
Towards Ontological Service-Driven Engineering of Digital Twins
Bentley Oakes

Polytechnique Montréal
Montréal, Canada

bentley.oakes@polymtl.ca

Claudio Gomes
Giuseppe Abbiati
Aarhus University
Aarhus, Denmark

claudio.gomes@ece.au.dk
abbiati@cae.au.dk

Eduard Kamburjan
University of Oslo
Oslo, Norway

eduard@ifi.uio.no

Elif Ecem Bas
R&D Test Systems
Hinnerup, Denmark

eeb@rdas.dk

Sebastian Engelsgaard
LORC

Munkebo, Denmark
se@lorc.dk

ABSTRACT
The systematic engineering of Digital Twins (DTs) requires the
establishment of clear methodologies supported by intelligent tool-
ing. We propose an approach to guide the user in the creation and
deployment of services for DTs utilizing ontologies and workflows.
In our approach, the user selects a desired DT service from an array
of options. This selection is then used to suggest a) enablers and
models to place in the DT, and b) development and deployment
workflows for the DT service. The aim is to provide DT engineering
guidance to assist non-software engineering experts to develop DT
services more rapidly with less effort. We describe our initial work
on applying this approach to a derived version of an industrial wind
turbine generator case study, utilizing openCAESAR for ontology
definition and enacting the workflows with Jupyter notebooks.

CCS CONCEPTS
• Computing methodologies→Modeling and simulation; •
Software and its engineering;

KEYWORDS
digital twins, ontologies, DT services, wind turbine testing, guided
software engineering, recommendation, workflows
ACM Reference Format:
Bentley Oakes, Claudio Gomes, Giuseppe Abbiati, Eduard Kamburjan, Elif
Ecem Bas, and Sebastian Engelsgaard. 2024. Towards Ontological Service-
Driven Engineering of Digital Twins. In Proceedings of International Con-
ference on Engineering Digital Twins (EDTconf 2024). ACM, New York, NY,
USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The concept of Digital Twins (DTs) has evolved from its beginning
in product design [10] to cover a multitude of definitions [23]. Here,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EDTconf 2024, September 23–24, 2024, Linz, AU
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

we define DTs as virtual representations of complex (cyber-)physical
systems, and refer to the system as the Physical Twin (PT). One
of the key characteristics of DTs is that they provide services to
their user and to the connected PT [7, 21]. To name just a few
services, these range from visualization of the DT, to monitoring,
optimization, and fault injection [3]. These services connect the DT
to the PT by providing key insights and actions which modify the
PT or produce actionable information.

Problem. While DT engineering is an evolving field, there is
still a gap in mature systematic approaches and especially those
that guide the user along the definition of the DT services. From a
recent survey on open-source DT platforms [6], the majority of the
guidance provided is in the form of documentation and examples,
without explicit tool support. We thus argue that there is a research
gap in defining and implementing guidance for the practitioner on
how to build the DT services.

In particular, we take the position that a low-level approach
which ‘starts from the bottom’ and focuses on modeling of the data
and connections is not appropriate for a wide range of DT practi-
tioners and stakeholders. Rather than software engineers, these DT
stakeholders include management, local and national governments,
engineers from other scientific domains, and potentially citizen
developers. These stakeholders can benefit from DTs and their ser-
vices (such as optimization), yet they may not have the technical
skills to effectively use current DT platforms. In particular, we see a
high barrier in the requirements for core modeling, simulation, and
software engineering skills, including the creation and calibration
of system models, and deployment to a running DT platform.

Approach. In this paper, we discuss our on-going work in engi-
neering DTs “top-down”. We propose to leverage the unique struc-
ture of DTs as being a constellation of services, enablers, models and
data [7], as shown in Figure 1. We envision users composing DTs by
selecting the DT services required, and being guided by tool support
through the creation and deployment of the DT constellation.

Our approach relies on ontologies to explicitly capture and rep-
resent the heterogeneous domain knowledge required to build DT
services: a) the selection of the tools/enablers, models, and data
required, b) the workflow(s) for developing the DT service and the
required models, and c) as structure for a knowledge graph [19]
providing model management capabilities.

https://orcid.org/0000-0001-7558-1434
https://orcid.org/0000-0003-2692-9742
https://orcid.org/0000-0002-5048-8505
https://orcid.org/0000-0002-0996-2543
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


EDTconf 2024, September 23–24, 2024, Linz, AU Oakes et al.

Contribution and Structure. Our contribution is a first definition
and application of our ontologically-based approach for engineering
DT services. We a) overview the approach, including a selection of
the ontologies and workflows developed, and b) present prototype
tooling for its application. The running example presented in Sec-
tion 2 is the creation of a DT service (conformance monitoring) for
wind turbine generator testing. Section 3 overviews our approach,
including our current view on the broad steps for the engineering
of DT services. Section 4 discusses the application of our approach
to a derived version of an industrial case study. Section 5 presents
related work while Section 6 concludes.

2 WIND TURBINE TESTING EXAMPLE
The running example of this study is derived from the 16 MW
Highly Accelerated Life-time Testing (HALT) testbench for wind
turbine generators operated by the Lindo Offshore Research Center
(LORC), Denmark1. A large rotor, composed of three blades con-
nected to a hub, converts wind kinetic energy into torque feeding
an electric generator, which converts the work produced by the
spinning rotor into electric energy. A drivetrain is used to vary the
rotational speed of the generator shaft w.r.t. the rotor shaft.

The HALT testbench exposes the drivetrain-generator system
to an equivalent load as that experienced by a real wind turbine
throughout its entire life-cycle (up to 20 years), but compressed in
a few months of continuous testing. The HALT testbench utilizes
a hexapod to exert bending moments, shear forces and axial load
to the rotor shaft while an electric motor imposes torque as it was
produced by the rotor. As a result, only the wind turbine generator
nacelle is tested and the rotor (whose diameter could be up to 250 m)
is numerically simulated. In the context of experimental testing, the
drivetrain-generator system is a Device Under Test (DUT) while
the hexapod is a Test Loading Unit (TLU).

DIGIT-BENCHDT. Themodel of the HALT testbench (termed the
DIGIT-BENCH DT) with a parametrized DUT is being developed
within the Digit Bench project2. For the sake of simplicity, the rotor
dynamics are neglected and the model is constructed to represent
only the energy conversion process from shaft motion to electric
power generation. Specifically, the model represents the 1) electric
motor of the HALT system, 2) drivetrain, and 3) electric generator.

The main DT service we present here is the DUTMonitor service,
which outputs a measure of conformance of the PT and this model
of the dynamics of the TLU coupled with the DUT (see Figure 2
for the context diagram). The purpose of this service is to detect
discrepancies with the PT during an experimental campaign, which
could be a symptom of a fault in the configuration of the TLU or
the DUT, or a change in the coupling stiffness between the TLU and
DUT. The service must therefore detect these discrepancies early,
and warn the user to stop the experiment. This DT service is thus
crucial to prevent structural damage and/or catastrophic failures.

To detail the DIGIT-BENCH DT, we present here some DT char-
acteristics from the reporting framework of Gil et al. [7]. Figure 1
shows a) the insights, actions, and data between the PT and the
DT, and b) the dependency relationships of services, enablers, and
models/data inside the DT constellation.
1Please see https://www.lorc.dk/test-facilities for more on the HALT testbench.
2https://digit.au.dk/research-projects/digit-bench

Testbench
environ.

Testbench
Nacelle

Sensors

Actuators

Operator

Physical Twin

Services

Models/Data

Enablers

DT Constellation

Real-time
viz.

Dashboard Simulator

Testbench
Model

Angular 
positions/velocity,
wind loading, etc.

Conformance Monitor

Nacelle
Model

Enablers
(comm.)

RabbitMQ

FMI

InfluxDB

Angular position/velocity,
wind loading, etc.

Dashboard viz.,
warnings

∅

Figure 1: DIGIT-BENCH PT and DT constellation.

Digital Twin

Physical Twin

Wind Loading Testbench DUT

DUTMonitor

Operator

DUT&TB
Coupled
Model

Legend:
Data flow

Dependency

Figure 2: DIGIT-BENCH DT service context diagram.

DT Services, Insights/Actions. Other than the DUTMonitor service,
the real-time visualization service displays the conformance data
from the DUTMonitor, model predictions, and data coming from
the PT sensors as insights for the user. There are (currently) no
automatic actions taken by the DT on the PT.

Tooling and Enablers. InfluxDB3 provides a framework for the
creation of dashboards. The simulator has been exported as a Func-
tional Mockup Unit (FMU4) from the OpenModelica tool [5].

The communication between the DT services is achieved using
RabbitMQ5. The DUTMonitor service is implemented in Python and
uses the Maestro2 orchestrator [11] to simulate the coupled model
as a co-simulation [9]. During the development and decoupling of
the model (described later), we have also used the FMPy library6.

DT Data andModels. For confidentiality reasons, we present only
the relevant data exchanged between the PT and the DT, consisting
of the angular position, velocity, and wind loading. This provides
the inputs required to run the simulation of the energy generated
by the PT as well as its dynamics.

Themodel used in the DUTMonitor service is a simplified version
of the real world model. It is used to predict the energy generated by
the nacelle. This model represents a coupling of two sub-models: 1)
the TLUmodel, and 2) the DUTmodel, withwind loading conditions
and the energy regeneration control as inputs.

These models are shown coupled together in Figure 3, in the
Open Modelica Connection Editor7. The TLU model on the left of
Figure 3 is a rotational inertia driven by a torque generated by a
speed PI controller. The speed settings come from the wind loading
conditions. The coupling with the DUT model is achieved by a rigid

3https://www.influxdata.com/
4https://fmi-standard.org/
5https://www.rabbitmq.com/
6https://github.com/CATIA-Systems/FMPy
7https://www.openmodelica.org/

https://www.lorc.dk/test-facilities
https://digit.au.dk/research-projects/digit-bench
https://www.influxdata.com/
https://fmi-standard.org/
https://www.rabbitmq.com/
https://github.com/CATIA-Systems/FMPy
https://www.openmodelica.org/


Towards Ontological Service-Driven Engineering of Digital Twins EDTconf 2024, September 23–24, 2024, Linz, AU

rotational spring/damper. The DUT model is similar except there is
a breaking torque to represent the electrical energy generation.

TLU

DUT

Loading Conditions

Figure 3: Coupled model overview.

In the following, we discuss the construction and deployment of
the conformance monitor service and its supporting testbench model,
highlighted in bold in Figure 1. In particular, we describe how our
approach guides the user in a) decoupling this coupled model, and
b) deploying the conformance monitor as a service on the DT.

3 DT SERVICE ENGINEERING APPROACH
This section discusses our proposed approach for engineering DT
services, as diagrammed in Figure 4. The essence of the approach
presented in the following is that 1) the user selects the desired DT
service from a “menu”. This selection informs the ontologies and
knowledge graphs to query, providing: 2) guidance for the types
of tools and enablers to used within the DT service, and 3) the
service and model development and deployment workflows. These
workflows are enacted in 4) tooling to guide the user along the
modeling, simulation, model management, and deployment steps
necessary to engineer the new DT service.

Service Engineering
(Workflows)

Role
Recommendation

(Knowledge Graph)

Enabler Role
Recommendation

Model Role
Recommendation

Model
Development/Testing

Model Deployment
and Testing

Service 
Deployment and Testing

Menu of
Services

1
Visualization Predictive

Maintenance

Optimization Anomaly
Detection

System
Control
Formal

Verification

3

2

Ontologically-aware Tool Support
4

selects

selects

Figure 4: Overview of our DT service engineering approach.

3.1 Step 1 - Service Selection
In our approach, we assume that the user has awell-defined problem
or question for which the DT will provide an answer [19]. This
corresponds to a “business case” for the DT, developed through
detailed requirements gathering and ideation. The user must then

connect their business case with the DT service to be implemented
which provides the necessary value. For example, a need to visualize
the PT for training purposes is addressed by a training service and
a visualization service. In our industrial project, the DT must be
able to sense when the PT behavior does not match the predicted
behavior to prevent structural damage. Therefore, the conformance
monitor service provides the necessary value.

In our approach, we propose that the practitioner selects their
desired DT service from a “service menu”, as demonstrated with
a selection of possible high-level services in the top-left box of
Figure 4. This service menu approach is inspired by others: the DT
purposes from Figure 6 in Dalibor et al. [3], and the Digital Twin Ca-
pabilities Periodic Table (CPT) from the Digital Twin Consortium8.

These inspirations present high-level categories for DT services.
However, we foresee that a finer-grained selection is required. In
our vision, the DT service selection menu should provide a level of
detail similar to the services layer represented in Figure 1. That is, it
should offer options such as ‘visualization’, ’optimization’, etc. As
discussed below, each service corresponds to a defined workflow,
where the user enters in relevant details, such as which models and
their values are considered for conformance monitoring.

Ontological Approach. We propose utilizing multi-layered on-
tologies and knowledge graphs to capture domain knowledge for
engineering particular DT services. This includes: a) based on the
service, recommending types of enablers and models to be placed in
the DT constellation, and b) providing workflows such that the user
can engineer each selected DT service and the necessary models.

We are motivated to use an ontological approach in this work
for two main reasons. First, the use of the openCAESAR platform
allows for agile and rigorous ontology definition [4]. Over a meta-
modelling approach, this offers improved consistency checking,
inferencing, and explicit semantics. Second, we believe that a multi-
layered ontology approach better captures the multi-disciplinary
nature of DTs (software, mechanical, electrical, etc.), including the
heterogeneous information required for DT engineering (structural,
behavioral, requirement, technological, etc.).

Currently, we have three layers of ontologies for recommenda-
tions and workflow definition which have been iteratively created
to support the functionality required in the project tooling and to
represent the DIGIT-BENCH DT components. As openCAESAR
supports robust ontology layering and federation [4], we do not
expect major difficulties in extending and aligning these ontologies
as our project proceeds. Thus over time, we will provide additional
services, workflows, and recommendations for our users to follow.

3.2 Step 2 - Role Suggestion Ontology
Our approach aims to provide guidance to the user on how to select
the enablers and models to place in their DT constellation. We rep-
resent the types of enablers and models that support a service [18]
using the concept of roles, which we store in a knowledge graph.

A selection of the OML descriptionmodel (corresponding to ABox
statements) for the DIGIT-BENCH DT from Figure 1 is shown in
Lst. 1. It defines a conformanceService which is typed by the con-
cept ServiceRole. This conformanceService is enabledBy the

8https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/

https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/


EDTconf 2024, September 23–24, 2024, Linz, AU Oakes et al.

simulatorEnable, which is typed by an EnablerRole. In turn, the
simulatorEnable requires three instances of type modelRole.

1 instance conformanceService : dtdeploy_system:ServiceRole [
2 dtdeploy_system:enabledBy simulatorEnable
3 dtdeploy_system:deployedUsing conformServiceProcess ]
4 instance visualizationService : dtdeploy_system:ServiceRole [
5 dtdeploy_system:enabledBy dashboardEnable ]
6 instance dashboardEnable : dtdeploy_system:EnablerRole[
7 dtdeploy_system:requires dataRole ]
8 instance simulatorEnable : dtdeploy_system:EnablerRole[
9 dtdeploy_system:requires dataRole

10 dtdeploy_system:requires nacelleRole
11 dtdeploy_system:requires testbenchRole ]
12 instance nacelleRole : dtdeploy_system:ModelRole
13 instance testbenchRole : dtdeploy_system:ModelRole [
14 dtdeploy_system:deployedUsing TestBenchProcess ]
15 instance dataRole : dtdeploy_system:ModelRole

Listing 1: A portion of our recommendation knowledge
graph, linking services, enablers, models, and processes.

We also trace the deployment processes in the knowledge graph,
made explicit as workflows, for service roles and model roles. This
is demonstrated by lines 3 and 14 in Lst. 1. Our approach thus
provides traceability by linking the DT services to its enablers, the
models, and the workflows required and enacted. The knowledge
graph can be queried by our tooling to find the models which
have yet to be developed to support a particular service, and the
workflow to develop them. This is demonstrated in Lst. 2 which
finds the ModelRoles and their workflows (the process) for the
conformanceService, where the ModelRoles are not yet filled.

1 SELECT ?modelRole ?process {
2 ?serviceRole enabledBy ?enablerRole.
3 ?enablerRole requires ?modelRole.
4 ?modelRole deployedUsing ?process.
5 FILTER NOT EXISTS { ?serviceRole playedBy ?element }
6 FILTER NOT EXISTS { ?enablerRole playedBy ?element }
7 FILTER NOT EXISTS { ?modelRole playedBy ?element }
8 VALUES ?serviceRole { conformanceService }
9 }

Listing 2: A query to find not-yet-developedmodels and their
workflows for the conformance monitor service.

The to-be-created, existing, and already-deployed models in the
DT can play these ModelRoles. We foresee that this role informa-
tion could be augmented to better select the required model from
a repository (see [15]), or to improve the development workflow.
An example would be the addition of validity information for the
model [16, 22] to capture the expected validity envelope for the
model, or by detailing further fidelity requirements [18].

3.3 Step 3 - Model and Service Workflows
In our approach, we propose the use of enactable workflows to
develop and deploy DT services, and the models required to sup-
port those services. We select the workflow formalism to explicitly
represent and allow customization of the process steps.

Workflow Ontology. Note that while there are numerous ap-
proaches for workflow modeling [12] and an equally rich body
of work on ontologies in DTs [13], we here introduce a specialized
workflow ontology to target our exact needs.

In particular, we express a) the workflow itself, with Steps and
Decisions (decision points), and also b) the workflow’s relation
between artifacts, such as model instances and data, and the tasks
that they produce and consume. For example, each step can either
describe a purely mechanical computation (e.g., loading a model
instance, simulation, plotting) or a task that requires human in-
volvement (e.g., comparing data). Lst. 3 presents a selection of the
workflow ontology, with concepts for these various steps, the ar-
tifacts they consume and produce, and the relationships between
these. Not shown in Lst. 3 are concepts for traceability, such as
recording provenance and usage of data and parameters for steps.

1 concept Process,Section,Step,GenericArtifact
2 concept GenDiagram,GenResult,GenModel < GenericArtifact
3 concept Decision,LoadStep,SimulateStep,DeployStep,CompareStep < Step
4 relation entity SectionContent [ from Section to Step
5 forward sectionOf reverse inSection ]
6 relation entity HasStep [ from Process to Step
7 forward hasStep reverse stepOf ]
8 relation entity Production [ from Step to GenericArtifact
9 forward produces reverse producedBy ]

10 relation entity Consumption [ from Step to GenericArtifact
11 forward consumes reverse consumedBy ]

Listing 3: Concepts from our OML workflow vocabulary,
defining steps, artifacts, and their relationships.

ServiceWorkflow Structure. From our application of this approach
to our project DT, we have the intuition that there are common
workflow stages to develop and deploy DT services. This is shown
in the right-hand side in Figure 4 as involving three stages: 1) first
the model is developed and tested to satisfy the user’s requirements,
2) the model is deployed to the running DT platform and tested in
the DT environment by connection to incoming data, and 3) the
service itself is created through the connection and deployment of
all the models and enablers.

While these stages are somewhat coarse, our insight is that
defining smaller development stages is too rigid for our users. In
particular, it is hard to predict exactly how the user’s model will
evolve over time, as there is expected back-and-forth experimenta-
tion when developing the models and the service. In our project, we
have iterated closely with the practitioners to define the workflows
at the right level of detail, as presented in Section 4.2.

3.4 Tooling for Enactment and Deployment
Our approach requires tooling to enact the workflow(s) and guides
the user along it step-by-step to provide model configuration and
management assistance, as well as visualization functionality as
appropriate. We also foresee extensive modeling guidance [2] as
essential to assist our non-software engineering experts. Currently,
we are developing our approach tooling (Section 4.1) to query and
modify the knowledge graphs to handle model loading and simu-
lation, record model parameters and experiments, and be able to
deploy the models and service to the DT deployment platform.

4 APPROACH APPLICATION
This section describes a preliminary application of our approach
from Section 3 to the DIGIT-BENCH DT from Section 2, where
the user has selected the ‘conformance monitor’ service from the
service menu. In particular, we describe our prototype tooling and



Towards Ontological Service-Driven Engineering of Digital Twins EDTconf 2024, September 23–24, 2024, Linz, AU

the intention behind it. We also present below workflows for: a)
decomposing the model in Figure 3 into sub-models that can be
individually wrapped into FMUs for deployment to the DT, and b)
developing and deploying the DUTMonitor service (recall Figure 2).

4.1 Prototype Tooling
Our prototype tooling is built on Jupyter notebooks9 running
Python. This allows us to serve these notebooks on a web server
running JupyterLab on the project premises, and to allow for non-
interactive modes to utilize CI/CD pipelines. We are thus targeting
users who have a basic understanding of command line tools, script-
ing in Python, and the use of Jupyter notebooks. Our goal is to auto-
mate tasks so that the users, who understand the PT at a deep level,
can focus on the core engineering steps of modeling, simulation,
and identifying discrepancies in model and service results.

In particular, if a step depends on models, simulation results,
configurations, etc., from any previous steps, then inconsistencies
must be detected by the tool and reported to the user. For example,
a user shall not be able to run a step with such dependencies if
the previous steps have not been run before, or if their outputs
have become out of date. Our tools do not automatically detect
discrepancies in the results between different steps as this is domain-
dependent. It must also be possible for the user to inspect these
results and implement automatic detection of discrepancies.

Our ongoing work is on generating the Jupyter notebooks with a
detailed skeleton of each step in the workflow. The user is expected
to modify these with the actual code for running the experiments,
as this is application-specific. Our tooling provides generated code
in the notebooks that communicates with the knowledge graph,
such that the knowledge graph can be checked for consistency
before/after executing each experiment.

4.2 Development Workflows
Workflow 1: Testbed Model Development Workflow. This workflow

develops the testbed model for the conformance monitoring service,
corresponding to the model development/deployment/testing stages
on the right-hand side of Figure 4. The model is a monolithic simu-
lation model in OpenModelica, which must be partitioned into a
co-simulation, with FMUs to be deployed for all sub-models. During
partitioning, each sub-model must be individually verified, along
with their coupled form in a co-simulation. Each step in this work-
flow is designed to quantify one source of error, as errors may arise
from partitioning or the FMU coming from different suppliers. Each
step also includes an implicit plotting task for visual inspection.

Step 1 Load/build the monolithic model into a model instance,
simulate a test scenario, and store the simulation results.

Step 2 Load a model that partitions the monolith with an ex-
plicit coupling mechanism between the parts of the turbine
testing bench. Simulate it, and compare it with the original
model to assess whether the loss of accuracy is acceptable.
This step ensures that the simulation error introduced by
the coupling can be quantified.

Step 3 Load a model that refines the model from step 2 into
a hierarchical model where the parts of the turbine testing
bench are decoupled. Simulate it, and compare it with the

9https://jupyter.org/

original model to assess whether the decoupling has intro-
duced any loss of precision.

Step 4 Export the decoupled models as FMU’s, co-simulate
them, and compare the results with the previous step. This
step quantifies the error introduced by the co-simulation
orchestration algorithm and its configuration.

Step 5 The FMUs can now be swapped by FMUs exported from
multiple modeling and simulation tools. This step quanti-
fies any discrepancy introduced by producing the FMUs in
different tools.

Service Deployment Workflow. This workflow involves the de-
velopment and deployment of the conformance monitor service,
corresponding to the service deployment and testing stage on the
right-hand side of Figure 4.

Step 1 Run a co-simulation using the DUTMonitor as an FMU
connected to the simulations of the rest of the system as
FMUS. The co-simulation scenario is exactly like Figure 2
except all boxes (except DUT&TB Coupled Model) are FMUs.
The monitor uses the models produced in the previous steps
and provides the results as an FMU via, e.g., hierarchical co-
simulation [8]. A fault is introduced in the testbench or DUT
model to test the monitor, such as a change in the testbed
coupling component stiffness (seen in the lower-middle of
Figure 3). The monitor output should clearly highlight this
fault. This step tests the functionality of the monitor.

Step 2 The DUTMonitor is packaged as a DT service, using a
library to communicate with other services via RabbitMQ.
This is the monitor interface for production. The simulation
results of the previous step are streamed to the service, and
the resulting stream of events is stored and compared with
the results of the previous step. This step tests the service
interface with the rest of the system.

Step 3 This step is similar to the previous step except the
stream of data now comes in real time at the same rate as
the sensor data coming from the PT. This step focuses on
testing the real-time capabilities of the service.

Step 4 In this step the service is deployed in the production
system but its inputs are connected to a PT service which
is just a real time simulation of the PT. This step focuses on
testing the service integration with the rest of the system.
The results are compared with the previous steps.

Step 5 (Optional for Digital Shadow services) This step is
similar to the previous step except now the inputs to the
service are from the real PT. The outputs remain connected
to the simulated PT. This step focuses on testing the ser-
vice integration with the real PT and assessing whether its
outputs match the results from the previous steps.

Step 6 The service is now connected to the real PT. This step
deploys the service in the production system.

5 RELATEDWORK
The recent paper of Carrión and Pastor surveys DT creationmethod-
ologies [1]. We note that these methodologies often start at the
data or interface level, instead of the service-oriented approach
we propose here. For example, Kirchhof et al. focus on modeling
components and interfaces and then generating code for them [14].

https://jupyter.org/


EDTconf 2024, September 23–24, 2024, Linz, AU Oakes et al.

They correctly identify the challenge and importance of generating
and maintaining correct software interfaces for the DT services
to communicate. Our intention is to provide a methodology that
can, starting from the DT service itself, guide the user to develop or
find the necessary enablers and/or models for that service. In [17],
the authors propose the use of UML and OCL for the generation
of digital twins. This work includes the notion of DT services as
components in the DT architecture. However, it does not propose
following customizedworkflows or recommending specific enablers
and models depending on each service as we do.

For ontologies and workflows, Mittal et al. [16] propose explicit
model management workflows combinedwith ontologies to capture
the processes and boundaries of model validity in simulation [22].
Earlier work [20] summarizes the development workflow for two
DT case studies, and together with [16] serves as inspiration for our
own work. However, these works do not discuss the engineering of
DT services using ontologies. Taking this focus allows us to consider
customized workflows for each particular service, integrating multi-
domain knowledge and allowing for consistency checking.

6 CONCLUSION
This paper has presented our on-going work on developing an
ontologically-based approach to engineering DT services. The ap-
proach starts from the user selecting a service. Then, based on
ontologies and knowledge graphs, the user is guided through the
development and deployment of the service to the DT. The expected
impact of our approach is that a domain expert will be able to use
tools conforming to this approach to more efficiently build DT
services, as measured by time, effort, and usability metrics.

Our approach has been very welcomed by the industrial prac-
titioners, who see value in this service-driven, workflow-based
approach. They appreciate that the workflows and Jupyter note-
books promote best practices for reproducibility and automation in
the experiments. However, there are challenges in balancing rigid
workflow steps with the flexibility required by the practitioners.

Our future work is to further develop our approach, the under-
lying ontologies, and our prototype tooling. In particular, we are
interested in collecting multiple DT exemplars reported in the DT
description framework of Gil et al. [7]. This information, along
with the insights from our existing DT case studies, will be used
to enrich the enabler/model recommendations and development
workflows stored in our knowledge graph. Another open question
is the connection of the lifecycles of the different ontologies and
our framework. Using it requires to harmonize the ontologies it is
using with each other, as well as integrate this harmonization into
the lifecycle of the tooling.

ACKNOWLEDGMENTS
Partly funded by the EU project SM4RTENANCE (grant no. 101123423)
and by the EUDP DIGIT-BENCH project (grant no. 640222-497272).

REFERENCES
[1] Emilio Carrión and Óscar Pastor. 2023. A systematic review of methodologies

for developing Digital Twins: Insights and recommendations for effective imple-
mentation. (2023).

[2] Shalini Chakraborty and Grischa Liebel. 2024. Modelling guidance in software
engineering: a systematic literature review. Software and Systems Modeling 23, 1
(2024), 249–265.

[3] Manuela Dalibor, Nico Jansen, Bernhard Rumpe, David Schmalzing, Louis Wacht-
meister, Manuel Wimmer, and Andreas Wortmann. 2022. A cross-domain system-
atic mapping study on software engineering for digital twins. Journal of Systems
and Software 193 (2022), 111361.

[4] Maged Elaasar, Nicolas Rouquette, David Wagner, Bentley Oakes, Abdelwahab
Hamou-Lhadj, and Mohammad Hamdaqa. 2023. openCAESAR: Balancing Agility
and Rigor in Model-Based Systems Engineering. Inter. Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C) (2023).

[5] Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall, Kaj Nystrom, Levon
Saldamli, David Broman, and Anders Sandholm. 2006. OpenModelica-A free
open-source environment for system modeling, simulation, and teaching. In IEEE
International Conference on Computer-Aided Design. IEEE, 1588–1595.

[6] Santiago Gil, Peter H Mikkelsen, Cláudio Gomes, and Peter G Larsen. 2024.
Survey on open-source digital twin frameworks–A case study approach. Software:
Practice and Experience (2024).

[7] Santiago Gil, Bentley Oakes, Claudio Gomes, Mirgita Frasheri, and Peter G.
Larsen. 2024. Towards a Systematic Reporting Framework for Digital Twins: A
Cooperative Robotics Case Study. SIMULATION (2024), 1–27. https://doi.org/10.
1177/00375497241261406

[8] Cláudio Gomes, Bart Meyers, Joachim Denil, Casper Thule, Kenneth Lausdahl,
Hans Vangheluwe, and Paul De Meulenaere. 2018. Semantic adaptation for FMI
co-simulation with hierarchical simulators. SIMULATION 95, 3 (April 2018),
241–269. https://doi.org/10.1177/0037549718759775

[9] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans
Vangheluwe. 2018. Co-Simulation: A Survey. Comput. Surveys 51, 3 (May 2018),
1–33. https://doi.org/10.1145/3179993

[10] Michael Grieves and John Vickers. 2017. Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems. Transdisciplinary perspectives
on complex systems: New findings and approaches (2017), 85–113.

[11] Simon Thrane Hansen, Casper Thule, Cláudio Gomes, Kenneth Guldbrandt Laus-
dahl, Frederik Palludan Madsen, Giuseppe Abbiati, and Peter Gorm Larsen. 2024.
Co-simulation at different levels of expertise with Maestro2. Journal of Systems
and Software 209 (March 2024), 111905.

[12] Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kambur-
jan, andMartin Giese. 2024. Towards Representing Processes and ReasoningWith
Process Descriptions on the Web. Transactions on Graph Data and Knowledge 2
(2024). Issue 1.

[13] Erkan Karabulut, Salvatore F Pileggi, Paul Groth, and Victoria Degeler. 2023.
Ontologies in Digital Twins: A Systematic Literature Review. Future Generation
Computer Systems 153 (2023).

[14] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, and
Andreas Wortmann. 2020. Model-driven digital twin construction: synthesizing
the integration of cyber-physical systems with their information systems. In
Inter. Conference on Model-driven Engineering Languages and Systems. 90–101.

[15] Daniel Lehner, Sabine Wolny, Alexandra Mazak-Huemer, and Manuel Wimmer.
2020. Towards a reference architecture for leveraging model repositories for
digital twins. In 2020 25th IEEE international conference on emerging technologies
and factory automation (ETFA), Vol. 1. IEEE, 1077–1080.

[16] Rakshit Mittal, Raheleh Eslampanah, Lucas Lima, Hans Vangheluwe, and Do-
minique Blouin. 2023. Towards an Ontological Framework for Validity Frames. In
2023 ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C). IEEE, 801–805.

[17] Paula Muñoz, Javier Troya, and Antonio Vallecillo. 2021. Using UML and OCL
models to realize high-level digital twins. In Inter. Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). IEEE, 212–220.

[18] Bentley Oakes, Claudio Gomes, Joachim Denil, Julien Deantoni, Joao Cambeiro,
John Fitzgerald, and Peter Gorm Larsen. 2023. Examining Model Qualities and
Their Impact on Digital Twins. In Annual Modeling and Simulation Conference
(ANNSIM). IEEE, 220–232.

[19] Bentley Oakes, Bart Meyers, Dennis Janssens, and Hans Vangheluwe. 2021. Struc-
turing and Accessing Knowledge for Historical and Streaming Digital Twins. In
First Workshop on Ontology-Driven Conceptual Modeling of Digital Twins. 1–13.

[20] Randy Paredis, Cláudio Gomes, and Hans Vangheluwe. 2021. Towards a Family of
Digital Model/Shadow/Twin Workflows and Architectures.. In IN4PL. 174–182.

[21] Fei Tao, Meng Zhang, and AYC Nee. 2019. Five-dimension digital twin modeling
and its key technologies. Digital Twin Driven Smart Manufacturing (2019), 63–81.

[22] Simon Van Mierlo, Bentley James Oakes, Bert Van Acker, Raheleh Eslampanah,
JoachimDenil, and Hans Vangheluwe. 2020. Exploring Validity Frames in Practice.
In Proceedings of the First International Conference, ICSMM 2020, Bergen, Norway,
June 25–26, 2020. Springer, Cham, 131–148.

[23] Andreas Wortmann. 2024. Digital Twin Definitions. https://awortmann.github.
io/research/digital_twin_definitions/. Accessed on March 3, 2024.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1177/00375497241261406
https://doi.org/10.1177/00375497241261406
https://doi.org/10.1177/0037549718759775
https://doi.org/10.1145/3179993
https://awortmann.github.io/research/digital_twin_definitions/
https://awortmann.github.io/research/digital_twin_definitions/

	Abstract
	1 Introduction
	2 Wind Turbine Testing Example
	3 DT Service Engineering Approach
	3.1 Step 1 - Service Selection
	3.2 Step 2 - Role Suggestion Ontology
	3.3 Step 3 - Model and Service Workflows
	3.4 Tooling for Enactment and Deployment

	4 Approach Application
	4.1 Prototype Tooling
	4.2 Development Workflows

	5 Related Work
	6 Conclusion
	References

