Never Mind the Semantic Gap:
Modular, Lazy and Safe Loading of RDF Data

Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese

Department of Informatics, University of Oslo, Norway
{eduard,vidarkl,martingi}@ifi.uio.no

Abstract. Any attempt at a tight integration between semantic tech-
nologies and object oriented programming will invariably stumble over
the gap between the two underlying object models. We illustrate how
this semantic gap manifests from the point of view of data retrieval with
SPARQL. We present a novel mechanism to load data from RDF knowl-
edge graphs into object-oriented languages that gives static guarantees
about the data access and modularly integrates the mapping between the
program and the RDF view with the class definition in the program. This
allows us to preserve the separation of concerns between the class sys-
tem of RDF (geared towards domain modeling and data), and that of the
program (geared towards typing and code reuse). Loading of RDF can be
performed lazily, when required by the program, based on query-futures
— subqueries that are only evaluated if and when the data is accessed.
We formulate a Liskov principle for the mapping queries to characterize
when they respect the subclass relation. Moreover, we provide tool sup-
port to detect when the user-provided mapping would cause the loading
mechanisms to result in data structures that manifest the semantic gap.

1 Introduction

Motivation. Despite the important role that Semantic Web technologies can
play in modern software applications, their integration with programming lan-
guages remains a challenge. The main challenge is the so-called impedance mis-
match [1I2] or semantic gap [3] between the object model of RDF, geared towards
data-driven tasks, and the object model of programming languages, geared to-
wards typeability and modularity.

This impedance mismatch for RDF manifests when mapping RDF into the
class system of the program: to load data from an RDF store, one executes some
SPARQL query, manually traverses the results and creates objects on the go
to perform computation later on. This turns data loading into a fragile, work-
intensive and highly error-prone task: (a) There is no type safety mechanism. (b)
The mapping between the OO class and the RDF pattern is not modular — the
retrieving queries quickly grow in size and are overwhelming for the programmer.
(c) While most endpoints support lazy iterators, they do not support lazy data
structures within one answer: If the application is only interested in parts of
the loaded data, but only decides so after the query is formulated (e.g., based

2 Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese

on prior answers) it is not possible to postpone loading. (d) Finally, depending
on the data model and retrieving query, one node in the RDF graph may be
mapped to different objects, if it occurs in several answers.

In this work, we investigate lazy, modular and type-safe loading of data from
RDF graphs into an object-oriented (OO) programming language. Instead of
fighting the impedance mismatch, we embrace it and keep it under control: we
clearly describe the structure for which such a mapping can be defined and give
static analyses to warn the programmer about unintuitive effects.

Approach. We solve these challenges by providing tool support to the program-
mer: Our mapping tightly couples OO classes with graph patterns in RDF using
a SPARQL query per OO-class. This query describes how to construct an object
from an RDF graph, it does not establish a perpetual link between RDF nodes
and OO objects. Moving the mapping from the point where the data is used
to the program point where the data structures are defined simplifies modeling
and allows reuse of queries. Reuse, in turn, is critical for maintenance. With-
out reuse, maintenance is aggravated if multiple queries perform similar data
retrieval tasks, but are scattered over the program or dynamically manipulated.

Using the query containment-based typing mechanism presented in [4], we
directly address type safety and include support for OO inheritance: we always
load the most specific class possible and give a static analysis that checks unique-
ness of this class. Furthermore, we give a Liskov principle [5] to statically check
whether the retrieval query of a subclass correctly refines the retrieval query of
the superclass. We give another analysis to inform developers whether multiple
objects constructed during data access correspond to the same RDF node.

Integrating the mapping into the OO class structure enables us to perform
lazy evaluation. Lazy evaluation only retrieves data if the computation indeed
requires it. This is implemented as follows: When loading a class, its query is
automatically executed. If a class has a field of another class type, this second
query is lazily evaluated: The field is initialized with a future [6[7]. A future is a
placeholder that contains the inner SPARQL query that is only evaluated when
the future is explicitly accessed during a computation.

It is crucial to our approach that we do not relate concepts of RDF and
OO to each other directly, i.e., do not enforce a one-to-one correspondence be-
tween OO objects and RDF individuals. Systems that try to close this semantic
gap [3] fail to address the fundamental differences in assumptions and modeling
techniques in RDF/OWL and OO, most prominently the open-world assump-
tion and multiple inheritance. Instead, we embrace the differences in modeling
and give the programmer a systematic and safe way to close the gap specifically
for their application. Thus, our system can be used to both relate the OO and
RDF representation of some objects, but also as a type-safe container to load
the results of queries, where such a relation is not desirable.

We give an informal example in Sec. [2] and preliminaries in Sec. [3] Modular
mappings are described in Sec. [d] and inheritance in Sec. Lazy loading is
introduced in Sec. [f] and evaluated in Sec. [7} Related work is given in Sec. [8

Modular, Lazy and Safe Loading of RDF Data 3

1 List<Nodes> it =

2 query("SELECT * WHERE { 7o :id 7id; :stamp ?stamp; :back 7wl; :front 7w2.

3 7wl :wheelld ?wIdl; :stamp 7lastl. ?w2 :wheelld ?7wId2; :stamp ?last2.
4 FILTER(?wIdl != ?wId2}.");

5 Int i = it.next().get("id"); //dynamic cast to Int

6 Bike bike = new Bike(i, ...);

Fig. 1. Dynamic data access with SPARQL.

2 Running Example

Before we formalize our approach, we give an informal example that shows the
targeted application. We do not present advanced features, such as typing and
inheritance here. The example is given in the LMOL language introduced in Sec-
tion [6] where the exact syntax and runtime semantics are introduced. Consider
the following domain model about bikes and an application that loads all bikes
into its class structure. At a later point, the application will then use the data
to perform some computation on the wheels. This is illustrated in Fig.

JhasWheel. T C Bike back, front C hasWheel T C Vid.Int
3id. T U Jdstamp. T C Bike LI JhasWheel !. Bike T C Vstamp.Int

We observe the following: (a) the data access in line [5| requires dynamic
typing, (b) The connection between classes and data is established by a a query
that is not modular w.r.t. nested classes, and (¢) we may retrieve too much data:
if the computation on a bike stops after the first wheel, then the second wheel
should be not loaded in the first place. Note that it may not be known at the
time the data is loaded which computations will be performed on it, thus, it is
not always possible to adjust the query. Even when this is the case, it leads to
the situation that several queries are manually optimized versions of the same
data retrieval.

Our idea is twofold: We (1) annotate the class declaration with a SPARQL
query to retrieve instances of the class, and (2) use futures for nested class
structures. The following shows an annotated wheel class and how to use it.

1 class Wheel anchor 7o

2 (Int wheelld, Int last) //id is the id of the wheel, not the IRI
3 end retrieve SELECT ?wheelld 7last

4 WHERE{ 70 :wheelld ?wheelld; :stamp 7last. }

5 ... List<Wheel> it = load Wheel();

There is no Wheel class declared in the RDF vocabulary — the annotated query
models retrieval. The load statement returns an iterator over all results of the
query (in some preconfigured KB). Note that already here, we introduce a sep-
aration of concerns in the language: data modeling is concentrated on the class,
while computations can be performed with load as an encapsulation mechanism.
Indeed, it is not visible to the programmer what kind of KB access is performed.
The following code block shows the annotation for the Bixe class.

4 Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese

1 class Bike anchor 7o(

2 Int id, Int last, //id is the id of the bike, not the IRI

3 link(?0 :front ?front) QFut<Wheel> front,

4 link(?0 :back ?back) QFut<Wheel> back)

5 end retrieve SELECT ?7id 7last WHERE { 7o :id 7id; :stamp 7last. }
6

.

8

9

List<Bike> it = load Bike(); Bike bike = it[0];
List<Wheel> it = load bike.front;
Wheel w = it[0];

The wheel instances are not described by the query. Their retrieval is already
described in the wheel class. The link annotation makes their loading lazy: When
the load Bike() statement in line[§]is executed, only the query of Bike is executed.
The fields of the wneel class are initialized with futures: containers that contain
the delayed query of wheel. It is only in line [J] when bike.front is accessed, that
the query below is executed. Note that it is enriched with information from the
original query. This is crucial to correctly connect the nodes.

1 SELECT ?wheelld 7last WHERE{ run:objl :front 7wl.
2 7wl :id ?wheelld; :last 7last. }

The annotations for lazy loading are illustrated in the
figure to the right. The circles denote the parts of a graph
retrieved by a single query and the thick edges are the
link queries between the queries of the single classes. Lazy
KB access aims to (1) make KBs more usable by reducing
the load on the programmer and (2) allow a more flexible
control over data loading by delaying the exploration of
certain parts of the KB. The goal is not to replace all
possible usages of queries and we stress that the lazy loading mechanism subtly
changes the way the KB is accessed in two ways: First, by delaying the query, we
take control away from the query planner and give it to the program. While this
reduces the possibilities to optimize on the query level, it allows the programmer
to be more flexible in its data modeling. Secondly, lazy evaluation may retrieve
too many objects in the first step, as it is not known whether the next query
will succeed or not. For example, the original query above will not return bikes
with only one wheel, while lazy loading will do so and create a Bike object with
one wheel field evaluating to null. We address this by allowing to flatten the
queries of nested classes to one overall query, but note that this is not possible
for (mutually) recursive class structures.

3 Preliminaries

Semantic Web. We assume that the reader is familiar with the basics of estab-
lished technologies of RDF KBs and SPARQL, and only repeat basic notation.

A knowledge base K = (7,.A) is a pair of a TBox 7 and an ABox A. We
represent the ABox as a set of triples. A query is denoted as Q(T), where x ranges
over variables. Given a query Q(T), we say that T are its answer variables. The

Modular, Lazy and Safe Loading of RDF Data 5

T u=C| List<C> | Int | ... Prog ::= Class main s end Types and Programs
Class ::=class C (T £) end s = T v:=rhs; | e.f:=rhs; | s s Classes and Statements
rhs :=new C(f = e) | e en= null |v|n|e.f|elel Expressions
Fig. 2. Surface Syntax. The notation ~- denotes lists, £ ranges over fields, v over

variables, n over literals and C over class names.

query Q may contain non-answer variables as well. If it has two answer variables,
then we say that Q is binary. Given two queries Q1, Qz, we define their conjunction
Q1 A Q2 as the query that returns the intersection of answers to Q; and Q. We
say that a query Q; is contained in another query Qo over a TBox 7 under an
entailment regime er, written Q EZ; Qo, if for every ABox A each answer to
Q; over (7,.A) under er is also an answer to Qy over (7,.4) under er. We say
that two queries are equivalent, written Q; =/ Qq, if they contain each other.
Furthermore, a query is said to be unsatisfiable under a TBox 7 if it has no
possible answer under 7. Given two binary queries Q1 (?a, ?b), Q2(?¢, ?d) which
have no variable in common, we define the concatenation Q; (?a, 7b)0Qa(?¢, 7d) =
Q3(?a,?d) = Qi(?a, ?z) A Qz(?x, 7d). We say that a binary query Qi(?a, ?b) is the
inverse of another binary query Qu(?a, ?b) if Q;(?a, 7b) =7 Q2(?b, ?a).

Programming Model. We use a minimal object-oriented programming language
to illustrate our approach. While the implementation works on a full program-
ming language with methods and additional statements, such as branching or
loops, and the method itself can be adapted on top of any OO language, we
give here only the minimal fragment to focus on the interaction between OO
and RDF in a minimal setting. In this section, we give the basic structure of
the language, while the later sections will extend it with a modular mapping
(Sec. [d)), inheritance (Sec. [5]), and lazy loading (Sec. []).

Definition 1 (Syntax). The syntaz of our base language is given in Fig. @

A program is a set of classes, each defined by a set of fields and a name, and
a main block, which is a sequence of statements. As statements we only consider
assignments to fresh variables and fields, as well as object creation and sequence.
For types we assume at least integers and parametric lists (to store the results
of data loading). Expressions are standard, e[e’] is list access.

The runtime semantics is defined using a standard Structured Operational
Semantics (SOS) [q], i.e., a set of rewrite rules on runtime configurations. A run-
time configuration contains the class table, the created objects and the statement
that remains to execute. A rewrite rule takes a runtime configuration and trans-
forms it by executing the next statement.

Definition 2 (Runtime Semantics). A configuration conf is defined by:

conf := (K,CT) s (o,o0bs) obs ::= obj(X,C, p) | obs,obs

6 Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese

Where KC is a knowledge base, CT is the class table, a map from class names to the
set of their fields, o is a map from the variables in the main block to the literals
or object identifiers, s is a statement or the special symbol € for termination,
and obs is a list of created objects. An object obj(X,C, p) has an identifier X, a
class ¢ and a store p that maps all fields of ¢ to literals or object identifiers. We
say that an object is well-formed if p respects the annotated type, i.e., maps each
field to a literal of the fitting data type or to an object of the correct class.

Malformed objects can lead to undefined operations and our type system
ensures statically that they do not occur at runtime.

An SOS-rule has the form conf; — confy, optionally with some conditional
premises that have to hold for the rule to be executable. Additionally, the func-
tion [-]2,, evaluates an expression to a literal or object identifier, given a certain
local store and a set of objects. We give only the rule for assignment of side-effect
free expressions to local variables here, which we need in the following.

[[e]]gbs =1
(]C,CT) Tv:i=e; s (O’,Obs) — (/C, CT) s (U[vl—> l],ObS)

(assign-local)

4 Modular Loading

We extend the syntax with annotations that instantiate object instances from
RDF graphs and add a statement to construct and execute the query for a class.

Definition 3 (Syntax of MOL). The syntaz of MOL is the one of Def. |1}, with the
rule for classes replaced, and the rule for expression extended by the following,
where Q ranges over SPARQL queries and x over SPARQL variables.

Class ::= class C anchor ([Iink(Q)]? T f) end retrieve Q rhs := ... | load C()

The class definition now contains a query annotated with retrieve, which maps
graph patterns to object instances. Additionally, it contains an anchor variable,
which must occur in the retrieve query and is used to construct queries for nested
classes. Finally, the link clause of each field of class-type links the graph pattern
of this class with the graph pattern of the class of the field in question.

We write anchorc for the anchor variable of a class, query, for its retrieve

query and linkc s for the linking query. We assume the following, easy to
check, syntactical restrictions: (1) query has a connected graph pattern con-
taining anchorc and one variable 7v¢ for each field c.f that has a data-type
(2) 1linkc, ¢(anchorg, Tvg) is a binary SPARQL query with a connected graph
pattern. The set of fields £ with linking queries in ¢ is denoted cf(c). For our map-
ping, all fields of the class, as well as the fields of objects referred to are mapped
to one query variable. This is not possible in general: for example, consider class
Link anchor 7o (link(?0 :next ?x) Link x) end retrieve 70 a :C — there is no bound
on the retrieved object, which can be an arbitrarily long list, so there is no a
priori bound on the number on variables for the query. We can identify classes
for which we can construct a finite query as forward-cycle-free in their structure.

Modular, Lazy and Safe Loading of RDF Data 7

A class is forward-cycle-free, if all cycles caused by link clauses between
classes can be resolved by considering one of the clauses as the inverse of the
others. Forward-cycle-freedom is only needed for eager queries.

Definition 4 (Retrieval Trees and Forward-Cycle-Free Classes). Let C
be the set of classes in a program P and &(P) = (C, L) be its retrieval tree with
edges L C C x Q x C. An edge (C1,Q,C2) is part of L, if C1 has a field of type
Cy or List<Co> with link query Q. Let &(P,C) be the subgraph of &(P) that is
reachable from C.

Given a cycle ey, . .., ey, we say that edge ey is backwards if Q1 is the inverse
of Qgo---0 Qnﬂ We say that C is forward-cycle-free if every cycle in &(P,C)
contains a backwards edge that does not originate in C, and removal of all the
backwards edges turns &(P,C) into a directed acyclic graph, and does not make
any node unreachable from C. We denote this graph with R(P,C).

We omit the P parameter if the program is understood. We can now define
the eager queries for forward-cycle-free classes.

Definition 5 (Eager Queries for Forward-Cycle-Free Classes). The ea-
ger query eq(c) of a forward-cycle-free class ¢ is defined as follows. We set

eq(c) = queryg A /\ <1inkcyf[?’l)f \ ve p] A eq(p)[anchorp \ ’Uf’D])
(£,D)ect(C)

Where all variables v p are fresh, i.e., do not occur anywhere else. Additionally,
we get a set of equalities for the form this.e = x for each backwards edge removed
in JR(c), that maps the field of the source of the backlink to the query variable
that is used for the target node of the backwards link.

Ezample 1. The eager query of class Bike in Sec. [2] results in a query that is
transformed into the one of Fig. [by substituting the nested queries. To illustrate
forward-cycle-free classes, consider the following variant of the wheel class.

1 class Wheel anchor 7o(

2 Int wheelld, Int last,

3 link(?bike :wheel 7o) Bike bike)

4 end retrieve SELECT ?wheelld ?last WHERE{7o :wheelld ?wheelld; :stamp ?7last.}

Here, the wheel class has a link to a Bike instance. However, analyzing the link
clauses, we can see that this is a backwards edge: 7bike is always instantiated
with the anchor of the outer query when loading Bixe. Thus, the additional
equalities are this.front.bike =70 and this.back.bike =70.

After constructing the query, it remains to show how we construct an object
from a query result. This is done by constructing a store from the variables of the
query that are mapped back to their fields. The construction is straightforward,
but technically intricate. For the sake of readability, we give it in the technical
report [9] and define the signature here.

! We assume that we can reorder the cycle so that the potential backwards edge is
always as index 1. We remind that the anchor variable is always the first answer
variable of a link query, so the concatenation is indeed well-defined.

8 Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese

Definition 6. Let ¢ be a class and RS a set of answers to its eager query. We
denote with rs20b(RS, c) the objects (cf. Def.[d) created when instantiating RS.

If neither ¢ nor any class in 93(c) has a field of list type, then each answer
rs € RS corresponds to one instantiated object. To define rs20b(RS, c), we only
need to map back from query variables to the field they are associated with and
apply the equations generated during query construction for all fields that have
no query associated with them. Every class has implicitly a field string uri that
is instantiated with the URI of the node mapped from the anchor variable. We
require that no blank nodes are mapped to anchors.

To connect with the runtime semantics, we add a rule for load statements
that connect query construction and subsequent object instantiation.

Definition 7 (Runtime Semantics). The runtime semantics of MOL is the
one of Def.[3 extended with the following rule:
obs’, X = listOf (obs”) obs” = rs20b(RS,c) RS = ans(K,eq(C))
(K,CT)v :=load cO; s(o,0bs) — (K,CT)v :=X; s(o,obs,obs’, obs”)

The rule executes the query in the first premise. It then creates objects for
all results (obj”) and stores them in a list via listOf. The listOf function returns
a pair of objects implementing the list (obj’) and the name of the head object
of the list (X). The load statement is then reduced to an assignment of this head
object to the target variable.

We can ensure that all loaded objects are well-formed, i.e., respect the de-
clared types of their field, by checking whether each query variable respects each
declared type. To do so, we check whether the query restricted to this variable is
contained in the query retrieving all elements of the declared type, respective its
OWL equivalent. The TBox is used to approximate the data statically. The proof
follows directly from the typing theorem for semantically lifted programs [4].

(eager)

Theorem 1 (Safety). Let ¢ be a class. Let ¢ = eq(c) be its eager query and
V' the set of variables within ¢ that correspond to data-typed fields. If for each
v with data type D, the query containment @(v) TI D holds, then each object
created from a result from a KB respecting T of eq(c) is well-formed.

Finally, we investigate the case where one node occurs in different results
and, thus, corresponds to multiple constructed objects. Consider, e.g., the class
class C anchor 70 Int i; retrieve 70 P 7i and the data set o1 P 1. o1 P 2.. This
touches a core aspect of the relation between objects, nodes and queries: is
an object a container for the results or is it in a bijective relation with some
RDF-class? Instead of forcing the developer down one of these roads, we can
characterize the situations and provide feedback about the annotated mapping.

Theorem 2 (Bijective Instantiation for Essentially Functional Classes).
A forward-cycle-free class C is essentially functional in a program P, if for all
paths in R(P,C) starting in C, the concatenation of the labeling queries is func-
tional, and all data properties of reachable classes are functional.

In the list retrieved from the retrieval query of an essentially functional class,
then there is only one object per node in the answers for the outermost anchor.

Modular, Lazy and Safe Loading of RDF Data 9

The bijection is established for one execution of one query, not globally. As
we are only interested in safe and modular loading, we also do not change the
knowledge graph if the instances are manipulated by the program. Similarly,
new objects created with new are not written into the KB. However, as we will
see later, the combination with semantic lifting [1I0] allows us to write as well.

5 Inheritance

We have so far neglected a core element of class-oriented programming: inher-
itance. Inheritance is, besides the RDFS meta model that defines rdfs:Class
recursively and uses meta-classes, one of the critical points where OO and OWL
class models diverge. Most programming languages forbid, or at least restrict,
multiple inheritance, especially diamond inheritance, which causes problems for
methods. Consequently, in OO, one object cannot be an element of several classes
which are not subclasses of each other. It is, thus, out of question to try to rec-
oncile the class model of Java-like languages with the class model of OWL. In
this section, we extend our programming language to handle inheritance and
give two static analyses that catch modeling errors in the retrieving queries.

Definition 8 (Syntax of MOL"). The syntax of MOL™ is based on the syntax of
MOL, with the definition of classes in Def.[3 replaced by the following:

Class ::= class C [extends C]? anchor X ([link(R)]? T £) end retrieve Q

The only change of the syntax is the addition of the extends clause. Semanti-
cally, the only change is the generation of the class table CT, which for any class
now also includes the fields of all its superclasses. Thus, query(c) must have the
variable for the fields of all its superclasses as well. If D has a clause extends c,
then we write b < c. For the transitive closure, we write <*.

Retrieval Query. Retrieval for a class that has subclasses must respect these
subclasses and construct the most specific class, not necessarily the general one
written in the program. For example, consider the following program and ABox.

1 class C anchor 70 () end retrieve {70 a :Q}

2 class D anchor 7o extends C (Int j) objl a :Q, objl :j 1,
3 end retrieve {70 a :Q. 70 :j 7j.} A]

4 class E anchor 70 extends C (Int k) obj2 a :Q, obj2 :k 1,
5 end retrieve {70 a :Q. 70 :k 7k.}

When executing load c(), one would expect that obj1 is loaded as a D in-
stance, because we can retrieve data for the j field, and, analogously obj2 as a E
instance. Running the ¢ query, however does not detect this — it is necessary to
adapt our expansion of the retrieval query. Intuitively, we run the queries of the
subclasses in OPTIONAL clauses and check during object construction whether a
given subclass can be instantiated, by checking whether all variables belonging
to this subclass are instantiated. The idea is to put the additional fields in op-
tional clauses of the query and check whether they are instantiated. If they are,
one can downcast the created object.

10 Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese

Definition 9 (Runtime Semantics of MOL"). Let C be a class with subclasses
(Di)icr- We define the query inheq(c) = query(c) A /\,c; OPTIONAL(inheq(D;)).
The object rs20b™ (rs, c) retrieved from a result rs of inheq(c) is constructed as
follows. Let (E;)icy = {E <* ¢} be the set of subclasses of ¢, such that all fields
of E; correspond to an assigned variable in rs.

rs20b ™ (rs,¢) = rs20b(rs,E) for some E € (E;)ics where rs20b(rs,E) is defined.

The runtime semantics of MOLT is the one of LMOL, except that every occurrence
of rs2ob is replaced by rs2ob™, and every occurrence of query by inheq.

Two unintuitive effects can occur during the retrieval. First, the object instan-
tiation is nondeterministic, and second, it may violate behavioral subtyping.

Unique Retrieval. Nondeterminism occurs if two optionals corresponding to un-
related classes are instantiated. E.g., the ABox {03 a :Q; :j 1; :k 1.} used
with the above code. Object 03 can be retrieved as both D and E, but in our class
model it is not possible for an object to be both. There are four solutions: (1)
Introduce a new language mechanism that allows objects to have the fields of
two classes without a subtyping relation between them. (2) Define a preference
relation, e.g., say that instantiating D is always preferred over instantiating E.
(3) Retrieve multiple objects, one for each possible instantiation. (4) Take the
least specific class of all possible instantiations, i.e., here: C.

We deem (1) as unpractical as it changes the programming language accord-
ing to a specific use case and therefore counteracting our aim of easy to use
integration of RDF into OO. Similarly, we deem (2) as unpractical as it ques-
tionable if such a preference relation is sensible in many applications. Solution
(3) leads to a one-to-many relation between loaded objects and anchored nodes,
which we consider undesirable. We, thus, use (4), but give a static analysis that
detects the situation where this design decision may play a role: If the conjunc-
tion of the queries for each pair of subclass is unsatisfiable, then the most specific
constructed class is uniquely determined.

Theorem 3 (Unique Retrieval). Let C be a class with subclasses (D;)icr. If
for allD;,Dy, with j,k € I,j # k the query query(D;) A query(Dy) is unsatisfiable,
then the function rs2ob™(rs,C) in Def. @ is deterministic.

If the check fails, we can precisely give feedback which two clauses overlap and
give the programmer detailed feedback where the mapping between RDF and
the MOL™ class models fails.

Behavioral Subtyping. Given a class ¢ with a direct subclass D, we must relate
their retrieve clauses, such that each retrieved object is also a ¢ object. This is
essentially a case of the Liskov principle [5] of behavioral subtyping: if a property
©(z) holds for all instances x of class ¢, then ¢(y) must also hold for all instances
y of all subclasses of ¢. In our case, the properties in question are all data class
invariants over the fields of the superclass. For example, consider the above
example again, but with the definition of b changed to the following:

Modular, Lazy and Safe Loading of RDF Data 11

1 class D anchor 70 extends C (Int j) end retrieve ... {70 a :R. 70 :j 7j.}

Here, if :R is not a sub-class of :Q (in the sense of RDF), then running the query
for p will retrieve objects that are not retrieved by the query for ¢ even when
restricted to the fields of c.

The Liskov principle for MOL™ is reducible to query containment. Given a
TBox T, we check, if for all KBs respecting some TBox 7 and for all classes,
¢, b, with b < ¢, the query of the subclass does not add new instances when
restricted to the fields of the superclass.

Theorem 4 (Behavioral Subtyping for MOL™). Let C,D be two classesD < C
and fc is the set of fields in the superclass. If for each such pair of classes the
query containment eq(C)(fc) C7 eq(D)(fc) holds, then

{rs20b(rs,C) | rs € ans(K,eq(C))} C {rs20b(rs,C) | rs € ans(K,eq(D))}

6 Lazy Loading

We now extend MOL™ to LMOL by introducing a lazy loading mechanism. Lazy
loading splits the eager query into several subqueries, of which some are delayed
and only executed on demand, as has advantages for usability and performance.

First, it gives the programmer very precise control over the used data. Instead
of loading all possible data that may be used, it enables to load data as it is
indeed used. In our running example, it may depend on the data loaded for the
Bike instance whether the front or back wheel must be investigated. This condition
may not be (easily) encodable in the query, or indeed not be known upfront
and depend on user input or data loaded from other sources. For example, the
following program accesses three bikes, but only two wheels: the front wheel of
the second result and the back wheel of the third one.

List<Bike> 1 := load Bike(); 1[0].id; 1[1].front.id; 1[2].back.id

It is easy to see how in a more complex language one can decide which wheel to
access based on prior data. Lazy loading can thus solve the problem of loading
data that is not required in the application.

Second, lazy loading decouples modeling the data mapping from writing the
query for a specific optimization: the programmer can be more generous in data
modeling, as the specialization to a specific computation occurs at runtime.

Syntactically, we add futures to the types and a statement to resolve them.

Definition 10 (Syntax of LMOL). The syntax of LMOL is the syntax of MOL™ of
Def.[8, with the following extensions for types and right-hand-side expressions:

T:=... | QFut<C> rths :=... | load e

Intuitively, a future is a delayed expression, in our case a query. We use
explicit futures here [IT] that must be explicitly resolved. For resolving, we reuse
the load keyword: a load e expression takes an expression e of QFut<C> type and

12 Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese

returns an expression of List<c> type — the results of executing the delayed queryE|
A future field cannot be a backwards edge.

Next, we augment the runtime with the required elements for futures. Anchor
maps keep track of the variable instantiations of the previously executed queries.

Definition 11 (Runtime Configurations of LMOL and Lazy Queries).
Runtime configurations are extended as follows. Let F be the set of future iden-
tifiers, a subset of the object identifiers, and A the set of anchor map identifiers,
which is disjoint to the set of object identifiers. Let Q range over SPARQL queries
and object identifiers.

conf ::=(K,CT) s (o, obs?, futs?, acs?)
futs ::=fut(F, A, Q) | futs futs acs = ac(A,.A) | acs acs

where A are maps from RDF literals to object identifiers. Additionally, o and
all stores p may map to future identifiers F. The lazy query of a class is defined
analogous to its eager query, except that mone of the queries of the fields with
future type are executed. Only the linking queries are executed.

1q(c) = queryg A /\ (1inkc,f [Tvg \Uf,DD
(£,D)ect(C)

Object instantiation is analogous and described in the technical report. The main
differences are that (1) the fields of future type are instantiated with runtime
futures, whose query is the query of the class enhanced with the link query where
the anchor variable is replaced by its instantiation, and that (2) an anchor map is
used as an additional parameter. The anchor map keeps track of all instantiations
so far. Instantiation for lazy class loading 1rs2ob(RS,c) thus takes an answer
set RS and the class ¢ as input and returns a set of objects, a set of futures
and an anchor map. Lazy instantiation for the inner queries, 11rs2ob(RS,c, .A)
takes additionally an anchor map as input. It returns a set of objects and a set
of futures, as well as a modified anchor map with added bindings.

Definition 12 (Runtime Semantics of LMOL). The rule forload c() is almost
the same as (eager), except that we use lq instead of eq. It is given in the technical
report. The rule for load e is as follows:
[elgs =F RS =ans(K,Q) obs’,X = listOf(obs”) obs”,futs’,acs’ = 11rs20b(RS,c, A)
(K,CT)v :=load e; s(o,obs, futs, fut(F, A, Q), acs, ac(A, A))
— (K,CT)v := X; s(o,0bs,obs’, obs”, futs, futs’, acs, acs’)

(lazye)

The rules work analogously: First, the lazy query (either by constructing it
for the class, or by reading it from the future) is executed. Then objects and
futures are instantiated for its results and the anchor map is updated. Finally,
the objects are stored in a list and all created constructs are added to the state.

2 We refrain from introducing (a) expressions for resolved futures and (b) lazy loading
of the result list. Both is standard and orthogonal to lazy loading within one result.

Modular, Lazy and Safe Loading of RDF Data 13

To be clear, we do not save the result when resolving a future, so a future
might be resolved multiple times. The mechanism to avoid this is straightfor-
ward [6] and would only obfuscate our contribution.

Theorem 5. For forward-cycle-free classes C, such that every class in R(P,C)
has only data-type and list-type fields, MOLT and LMOL load the same results, i.e.,
if all futures are resolved, then the objects in the list of the first load c() contain
the same elements, except with one fut reference in every list field.

For general classes, LMOL can load more or less data. As an example for more
data, consider that futures can be used to encode streams [12], and thereby load
an unbounded number of objects within one result of the overall query. For less
data, consider a knowledge base where the bike instances have no stored wheels.
Executing the eager query will return no bikes, but executing the lazy query will
return all the bikes, with empty lists for their wheels.

7 Evaluation

The on-going implementation is available as open-source software. LMOL is im-
plemented as an interpreter that takes a LMOL file, and a RDF file for external
data as input. The interpreter, including the experiments described below, is
available under https://github.com/Edkamb/SemanticObjects/tree/lazy.

To assess the runtime overhead and memory consumption caused by delaying
parts of the query through futures, which reduce the possibilities of the DBMS
for query optimization, we run the following experiment. We generate n classes of
the form class C;(Int £;, C;41 next) end with the obvious link and retrieval query,
as well as a lazy version of the same form with fields qFut<c; ;1> next. We consider
two scenarios: scenario 1 uses a dataset with two loadable nodes a;, b; of each
class ¢;, with links from a; to a;4+1 and b; to b; 11, making two paths of length
n. Scenario 2 has additional links from a; to b;41 and b; to a;41, leading to 2"
possible paths. We evaluate how fast it is to load every possible node into the OO
structure and compare three runs for each scenario: one with the eager query,
and two with the lazy query, which uses the delay to remove duplicate objects
based on their URI before running the next query: The first lazy run accesses
only the first class, the second accesses the last class. Fig. [3|shows the results. As
expected, there is no performance gain for the simple scenario, but a considerable
one for the one with more interconnected data, especially when only parts of the
data is accessed. For a class chain of n = 18, eager evaluation requires 18s, while
lazy evaluation with fine-grained control requires 2.6s if only half of the chain is
accessed (—85%). For higher n, eager evaluation runs out of heap space. Memory
consumption behaves, as expected, like the time consumption.

To confirm that our approach indeed simplifies the design of realistic queries,
we remodeled the queries used to access the Slegge database of Equinor of sub-
surface exploration data [I3]. The aim of this is to show that our system enables
reuse and forward-cycle-free classes are not a strong restriction. We remodeled

https://github.com/Edkamb/SemanticObjects/tree/lazy

14 Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese
Scenario 1 10°
100 [- tr

- 000 2 15 Ha g
P o 5 5]
: 2 /| =
= 50 T 5 oo £
g - 4500 £ £ {2 8
e} - - o B 9]
-7 R o = 51 =
- e - o e o

0 Il Il Il Il Il Il Il Il 0 01 Il Il Il Il Il Il _\7\ /\/ /\/ \7 Il 7\7 0

10 30 50 70 90 110 130 150 170 200 2345678 9101112131415161718

i
Fig. 3. Runtime comparison of eager loading and lazy loading with fine-grained control.

the 8 SPARQL queries for the main, first information need of Slegge need using
LMOL in a class structure of 21 classes, each corresponding to a reusable pattern
or original query. The code below is a representative excerpt. The eager queries
for weq1 and wBQ3 correspond to one of the original Slegge queries, which all re-
trieve wellbores based on different criteria. wBq1 and weq3 only differ in restrictions
on the interval, encoded in different classes (sz13 and Depthsz). All other parts of
the queries, e.g. the wellbore name, are shared through common superclasses.

1 class WBWithName extends WB anchor ?w (String name)

2 end retrieve "?w a :Wellbore. ?w :name 7name."

3 class WBQ1 extends WBWithName anchor 7w (

4 link("?w :wellboreInterval ?7int.") SZ13 int, ..) end ..

5 class WBQ3 extends WBWithName anchor 7w (

6 link("?w :wellboreInterval ?7int.") DepthSZ int, ..) end ..

8 Related Work

LMOL is implemented on top of the semantic lifting language SMOL. Semantic
lifting [10] also integrates OO and RDF: It exports a program state and allows
to query it then, thus realizing data writes through state change. Consequently,
an RDF graph can be changed in any way using LMOL/SMOL.

LMOL is the first language with modular queries and lazy evaluation for RDF
data. In the following, we discuss other approaches that connect OO program-
ming and RDF data. Frameworks like Apache Jena [I4] or RDF4J [I5] connect
OO programming and RDF as well, but do not connect the object models.

The impedance mismatch for relational databases has been extensively stud-
ied for several decades [I] and we refer to Ireland [16] for a comprehensive dis-
cussion. It is worth noting that one of the systems to connect OO with relational
databases, the LINQ [17] framework for .Net, has been extended to RDF [I8].
LINQ provides its own query language, which is mapped to different storage
endpoints, and provides no safety mechanisms or lazy evaluation. The query is
not modular and provided at the loading statement. For RDF, impedance mis-
match has been explored, starting with Goldman [19] and the Go! language [20].
An in-depth discussion is given in the survey of Baset and Stoffel [3].

The most common approach taken is to relate OWL concepts to OO classes
directly. For example, Leinberger et al. [21] use a special query language to load

Modular, Lazy and Safe Loading of RDF Data 15

RDF data into an OO language by relating OWL concepts to OO types. Their
query language is typable and translates into SPARQL. In contrast, LMOL sup-
ports full SPARQL and does not require the user to learn an additional query
language. Owl2Java [22], Agogo [23] or ActiveRDF [24] are similar approaches,
suffering from the impedance mismatch. They all generate OO classes based
on some RDF schema for a certain target language and establish a direct con-
nection this way, where only certain RDF schemata are allowed. In contrast,
we give a way to detect whether the defined mapping establishes a one-to-one
correspondence in the results of one query (Thm. [2) to help the programmer.

While our approach embraces the semantic gap between OO and RDF object
models, and the approaches so far attempt to bridge it, Eisenberg and Kanza [2]
attempt a unification in a programming model that treats RDF individuals as
program primitives. This essentially imports the RDF object model into the
programming language, and the authors do not discuss typing. Indeed, they
present their approach for Ruby, with a loose object model using dynamic duck
typing.

As for type checking, Seifer et al. [25] give a system where DL concepts are
types and that requires to type check the SPARQL query itself. In contrast, the
entailment-based system we use is more modular: we do not have any restrictions
on the used SPARQL subset. Furthermore, we do not entangle type checking in
the impedance mismatch by mixing concepts and types.

Leinberger [26] gives an extended type system based on SHACL and shape
containment, instead of SPARQL and query containment. That approach focuses
on ensuring the existence of data that is loaded and is neither modular nor
supports lazy evaluation, as the semantic gap is only considered at the interface.

9 Conclusion

We have presented a connection between RDF and OO programming that main-
tains and embraces the semantic gap between the underlying inheritance mech-
anisms and object models, and allows modular data modeling, data access and
type safety checks. Our approach is the first to explore lazy evaluation of SPARQL
queries within a single answer and the first to formally define a Liskov principle
for a connection of OO and RDF. Our evaluation shows that lazy evaluation
leads to significant performance gains for loading of complex data.

We plan to generalize our prototype to a static tool for a mainstream pro-
gramming language and increase its expressive power by (1) using a Option<C>
type that maps to optionals in the retrieval query and (2) allowing the load
statement to take an additional parameter that defines additional constraints.

Acknowledgments This work was supported by the RCN via PeTWIN (294600).
The authors thank Dirk Walther for motivating this work and the anonymous
reviewers for the constructive feedback.

16 Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese
References
1. George P. Copeland and David Maier. Making smalltalk a database system. In

10.

11.

12.

13.

14.
15.
16.
17.
18.
19.

20.

Beatrice Yormark, editor, SIGMOD, pages 316-325. ACM Press, 1984.

. Vadim Eisenberg and Yaron Kanza. Ruby on semantic web. In ICDE, pages

1324-1327. IEEE Computer Society, 2011.

. Selena Baset and Kilian Stoffel. Object-oriented modeling with ontologies around:

A survey of existing approaches. Int. J. Softw. Eng. Knowl. Eng., 28(11-12):1775—
1794, 2018.

Eduard Kamburjan and Egor V. Kostylev. Type checking semantically lifted pro-
grams via query containment under entailment regimes. In Description Logics,
volume 2954 of CEUR Workshop Proceedings. CEUR-WS.org, 2021.

Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst., 16(6):1811-1841, 1994.

Robert H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst., 7(4):501-538, 1985.

Henry G. Baker and Carl Hewitt. The incremental garbage collection of processes.
In James Low, editor, Proceedings of the 1977 Symposium on Artificial Intelligence
and Programming Languages, USA, August 15-17, 1977, pages 55-59. ACM, 1977.
Gordon Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61, 2004.

Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese. Never mind the
semantic gap: Modular, lazy and safe loading of rdf data (technical report). Re-
search report 502, Dept. of Informatics, University of Oslo, March 2022.

Eduard Kamburjan, Vidar Norstein Klungre, Rudolf Schlatte, Einar Broch
Johnsen, and Martin Giese. Programming and debugging with semantically lifted
states. In ESWC, volume 12731 of LNCS, pages 126-142. Springer, 2021.

Frank S. de Boer, Vlad Serbanescu, Reiner Héhnle, Ludovic Henrio, Justine
Rochas, Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khames-
panah, Kiko Fernandez-Reyes, and Albert Mingkun Yang. A survey of active object
languages. ACM Comput. Surv., 50(5):76:1-76:39, 2017.

Keyvan Azadbakht, Frank S. de Boer, Nikolaos Bezirgiannis, and Erik P. de Vink.
A formal actor-based model for streaming the future. Sci. Comput. Program., 186,
2020.

Dag Hovland, Roman Kontchakov, Martin G. Skjeeveland, Arild Waaler, and
Michael Zakharyaschev. Ontology-based data access to slegge. In ISWC (2),
volume 10588 of LNCS, pages 120-129. Springer, 2017.

Apache Foundation. Apache jena. https://jena.apache.org/.

Eclipse Foundation. Eclipse RDF4J. https://rdf4j.org/.

Jon Christopher Ireland. Object-relational impedance mismatch : a framework based
approach. PhD thesis, Open University, Milton Keynes, UK, 2011.

Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: reconciling object,
relations and XML in the .net framework. In SIGMOD, page 706. ACM, 2006.

Andrew Matthew. LINQtoRDF, 2006. https://code.google.com/archive/p/lingtordf/.

Neil M. Goldman. Ontology-oriented programming: Static typing for the incon-
sistent programmer. In ISWC, volume 2870 of LNCS, pages 850-865. Springer,
2003.

Keith L. Clark and Frank G. McCabe. Ontology oriented programming in go!
Appl. Intell., 24(3):189-204, 2006.

https://jena.apache.org/
https://rdf4j.org/

21.

22.

23.

24.

25.

26.

Modular, Lazy and Safe Loading of RDF Data 17

Martin Leinberger, Stefan Scheglmann, Ralf Lammel, Steffen Staab, Matthias
Thimm, and Evelyne Viegas. Semantic web application development with LITEQ.
In ISWC, volume 8797 of LNCS, pages 212—-227. Springer, 2014.

Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle, and Julian A. Padget.
Automatic mapping of OWL ontologies into java. In SEKE, pages 98-103, 2004.

Fernando Silva Parreiras, Carsten Saathoff, Tobias Walter, Thomas Franz, and
Steffen Staab. APIs & gogo: Automatic generation of ontology APIs. In ICSC,
pages 342-348. IEEE Computer Society, 2009.

Eyal Oren, Benjamin Heitmann, and Stefan Decker. ActiveRDF: Embedding se-
mantic web data into object-oriented languages. J. Web Semant., 6(3):191-202,
2008.

Philipp Seifer, Martin Leinberger, Ralf Lammel, and Steffen Staab. Semantic query
integration with reason. Art Sci. Eng. Program., 3(3):13, 2019.

Martin Leinberger. Type-safe Programming for the Semantic Web. PhD thesis,
University of Koblenz and Landau, Germany, 2021.

	Never Mind the Semantic Gap: Modular, Lazy and Safe Loading of RDF Data

