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Abstract

Ontologies rely on a vast ecosystem of software tools, especially the description logic reasoners. Yet, tool
developers and maintainers have little support to ensure tool reliability. This extended abstract reports on two
testing studies on EL reasoners, summarizing results from two approaches presented at ISSRE’24 [1], ESWC’25 [2]
and preliminary results building on this work [3]. We demonstrate how recent advances in test case generation
for highly structured and constrained inputs can support software developers in the semantic web field. We
develop input generators for the OWL EL profile, and report on 23 bugs we found in HermiT, ELK and Pellet, as
well as the EL profile checker of the OWL-AP]I, all using automated testing.
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1. Introduction

Motivation. Ontologies are used in business-critical applications and are supported by a rich ecosys-
tem of standards, technologies and software tools [4]. Nevertheless, quality considerations are mostly
concerned with data or ontology quality [5, 6], and rarely consider the software tools that underlie the
application. However, only few investigations into reliability of the software ecosystem surrounding
ontologies have been conducted, which diminishes confidence in their results—confidence that is critical
especially if ontologies are used to improve confidence in an overall application, e.g., to counteract gaps
or hallucinations in neuro-symbolic Al [7, 8]. In the related field of SMT-solvers, testing is an active
area of research [9, 10, 11, 12]. Testing tools have found and documented thousands of bugs in mature
SMT-solvers. In this work we present the first results of applying testing techniques to EL reasoners,
published at ESWC’25 [2], and extended results based on work published at ISSRE’24 [1] and submitted
to a journal [3].

Overview. We tested the solvers HermiT (v.1.4.5.51) [13], Pellet [14] (using its Java binding Openllet,
v.2.6.5), and ELK (v.0.6.0) [15]. These reasoners were selected as they are (a) openly available and (b)
preinstalled with Protégé [16], which is still the most widely used ontology modelling tool. Only ELK is
under active maintenance. In the following, when we refer to the reasoners, we refer to the respective
version listed above.

There were two testing campaigns, both based on differential testing [17]: We generate (semi)random
ontologies, give them as inputs to all three reasoners, and consider it an anomaly if one reasoner
disagrees with the results of the others, or throws an exception. We tested two capabilites: (1) We
checked for consistency of the input ontology, and (2) we checked for the inference of all axioms of
the following types: SubClass, DisjointClasses, EquivalentClasses, ClassAssertion, PropertyAssertion,
SubObjectProp, SubDataProp, EquivalentObjectProp, EquivalentDataProp, as well as characteristics of
object and data properties, e.g. functionaliy or symmetry. As the ELK reasoner does not support the
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inference of all of these types of axioms, we only checked if the inferred axioms of ELK are a subset of
the axioms inferred by the other reasoners.

Both campaigns also considered other tools, we only report on those results related to the reasoner.
The full description of the bugs can be found in the original papers [3, 1, 2].

2. Language-Based Fuzzing Campaign

Approach. Inthe first campaign [2], we used language-based fuzzing and the ISLa tool [18]: Language-
based fuzzing uses an input grammar and generates random terms that are accepted by it, possibly
constrained by additional conditions on the term.

The generator produces OWL files in functional syntax, which is defined in the specification of
the OWL EL profile [19]. However, we needed to make some adjustments to the grammar. Firstly,
we restrict the grammar to use four different names per category: classes, individuals, simple object
properties, potentially non-simple object properties, data properties, predefined data types, custom
data types, language tags, strings, annotation properties and annotation values, respectively. This
ensures that the names are used multiple times in the ontology. Secondly, the grammar is modified to
encode some of the constraints on the EL profile that are not contained in the original grammar, e.g.,
the restrictions on complex roles. We do not encode all of the constraints, namely that cyclic definitions
of properties are forbidden and the global restrictions on the EL profile [19]. Thus, we also generated test
cases that are not in OWL EL, which the OWL-API profile checker and ELK are expected to reject.

Results. The main test run was performed for 10 hours, producing and evaluating 1,557 test cases.
Out of those, 516 test cases contain at least one anomaly. The test cases are manually classified and we
examined at least one test case in each class.

Some classes turn out to not be bugs of the reasoners but rather mirror specific reasoning limitations
of the reasoners. We do not examine unclassified anomalies with very different behavior of the tools
as this indicates the occurrence of several anomalies at the same time, which we already examine
individually in other classes. While investigating the anomalies, the input files are simplified, i.e. axioms
and parts of axioms that do not affect the result are removed. Classes, individuals and properties are
renamed to make the files easier to understand. This last step also revealed one bug.

Overall, this testing methodology revealed 14 previously unknown bugs in the reasoners and 1 related
bug in the OWL-API. Table 1 provides an overview of these bugs. We found bugs in all systems that
we tested. We reported the bugs in the repositories of the tested tools, except for HermiT where no
bug tracker is publicly available. The detailed reports for those bugs (as well as all other bugs) can be
found in the supplementary material of the original publication [23]. One interesting observation is that
most of the found bugs are logical bugs, i.e. bugs that do not lead to any exception or warning but the
computed result is incorrect. Logical bugs are particularly important to find, as there is no indication of
their presence for users of the tools. To illustrate the kinds of bugs we found, we discuss a few different
classes of bugs using examples.

Parsing. The OWL EL profile allows language tags, but the OWL-API parser combines strings and
attached language tags to object of type rdfs:langstring. The EL-profile checker of the OWL-API
subsequently rejects the ontology because this data type is forbidden, effectively forbidding the use of
language tags.

Consistency. Four bugs are cases where the consistency of the ontology is not correctly assessed.
We found three such bugs in Pellet/Openllet and one in ELK. The latter (E1 in Table 1) is shown in
Figure 1. The ontology is wrongly classified as inconsistent by ELK: ELK treats the two strings "s1"@fr
and "s1"een as the same entity, even though they must be treated as different literals. This leads to the
incorrect inference that :B is an empty class and, due to the class assertion ClassAssertion(:B :a), that
the ontology is inconsistent.



Table 1

Bugs from the language-based campaign. Issue refers to the corresponding issue tracker [20, 21, 22]. Legend: S =
Soundness, SC = Soundness (consistency), SI = Soundness (inference), C = Completeness, D = Documentation,
E = Exception.

Tool ID Issue Type Summary
o1 85 SC Equivalence to bottom property is missing when range of property is empty
02 87 Sl Incorrectly infers asymmetry of property from a single triple
03 88 Sl Incorrect equivalence with bottom class
Pellet 04 89 S Renaming of variables leads to change in consistency check
05 90 SC Ignores language tags when checking for equivalence of literals
06 91 E Null-pointer exception on invocation
07 92 Sl Incorrectly infers irreflexivity of property from single triple
ELK E1 71 sC Ignores language tags when considering equivalence of literals.
H1 — C Missing owl:Thing class assertion of decl. individ. when no class is declared
H2 — D Warning about malformed input missing and computed result has Sl issue
HermiT H3 — C Functionality of property missing when property range is a singleton
H4 — Sl Incorrect sub-object-property relation caused by unrelated subclass axiom
H5 — C Data-property assertion missing when singleton in equivalent-classes axiom
Heé — E Exception when using only rdfs:Literal in data-type intersection
A1 1158 S Forbidden data type is wrongly detected because of incorrect parsing of
OWL-API string with language tag as rdfs:langString
A2 1159 D Too few arguments are detected because argument-list is interpreted as set
A3 1160 S Defining new data type is incorrectly marked as violation (only use forbidden)

Prefix (:=<http://www.example.org/reasonerTester#>)

Ontology (
Declaration(Class(:B))  Declaration(Class(:A))
Declaration (DataProperty(:dr)) Declaration (NamedIndividual(:a))
EquivalentClasses( DataHasValue(:dr "s1"@fr) A :B )
DisjointClasses( DataHasValue(:dr "s1"@en) :A )
ClassAssertion(:B :a))

Figure 1: Consistency bug in ELK (bug E7)

Prefix (:=<http://www.example.org/reasonerTester#>)

Ontology (
Declaration(DataProperty(:dp)) Declaration(NamedIndividual(:a))
EquivalentClasses( ObjectOneOf(:a) DataHasValue(:dp "data") ))

Figure 2: Inference bug: completeness bug in HermiT (bug H5)

Soundness of Inference. Five of the bugs are cases where the reasoners infer axioms that are not
entailed by the ontology. These bugs were found in HermiT and Pellet/Openllet. For one such bug
(O4), the ontology contains only one axiom EquivalentClasses (ObjectHasSelf(:qsim) ObjectOneOf(:d) :C))
and declares an individual :a that is not mentioned in the axiom. Nevertheless, it is inferred that the
axiom ClassAssertion (:C :a) is entailed by the ontology. Interestingly, changing the name of the declared
class, the individuals or the properties leads to a correct inference, i.e., the bug disappears. We see this
puzzling behavior of Pellet/Openllet for several different inputs.

Completeness of Inference. Three of the bugs are cases where the reasoners do not infer an axiom.
All these bugs were found in HermiT. Figure 2 illustrates H5. The ontology defines a data property :dp
and an individual :a. Furthermore, two classes are the same: (i) the class containing only the individual
:a and (ii) the class of individuals occurring as the subject in an assertion with the data property :dp and
the object "data". One can therefore infer the assertion DataPropertyAssertion(:dp :a "data") from the
ontology. However, HermiT does not infer the axiom when asked to compute all inferred assertions.
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Table 2
Bugs from the mutation-based campaign. Legend is given in Table 1.

Tool ID Issue Type Summary
P1 94 E Exception when pre-computating class hierarchy; occurs non-
deterministically
Pellet P2 93 C A sub-class axiom is missing from inferred class hierarchy; combination of
reflexive property and existential quantification
P3 97 E Exception when doing pre-computation for class hierarchy
P4 95 E Exception when doing pre-computation for class hierarchy
P5 96 C A sub-class axiom is missing from inferred class hierarchy because sub-typing

of different string data types is not considered

HermiT ~ HO — E Exception when reasoner is initiated if ontology contains the axiom L. C T

3. Mutation-based Campaign

Approach. In the second campaign [3], we used mutation-based fuzzing. Mutation-based fuzzing
uses seed inputs and generates random terms by applying mutation operators (such as removing, adding
or exchanging a subterm) on the seed repeatedly.

To get representative ontologies as seeds, we collected ontologies from the latest OWL Reasoner
Competition [24]. We selected all ontologies in the EL-profile and then filtered to only use the ontologies
that are smaller than 1MB in file size. This resulted in 307 ontologies that we used as seeds. Again, we
performed a test run for 10h, during which we generated 1991 test cases, of which 502 test runs resulted
in the occurrence of an anomaly. The used mutation operators are selected such that they address all
allowed features of the EL-profile. The full list of all 55 used mutation operators can be found in the
original publication [3]. They target the TBox as well as the ABox. The used tool is available under
https://github.com/smolang/RDFMutate [25].

Results. We found 6 previously unknown bugs in the OWL EL reasoners that we tested. One of the
bugs (P1) only occurs non-deterministically, i.e., not every time the reasoner is called with the test input.
Such bugs are particularly hard to describe. Two of the bugs are completeness bugs, i.e., the reasoner
misses a subclass relation that should be contained in the class hierarchy. These bugs are especially
important to find as there is no warning for the user that the computed result of the tool is incorrect.

4. Conclusion

Software reliability, or software quality in general, is an underestimated and underappreciated factor
when it comes to ontologies, yet reliability is critical for the acceptance of this technology. The reported
work shows that automated testing can be applied to DL-reasoners and, subsequently, should be applied
in the future. In particular, it demonstrates that language-based tools for input generation have reached
a stage where they can be set up for OWL with little effort. For future work, it remains to investigate
further testing techniques, in particular gray-box fuzzing [26] and other approaches that are building on
coverage to estimate how much of the program or input space has been already tested. It also remains
to investigate why language-based fuzzing was more effective than mutation-based fuzzing.
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