., Winterer, D., Su, Z.: Finding and understanding incompleteness
bugs in SMT solvers. In: International Conference on Automated Software Engi-
neering (ASE). pp. 43:1–43:10. ACM (2022)

14. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Pro-
ceedings of the 7th International Workshop on Satisfiability Modulo Theories.
pp. 1–5 (2009)

15. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and Automatic Gen-
eration of High-Coverage Tests for Complex Systems Programs. In: Symposium
on Operating Systems Design and Implementation (OSDI 2008). pp. 209–224.
USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/full_
papers/cadar/cadar.pdf

https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.5381/JOT.2016.15.2.A1
https://doi.org/10.5381/JOT.2016.15.2.A1
https://doi.org/10.1145
https://doi.org/10.1145
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1016/S0950-5849(98)00075-5
https://doi.org/10.1016/S0950-5849(98)00075-5
https://doi.org/10.1016/S0950-5849(98)00075-5
https://doi.org/10.1016/S0950-5849(98)00075-5
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

Language-Based Testing for Knowledge Graphs 17

16. Carothers, G., Prud’hommeaux, E.: RDF 1.1 Turtle. W3C recommendation, W3C
(Feb 2014), https://www.w3.org/TR/2014/REC-turtle-20140225/

17. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph
mining. In: International Conference on Data Mining. pp. 442–446. SIAM (2004).
https://doi.org/10.1137/1.9781611972740.43

18. Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., Zhang, L.: A
Survey of Compiler Testing. ACM Computing Surveys 53(1), 1–36 (Jan 2021).
https://doi.org/10.1145/3363562

19. Chen, T.Y., Cheung, S., Yiu, S.: Metamorphic testing: A new approach for gen-
erating next test cases. CoRR abs/2002.12543 (2020), https://arxiv.org/abs/
2002.12543

20. Collarana, D., Galkin, M., Lange, C., Scerri, S., Auer, S., Vidal, M.: Synthesizing
knowledge graphs from web sources with the MINTE+ framework. In: Interna-
tional Semantic Web Conference (ISWC 2018) , Part II. LNCS, vol. 11137, pp.
359–375. Springer (2018). https://doi.org/10.1007/978-3-030-00668-6_22

21. Conde-Herreros, D., Stork, L., Pernisch, R., Poveda-Villalón, M., Corcho, Ó.,
Chaves-Fraga, D.: Propagating ontology changes to declarative mappings in con-
struction of knowledge graphs. In: International Workshop on Knowledge Graph
Construction (KGCW@ESWC). CEUR Workshop Proceedings, vol. 3718. CEUR-
WS.org (2024)

22. Cui, Z., Dou, W., Dai, Q., Song, J., Wang, W., Wei, J., Ye, D.: Differentially
Testing Database Transactions for Fun and Profit. In: International Conference
on Automated Software Engineering (ASE). pp. 35:1–35:12 (2022). https://doi.
org/10.1145/3551349.3556924

23. de la Riva, C., Suárez-Cabal, M.J., Tuya, J.: Constraint-based test database gen-
eration for SQL queries. In: Workshop on Automation of Software Test. pp. 67–74.
ACM (2010). https://doi.org/10.1145/1808266.1808276

24. Demeyer, S., Roover, C.D., Beyazit, M., Härtel, J.: Threats to instrument validity
within "in silico" research: Software engineering to the rescue. In: Leveraging Ap-
plications of Formal Methods, Verification and Validation. Software Engineering
Methodologies ISoLA (4). LNCS, vol. 15222, pp. 82–96. Springer (2024)

25. Donaldson, A.F., Evrard, H., Lascu, A., Thomson, P.: Automated testing of
graphics shader compilers. Proc. ACM Program. Lang. 1(OOPSLA), 93:1–93:29
(2017). https://doi.org/10.1145/3133917

26. Dong, X.L.: Generations of knowledge graphs: The crazy ideas and the business
impact. Proc. VLDB Endow. 16(12), 4130–4137 (2023)

27. Elk reasoner, issue tracker, https://github.com/liveontologies/elk-reasoner/
issues

28. Erdős, P., Rényi, A.: On random graphs I. Publ. math. debrecen 6(290-297), 18
(1959)

29. Feng, Z., Mayer, W., He, K., Kwashie, S., Stumptner, M., Grossmann, G., Peng,
R., Huang, W.: A schema-driven synthetic knowledge graph generation approach
with extended graph differential dependencies (GDDxs). IEEE Access 9, 5609–
5639 (2021)

30. Fioraldi, A., Maier, D.C., Eißfeldt, H., Heuse, M.: AFL++: Combining In-
cremental Steps of Fuzzing Research. In: Workshop on Offensive Technolo-
gies (WOOT). USENIX Association (2020), https://www.usenix.org/conference/
woot20/presentation/fioraldi

31. Foundation, A.S.: Apache Jena, available at: https://jena.apache.org/, accessed
19-July-2008

https://www.w3.org/TR/2014/REC-turtle-20140225/
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1007/978-3-030-00668-6_22
https://doi.org/10.1007/978-3-030-00668-6_22
https://doi.org/10.1145/3551349.3556924
https://doi.org/10.1145/3551349.3556924
https://doi.org/10.1145/3551349.3556924
https://doi.org/10.1145/3551349.3556924
https://doi.org/10.1145/1808266.1808276
https://doi.org/10.1145/1808266.1808276
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3133917
https://github.com/liveontologies/elk-reasoner/issues
https://github.com/liveontologies/elk-reasoner/issues
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://jena.apache.org/

18 John et al.

32. Gao, W., Pham, V., Liu, D., Chang, O., Murray, T., Rubinstein, B.I.P.: Beyond
the Coverage Plateau: A Comprehensive Study of Fuzz Blockers (Registered Re-
port). In: International Fuzzing Workshop (FUZZING). pp. 47–55. ACM (2023).
https://doi.org/10.1145/3605157.3605177

33. Garoche, P., Howar, F., Kahsai, T., Thirioux, X.: Testing-based compiler val-
idation for synchronous languages. In: Symposium on NASA Formal Methods
(NFM). LNCS, vol. 8430, pp. 246–251. Springer (2014). https://doi.org/10.1007/
978-3-319-06200-6_19

34. Ghit, B., Poggi, N., Rosen, J., Xin, R., Boncz, P.A.: SparkFuzz: Searching
correctness regressions in modern query engines. In: International Workshop
on Testing Database Systems (DBTest@SIGMOD 2020). pp. 1:1–1:6 (2020).
https://doi.org/10.1145/3395032.3395327

35. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

36. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random
Testing. In: Conference on Programming Language Design and Implementation
(PLDI). pp. 213–223. ACM (2005). https://doi.org/10.1145/1065010.1065036

37. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: Whitebox Fuzzing for Security
Testing. Commun. ACM 55(3), 40–44 (2012). https://doi.org/10.1145/2093548.
2093564

38. Gottschalk, S., Demidova, E.: Tab2KG: Semantic table interpretation with
lightweight semantic profiles. Semantic Web 13(3), 571–597 (2022). https://doi.
org/10.3233/SW-222993

39. Gutierrez, C., Sequeda, J.F.: Knowledge graphs. Commun. ACM 64(3), 96–104
(2021)

40. Hanford, K.V.: Automatic generation of test cases. IBM Syst. J. 9(4), 242–257
(1970). https://doi.org/10.1147/SJ.94.0242

41. Havrikov, N.: Grammar-based fuzzing using input features. Ph.D. thesis, Saar-
land University, Saarbrücken, Germany (2021), https://publikationen.sulb.
uni-saarland.de/handle/20.500.11880/32722

42. Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L.,
Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? static cross-
version compiler validation. In: Joint Meeting of the European Software Engi-
neering Conference and the Symposium on the Foundations of Software Engineer-
ing, (ESEC/FSE). pp. 191–201. ACM (2013). https://doi.org/10.1145/2491411.
2491442

43. Hitzler, P.: A review of the semantic web field. Commun. ACM 64(2), 76–83
(2021). https://doi.org/10.1145/3397512

44. Hodován, R., Kiss, Á., Gyimóthy, T.: Grammarinator: a grammar-based open
source fuzzer. In: International Workshop on Automating TEST Case Design,
Selection, and Evaluation (A-TEST@SIGSOFT FSE. pp. 45–48. ACM (2018).
https://doi.org/10.1145/3278186.3278193

45. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutierrez, C.,
Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.N., Polleres, A.,
Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J.F., Staab, S., Zimmermann,
A.: Knowledge graphs. ACM Comput. Surv. 54(4), 71:1–71:37 (2022)

46. Holler, C., Herzig, K., Zeller, A.: Fuzzing with Code Fragments. In: USENIX Secu-
rity Symposium. pp. 445–458. USENIX Association (2012), https://www.usenix.
org/conference/usenixsecurity12/technical-sessions/presentation/holler

https://doi.org/10.1145/3605157.3605177
https://doi.org/10.1145/3605157.3605177
https://doi.org/10.1007/978-3-319-06200-6_19
https://doi.org/10.1007/978-3-319-06200-6_19
https://doi.org/10.1007/978-3-319-06200-6_19
https://doi.org/10.1007/978-3-319-06200-6_19
https://doi.org/10.1145/3395032.3395327
https://doi.org/10.1145/3395032.3395327
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.3233/SW-222993
https://doi.org/10.3233/SW-222993
https://doi.org/10.3233/SW-222993
https://doi.org/10.3233/SW-222993
https://doi.org/10.1147/SJ.94.0242
https://doi.org/10.1147/SJ.94.0242
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/32722
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/32722
https://doi.org/10.1145/2491411.2491442
https://doi.org/10.1145/2491411.2491442
https://doi.org/10.1145/2491411.2491442
https://doi.org/10.1145/2491411.2491442
https://doi.org/10.1145/3397512
https://doi.org/10.1145/3397512
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1145/3278186.3278193
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler

Language-Based Testing for Knowledge Graphs 19

47. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL
2 ontologies. In: International Workshop on OWL: Experiences and Directions
OWLED. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

48. Horrocks, I., Wu, Z., Grau, B.C., Fokoue, A., Motik, B.: OWL 2 web ontol-
ogy language profiles (second edition). W3C recommendation, W3C (Dec 2012),
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211

49. Houkjær, K., Torp, K., Wind, R.: Simple and realistic data generation. In: Inter-
national Conference on Very Large Data Bases (VLDB). pp. 1243–1246 (2006)

50. Hua, Z., Lin, W., Ren, L., Li, Z., Zhang, L., Jiao, W., Xie, T.: GDsmith: Detecting
bugs in cypher graph database engines. In: International Symposium on Software
Testing and Analysis (ISSTA). pp. 163–174. ACM (2023). https://doi.org/10.
1145/3597926.3598046

51. Hubert, N., Monnin, P., d’Aquin, M., Monticolo, D., Brun, A.: Pygraft: Config-
urable generation of synthetic schemas and knowledge graphs at your fingertips.
In: The Semantic Web - International Conference ESWC (2). LNCS, vol. 14665,
pp. 3–20. Springer (2024)

52. Ileri, A.M., McGinty, H.: VEL: A formally verified reasoner for EL++ descrip-
tion logic. In: International Semantic Web Conference ISWC (Posters/Demos/In-
dustry). International Workshop on OWL: Experiences and Directions, CEUR
Workshop Proceedings, vol. 3828. CEUR-WS.org (2024)

53. Apache Jena, issue tracker, https://github.com/apache/jena/issues
54. Jiang, Y., Liu, J., Ba, J., Yap, R.H.C., Liang, Z., Rigger, M.: Detecting logic bugs

in graph database management systems via injective and surjective graph query
transformation. In: International Conference on Software Engineering (ICSE). pp.
46:1–46:12. ACM (2024). https://doi.org/10.1145/3597503.3623307

55. John, T., Johnsen, E.B., Kamburjan, E.: Mutation-based integration testing of
knowledge graph applications. In: International Symposium on Software Relia-
bility Engineering (ISSRE). pp. 475–486. ACM (2024). https://doi.org/10.1109/
ISSRE62328.2024.00052

56. John, T., Johnsen, E.B., Kamburjan, E., Steinhöfel, D.: Supplementary material
for paper "Language-based testing for knowledge graphs", Zenodo (Jan 2025).
https://doi.org/10.5281/zenodo.14512591

57. Jung, J., Hu, H., Arulraj, J., Kim, T., Kang, W.H.: APOLLO: Automatic Detec-
tion and Diagnosis of Performance Regressions in Database Systems. Proc. VLDB
Endow. 13(1), 57–70 (2019)

58. Kamm, M., Rigger, M., Zhang, C., Su, Z.: Testing Graph Database Engines via
Query Partitioning. In: International Symposium on Software Testing and Analy-
sis (ISSTA). pp. 140–149. ACM (2024). https://doi.org/10.1145/3597926.3598044

59. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reason. 53(1),
1–61 (2014)

60. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs.
In: Conference on Programming Language Design and Implementation (PLDI).
pp. 216–226. ACM (2014). https://doi.org/10.1145/2594291.2594334

61. Le, V., Sun, C., Su, Z.: Finding deep compiler bugs via guided stochastic program
mutation. In: Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA 2015). pp. 386–399. ACM (2015). https://doi.org/10.1145/2814270.2814319

62. Lindig, C.: Random testing of C calling conventions. In: International Workshop
on Automated Debugging (AADEBUG). pp. 3–12. ACM (2005). https://doi.
org/10.1145/1085130.1085132

https://www.w3.org/TR/2012/REC-owl2-profiles-20121211
https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1145/3597926.3598046
https://github.com/apache/jena/issues
https://doi.org/10.1145/3597503.3623307
https://doi.org/10.1145/3597503.3623307
https://doi.org/10.1109/ISSRE62328.2024.00052
https://doi.org/10.1109/ISSRE62328.2024.00052
https://doi.org/10.1109/ISSRE62328.2024.00052
https://doi.org/10.1109/ISSRE62328.2024.00052
https://doi.org/10.5281/zenodo.14512591
https://doi.org/10.5281/zenodo.14512591
https://doi.org/10.1145/3597926.3598044
https://doi.org/10.1145/3597926.3598044
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1145/1085130.1085132

20 John et al.

63. Liu, S., Lan, J., Du, X., Li, J., Lu, W., Jiang, J., Du, X.: Testing Graph Database
Systems with Graph-State Persistence Oracle. In: International Symposium on
Software Testing and Analysis (ISSTA). pp. 666–677. ACM (2024). https://doi.
org/10.1145/3650212.3680311

64. Lu, Y., Hou, W., Pan, M., Li, X., Su, Z.: Understanding and finding Java decom-
piler bugs. Proc. ACM Program. Lang. 8(OOPSLA1), 1380–1406 (2024)

65. Mansur, M.N., Christakis, M., Wüstholz, V., Zhang, F.: Detecting critical bugs
in SMT solvers using blackbox mutational fuzzing. In: Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE). pp. 701–712. ACM (2020). https://doi.org/10.1145/3368089.
3409763

66. Miller, B.P., Fredriksen, L., So, B.: An Empirical Study of the Reliability of UNIX
Utilities. Commun. ACM 33(12), 32–44 (1990). https://doi.org/10.1145/96267.
96279

67. Miller, G.: A scientist’s nightmare: Software problem leads to five retractions. Sci-
ence 314(5807), 1856–1857 (2006). https://doi.org/10.1126/science.314.5807.
1856, https://www.science.org/doi/abs/10.1126/science.314.5807.1856

68. Musen, M.A.: The Protégé project: A look back and a look forward. AI Matters
1(4), 4–12 (2015). https://doi.org/10.1145/2757001.2757003

69. Nagai, E., Hashimoto, A., Ishiura, N.: Reinforcing random testing of arithmetic
optimization of C compilers by scaling up size and number of expressions. IPSJ
Trans. Syst. LSI Des. Methodol. 7, 91–100 (2014). https://doi.org/10.2197/
IPSJTSLDM.7.91

70. Ofenbeck, G., Rompf, T., Püschel, M.: Randir: differential testing for embedded
compilers. In: Symposium on Scala (SCALA@SPLASH). pp. 21–30. ACM (2016).
https://doi.org/10.1145/2998392.2998397

71. Openllet, issue tracker, https://github.com/Galigator/openllet/issues
72. OWL-API, issue tracker, https://github.com/owlcs/owlapi/issues
73. Park, H., Kim, M.: Trilliong: A trillion-scale synthetic graph generator using a re-

cursive vector model. In: International Conference on Management of Data (SIG-
MOD Conference). pp. 913–928. ACM (2017). https://doi.org/10.1145/3035918.
3064014

74. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The
OWL reasoner evaluation (ORE) 2015 competition report. J. Autom. Reason.
59(4), 455–482 (2017). https://doi.org/10.1007/S10817-017-9406-8

75. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.:
The OWL Reasoner Evaluation (ORE) 2015 Competition Report. Journal of
Automated Reasoning 59(4), 455–482 (Dec 2017). https://doi.org/10.1007/
s10817-017-9406-8

76. Pham, M., Boncz, P.A., Erling, O.: S3G2: A scalable structure-correlated so-
cial graph generator. In: Performance Evaluation and Benchmarking: TPC Tech-
nology Conference (TPCTC). LNCS, vol. 7755, pp. 156–172. Springer (2012).
https://doi.org/10.1007/978-3-642-36727-4_11

77. Portisch, J., Paulheim, H.: The DLCC node classification benchmark for analyzing
knowledge graph embeddings. In: International Semantic Web Conference (ISWC
2022). LNCS, vol. 13489, pp. 592–609. Springer (2022). https://doi.org/10.1007/
978-3-031-19433-7_34

78. Purdom, P.: A sentence generator for testing parsers. BIT Numerical Mathematics
12, 366–375 (1972)

https://doi.org/10.1145/3650212.3680311
https://doi.org/10.1145/3650212.3680311
https://doi.org/10.1145/3650212.3680311
https://doi.org/10.1145/3650212.3680311
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1126/science.314.5807.1856
https://doi.org/10.1126/science.314.5807.1856
https://doi.org/10.1126/science.314.5807.1856
https://doi.org/10.1126/science.314.5807.1856
https://www.science.org/doi/abs/10.1126/science.314.5807.1856
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.2197/IPSJTSLDM.7.91
https://doi.org/10.2197/IPSJTSLDM.7.91
https://doi.org/10.2197/IPSJTSLDM.7.91
https://doi.org/10.2197/IPSJTSLDM.7.91
https://doi.org/10.1145/2998392.2998397
https://doi.org/10.1145/2998392.2998397
https://github.com/Galigator/openllet/issues
https://github.com/owlcs/owlapi/issues
https://doi.org/10.1145/3035918.3064014
https://doi.org/10.1145/3035918.3064014
https://doi.org/10.1145/3035918.3064014
https://doi.org/10.1145/3035918.3064014
https://doi.org/10.1007/S10817-017-9406-8
https://doi.org/10.1007/S10817-017-9406-8
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.1007/978-3-642-36727-4_11
https://doi.org/10.1007/978-3-642-36727-4_11
https://doi.org/10.1007/978-3-031-19433-7_34
https://doi.org/10.1007/978-3-031-19433-7_34
https://doi.org/10.1007/978-3-031-19433-7_34
https://doi.org/10.1007/978-3-031-19433-7_34

Language-Based Testing for Knowledge Graphs 21

79. Püroja, D., Waudby, J., Boncz, P.A., Szárnyas, G.: The LDBC social network
benchmark interactive workload v2: A transactional graph query benchmark
with deep delete operations. In: Performance Evaluation and Benchmarking:
TPC Technology Conference (TPCTC). LNCS, vol. 14247, pp. 107–123. Springer
(2023). https://doi.org/10.1007/978-3-031-68031-1_8

80. Raynaud, T., Amir, S., Haque, R.: A generic and high-performance RDF instance
generator. Int. J. Web Eng. Technol. 11(2), 133–152 (2016). https://doi.org/10.
1504/IJWET.2016.077342

81. RDF 1.2 Turtle standard, issue tracker, https://github.com/w3c/rdf-turtle/
issues

82. Rigger, M., Su, Z.: Finding bugs in database systems via query partitioning.
Proc. ACM Program. Lang. 4(OOPSLA), 211:1–211:30 (2020). https://doi.org/
10.1145/3428279

83. Rigger, M., Su, Z.: Testing Database Engines via Pivoted Query Synthesis. In:
Symposium on Operating Systems Design and Implementation (OSDI). pp. 667–
682 (2020)

84. Samanta, B., De, A., Jana, G., Gómez, V., Chattaraj, P.K., Ganguly, N., Gomez-
Rodriguez, M.: NEVAE: A deep generative model for molecular graphs. J. Mach.
Learn. Res. 21, 114:1–114:33 (2020), https://jmlr.org/papers/v21/19-671.html

85. Samet, H.: A normal form for compiler testing. In: Proceedings of the 1977 Sym-
posium on Artificial Intelligence and Programming Languages. pp. 155–162. ACM
(1977). https://doi.org/10.1145/800228.806945

86. Sen, K., Marinov, D., Agha, G.: CUTE: A Concolic Unit Testing Engine for C. In:
Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2005). pp. 263–272. ACM (2005). https://doi.org/10.1145/
1081706.1081750

87. Sheridan, F.: Practical testing of a C99 compiler using output comparison. Softw.
Pract. Exp. 37(14), 1475–1488 (2007). https://doi.org/10.1002/SPE.812

88. Sirer, E.G., Bershad, B.N.: Using production grammars in software testing. In:
Conference on Domain-Specific Languages (DSL). pp. 1–13. ACM (1999). https:
//doi.org/10.1145/331960.331965

89. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Semant. 5(2), 51–53007 (2007)

90. Slutz, D.R.: Massive stochastic testing of SQL. In: International Conference on
Very Large Data Bases (VLDB). vol. 98, pp. 618–622. ACM (1998)

91. Song, J., Dou, W., Cui, Z., Dai, Q., Wang, W., Wei, J., Zhong, H., Huang,
T.: Testing Database Systems via Differential Query Execution. In: Interna-
tional Conference on Software Engineering (ICSE). pp. 2072–2084 (2023). https:
//doi.org/10.1109/ICSE48619.2023.00175

92. Sørensen, J.J.W.H., Pedersen, M.K., Munch, M., Haikka, P., Jensen, J.H., Planke,
T., Andreasen, M.G., Gajdacz, M., Mølmer, K., Lieberoth, A., Sherson, J.F.:
Retraction note: Exploring the quantum speed limit with computer games. Nature
584(7821), 484–484 (Aug 2020). https://doi.org/10.1038/s41586-020-2515-2

93. Steinhöfel, D., Zeller, A.: Input invariants. In: Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). pp. 583–594. ACM (2022)

94. Steinhöfel, D., Zeller, A.: Language-based software testing. Commun. ACM 67(4),
80–84 (2024)

https://doi.org/10.1007/978-3-031-68031-1_8
https://doi.org/10.1007/978-3-031-68031-1_8
https://doi.org/10.1504/IJWET.2016.077342
https://doi.org/10.1504/IJWET.2016.077342
https://doi.org/10.1504/IJWET.2016.077342
https://doi.org/10.1504/IJWET.2016.077342
https://github.com/w3c/rdf-turtle/issues
https://github.com/w3c/rdf-turtle/issues
https://doi.org/10.1145/3428279
https://doi.org/10.1145/3428279
https://doi.org/10.1145/3428279
https://doi.org/10.1145/3428279
https://jmlr.org/papers/v21/19-671.html
https://doi.org/10.1145/800228.806945
https://doi.org/10.1145/800228.806945
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1002/SPE.812
https://doi.org/10.1002/SPE.812
https://doi.org/10.1145/331960.331965
https://doi.org/10.1145/331960.331965
https://doi.org/10.1145/331960.331965
https://doi.org/10.1145/331960.331965
https://doi.org/10.1109/ICSE48619.2023.00175
https://doi.org/10.1109/ICSE48619.2023.00175
https://doi.org/10.1109/ICSE48619.2023.00175
https://doi.org/10.1109/ICSE48619.2023.00175
https://doi.org/10.1038/s41586-020-2515-2
https://doi.org/10.1038/s41586-020-2515-2

22 John et al.

95. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. In: Annual Network and Dis-
tributed System Security Symposium (NDSS). The Internet Society (2016),
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

96. Sun, C., Le, V., Su, Z.: Finding and analyzing compiler warning defects. In: Inter-
national Conference on Software Engineering (ICSE). pp. 203–213. ACM (2016).
https://doi.org/10.1145/2884781.2884879

97. Sun, K., Xu, Y.E., Zha, H., Liu, Y., Dong, X.L.: Head-to-tail: How knowledgeable
are large language models (LLMs)? A.K.A. will LLMs replace knowledge graphs?
In: Conference of the North American Chapter of the Association for Compu-
tational Linguistics NAACL-HLT. pp. 311–325. Association for Computational
Linguistics (2024)

98. Tao, Q., Wu, W., Zhao, C., Shen, W.: An automatic testing approach for compiler
based on metamorphic testing technique. In: Asia Pacific Software Engineering
Conference (APSEC). pp. 270–279. IEEE Computer Society (2010). https://doi.
org/10.1109/APSEC.2010.39

99. Tao, Y., Chen, Z., Liu, Y., Xuan, J., Xu, Z., Qin, S.: Demystifying "bad" error
messages in data science libraries. In: Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering ESEC/SIG-
SOFT FSE. pp. 818–829. ACM (2021)

100. Tomaszuk, D., Kellogg, G.: RDF 1.2 Turtle. W3C working draft, W3C (Oct 2024),
https://www.w3.org/TR/2024/WD-rdf12-turtle-20241031

101. Tomaszuk, D., Kellogg, G.: RDF 1.2 Turtle (outdated). W3C working draft, W3C
(Oct 2024), https://www.w3.org/TR/2024/WD-rdf12-turtle-20241024

102. Vecovska, M., Jovanovik, M.: RDFGraphGen: A synthetic RDF graph generator
based on SHACL constraints (2024), https://arxiv.org/abs/2407.17941

103. Vrandecic, D.: Ontology evaluation. In: Handbook on Ontologies, pp. 293–313.
International Handbooks on Information Systems, Springer (2009)

104. Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., Guo, M.:
GraphGAN: Graph representation learning with generative adversarial nets. In:
AAAI Conference on Artificial Intelligence. pp. 2508–2515. AAAI Press (2018).
https://doi.org/10.1609/AAAI.V32I1.11872

105. Winterer, D., Su, Z.: Validating SMT solvers for correctness and performance via
grammar-based enumeration. Proc. ACM Program. Lang. 8(OOPSLA2), 2378–
2401 (2024). https://doi.org/10.1145/3689795

106. Winterer, D., Zhang, C., Su, Z.: Validating SMT solvers via semantic fusion. In:
International Conference on Programming Language Design and Implementation
PLDI. pp. 718–730. ACM (2020)

107. Xue, B., Zou, L.: Knowledge graph quality management: A comprehensive survey.
IEEE Trans. Knowl. Data Eng. 35(5), 4969–4988 (2023)

108. Yang, R., Zheng, Y., Tang, L., Dou, W., Wang, W., Wei, J.: Randomized dif-
ferential testing of RDF stores. In: International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion). pp. 136–140 (2023). https:
//doi.org/10.1109/ICSE-Companion58688.2023.00041

109. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: GraphRNN: Generating
realistic graphs with deep auto-regressive models. In: International Conference on
Machine Learning (ICML). Proceedings of Machine Learning Research, vol. 80,
pp. 5694–5703. PMLR (2018), http://proceedings.mlr.press/v80/you18a.html

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1109/APSEC.2010.39
https://www.w3.org/TR/2024/WD-rdf12-turtle-20241031
https://www.w3.org/TR/2024/WD-rdf12-turtle-20241024
https://arxiv.org/abs/2407.17941
https://doi.org/10.1609/AAAI.V32I1.11872
https://doi.org/10.1609/AAAI.V32I1.11872
https://doi.org/10.1145/3689795
https://doi.org/10.1145/3689795
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
http://proceedings.mlr.press/v80/you18a.html

Language-Based Testing for Knowledge Graphs 23

110. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM: A practical con-
colic execution engine tailored for hybrid fuzzing. In: Security Symposium.
pp. 745–761. USENIX Association (2018), https://www.usenix.org/conference/
usenixsecurity18/presentation/yun

111. Zelenov, S.V., Zelenova, S.A., Kossatchev, A.S., Petrenko, A.K.: Test generation
for compilers and other formal text processors. Program. Comput. Softw. 29(2),
104–111 (2003). https://doi.org/10.1023/A:1022904917707

112. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: The Fuzzing
Book. CISPA Helmholtz Center for Information Security (2024), https://www.
fuzzingbook.org/, retrieved 2024-07-01 16:50:18+02:00

113. Zheng, Y., Dou, W., Tang, L., Cui, Z., Song, J., Cheng, Z., Wang, W., Wei,
J., Zhong, H., Huang, T.: Differential Optimization Testing of Gremlin-Based
Graph Database Systems. In: Conference on Software Testing, Verification and
Validation (ICST). pp. 25–36 (2024). https://doi.org/10.1109/ICST60714.2024.
00012

114. Zheng, Y., Dou, W., Wang, Y., Qin, Z., Tang, L., Gao, Y., Wang, D., Wang, W.,
Wei, J.: Finding bugs in Gremlin-based graph database systems via Random-
ized differential testing. In: International Symposium on Software Testing and
Analysis. pp. 302–313. ACM (2022). https://doi.org/10.1145/3533767.3534409

115. Zhong, R., Chen, Y., Hu, H., Zhang, H., Lee, W., Wu, D.: SQUIRREL: Testing
Database Management Systems with Language Validity and Coverage Feedback.
In: Computer and Communications Security (CCS). pp. 955–970 (2020). https:
//doi.org/10.1145/3372297.3417260

116. Zhuang, Z., Li, P., Ma, P., Meng, W., Wang, S.: Testing Graph Database Systems
via Graph-Aware Metamorphic Relations. Proc. VLDB Endow. 17(4), 836–848
(Mar 2024). https://doi.org/10.14778/3636218.3636236

https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://doi.org/10.1023/A:1022904917707
https://doi.org/10.1023/A:1022904917707
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/
https://doi.org/10.1109/ICST60714.2024.00012
https://doi.org/10.1109/ICST60714.2024.00012
https://doi.org/10.1109/ICST60714.2024.00012
https://doi.org/10.1109/ICST60714.2024.00012
https://doi.org/10.1145/3533767.3534409
https://doi.org/10.1145/3533767.3534409
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.14778/3636218.3636236
https://doi.org/10.14778/3636218.3636236

	Language-Based Testing for Knowledge Graphs

