
Towards Self-Adaptive Data Management in
Digital Twins for Biodiversity Monitoring

Eduard Kamburjan ∗†, Laura Ann Slaughter †‡, Einar Broch Johnsen †, Andrea Pferscher †, and Laura Weihl ∗
∗IT University of Copenhagen, Denmark,

†University of Oslo, Norway,
‡SINTEF AS, Norway

Abstract—Biodiversity monitoring is concerned with keeping
track of different species in an ecosystem over time, with
respect to their abundance, distribution and diversity. Envi-
ronmental digital twins used for biodiversity monitoring share
characteristics with industrial digital twins, but face additional
challenges in connecting data and models: Biodiversity data is
often not livestreamed, interventions are slow and require human
interaction, and the scientific knowledge about species and their
habitats constantly evolves. Today, environmental digital twins
offer little automation support, or any support to help scientists
link species observations to assumptions about biodiversity.
This paper presents an application of structural self-adaptation,
originally developed in the industrial domain, to environmental
digital twins. We show how structural self-adaptation enables to
autonomously adapt monitored assumptions to changes in the
available data sources, and further discuss how digital twins can
adapt to changes in the domain knowledge. A first evaluation is
given based on underwater cameras in the Oslo Fjord.

Index Terms—Environmental Digital Twins, Biodiversity Mon-
itoring, Self-Adaptation

I. INTRODUCTION

At their core, digital twins (DTs) synchronize physical
entities with their digital representations, mostly models, at
an appropriate rate [1], to provide some services to users.
DTs arose as a concept in the manufacturing industry but
have spread far beyond their original domain: environmental
DTs are used in environmental applications, in particular bio-
diversity monitoring, where observations of different species
in nature are explored and explained through a multitude of
physical, biological, and ecological models [2].

Consider a DT for an underwater habitat as a case in point.
The DT can monitor assumptions or hypotheses over observa-
tions that link to ecological niche information for different
species. Such assumptions can target general effects, such
as population collapse due to anthropogenic nutrient pollu-
tion [3], or to the influence of offshore wind farms on biodiver-
sity [4]. Another specific assumption is that tropical invasive
fish species may occur in summer around major ports on the
Norwegian coast, where they are disposed of by international
ships, but do not survive harsh winters [5]. Any such moni-
tored assumption must continuously adapt for two reasons.

This work is supported by the Digital Arctic Twins research network, funded
by UArctic, and the Digital Twin of the Oslo Fjord project of the University
of Oslo. We thank Anemo Robotics for making their species detection model
and Marinreparatørene for making their facilities available to us.

• The occurrence of new data, i.e. new observations, can be
spurious. Designing and deploying cameras for long-term
underwater monitoring is notoriously difficult, especially
offshore, where these systems must operate without a
direct power supply or access to maintenance. Observa-
tions arrive in batches from surveys [6], or irregularly
from underwater cameras, as the battery life and hardware
limitations of these cameras require periodic maintenance
and retrieval cycles.

• The knowledge which species are considered invasive,
or the description of the ecological niche of a species is
richer/more accurate, or the behavior and tolerance levels
of the species have adapted to new conditions [7], [8].

Environmental DTs face not only the challenges of indus-
trial DTs, for example, management of heterogeneous models
and data integration, but also have additional characteristics
that hamper their wide-spread adaptation: Data sources are
scarce, rarely in real-time (especially for underwater monitor-
ing), and the models change far quicker than in an industrial
setting, as they do not mirror the design of a system, but the
ever-evolving scientific knowledge about species and their pre-
ferred habitats [6]. Current platforms focus on data integration,
model management, and high-performance computing [2], [9],
but lack automation support.

In biodiversity monitoring [10], the physical twin includes
the set of species observations, together with spatial and
temporal information. The DT will then consist of the mon-
itored assumption and the corresponding internal reasoning
structure, including ecological niche models (ENM), defining
the ecological conditions within which a species can survive
and reproduce [11]. The reasoning structure mirrors the as-
sumption through runtime monitors that require a combination
of incoming data-streams. Both available data sources (but
not the observational data itself) and the reasoning network
are available in a knowledge graph [12], where they can be
combined with domain ontologies and enable the application
of the above techniques.

The main contribution of this paper is the application of
self-adaptation to environmental DTs, in particular we show
that the challenge of autonomously adapting a monitored
assumption can be addressed through techniques to adapt the
DT according to consistency conditions on its representation
as a knowledge graph [13]: Structural self-adaptation can
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be expressed in terms of consistency conditions over the
knowledge graph [14]. Each such condition compares the
reasoning structure with the observation data sources. For
example, if the occurrence of a new data source is relevant
for a reasoning network, the DT will automatically adapt the
structure to reestablish consistency. On the other hand, if the
knowledge about the domain changes then declarative lifecycle
management can adapt the underlying consistency condi-
tions [15]: Each set of consistency conditions is linked with a
predicate over reasoning structures and domain knowledge that
states when these conditions have to hold. Changing domain
knowledge corresponds to the addition of new predicates. We
present a preliminary evaluation based on the Oslo Fjord DT,
using data from underwater cameras with a species detection
model as the data processor.

II. BACKGROUND

A. Environmental DTs

Environmental DTs differ from industrial twins [2], [6]; they
are complex digital representations of natural environments
and large-scale ecosystems, as opposed to models of a single,
albeit composed, asset. Like all DTs, environmental twins
require live data to ensure that the twin is continuously
updated; the data for these natural environments is highly
diverse, multi-modal and multi-scale, coming from a multitude
of sources, ranging from satellite imaging to eDNA analyses.

Domain knowledge is the foundation of environmental DTs,
either implicitly for management and integration of real-time
observational data and simulation models [11], [16], or ex-
plicitly to drive simulation for scientific exploration. Data and
information models enable integration and the ability to make
use of observational data streaming from multiple sources.

Environmental DTs can include historical data and a knowl-
edge base of known scientific facts surrounding the ecosystem.
Such models drive simulations and predictive functionality
in the twins, for example ocean circulation models [17].
Environmental twins form an ecosystem to serve stakeholders
with a wide range of needs, such as policymaking, restora-
tion activities, invasive species monitoring, but also scientific
exploration of new hypotheses and assumptions [18].

Challenge: The reliance on knowledge models results,
among other, in one major challenge: There are no methods
to update the usage of information models and data. New
data sources appear frequently, and scientific knowledge is
evolving, yet updating long-running experiments or integrating
new knowledge is so far manual. It is this challenge of
adapting to changes in data and knowledge we address here.

B. Underwater Biodiversity Monitoring

Biodiversity monitoring in an underwater environment is a
highly challenging domain, as it is characterized by logisti-
cal and technological constraints that limit data availability
and quality. Traditional sampling approaches rely heavily on
manual surveys conducted by scientific divers, fishing trawls
or benthic grabs [19], but these methods are expensive,
lack scalability, and are potentially destructive or disturbing

marine life [20], rendering them unsuitable for sustained long-
term monitoring efforts. Biodiversity monitoring is moving
towards more non-invasive sensor-based approaches, like in
situ camera setups [21], [22], remote sensing [23], passive
acoustic sensors [24] or environmental DNA sniffers [25].

Despite these advances, live links to underwater monitor-
ing systems are still rare since physical constraints of the
underwater setting severely restrict wireless communication
methods [26]. Setups for long-term deployment are limited by
hardware constraints like battery life or storage capacity [20],
[27]. For camera setups, regular maintenance is required also
to overcome aspects like biofouling [28], i.e. marine growth
on the camera lens, which degrades the image quality over
time and complicates long-term unattended operation.

As a result, underwater monitoring observations often lack
temporal resolution; data arrives intermittently rather than
continuously [27]. In between these data collection events,
there might be long gaps with no incoming information,
which complicates data and model integration [6].

C. Self-Adaptation and Consistency in DTs

Integration of different models, their links to the physical
entities and the management of their consistency are major
challenges in DTs [29], [30], that led to the development of
DT platforms [31] to support the user. While such platforms
have different focuses and approaches, and we refer to the
survey of Lehner et al. [31] for an overview, two technologies
have arisen as tools for consistency management: knowledge
graphs and self-adaptation.

Knowledge graphs and ontologies [12] are a key technology
to integrate data within a DT, and reflect on the relations
between models [32], [33]. They enable to automatically
detect inconsistencies by analyzing the links between
models [15], [34] or to connect to standards or data models.

Self-adaptation is the autonomous reaction of a system to
unforeseen new situations or inputs [35]. Architectural [36] or
structural [14] self-adaptation, which is explored in software
systems beyond DTs [37], reacts to unforeseen configurations
of the structure in the system, such as inconsistent linkage
between the digital representations in the twin. Knowledge
graphs have been shown to be a suitable foundation for DTs
to autonomously react to structural inconsistency [14], [15].

III. REASONING NETWORKS

A DT manages the synchronization between physical (or
actual) and digital entities to provide services through the
digital entities. In our case, the physical entities are physical
observations in nature, i.e., the data sources. This is akin to
industrial DTs in, e.g., manufacturing, where the physical
entities are not directly part of the DT, but accessible via
digital references to sensors and actuators. The digital entities
are the assumptions about observations and auxiliary services,
in particular the data links to the data sources.

We think of the set of the physical entities as the observa-
tional network, and the monitored assumptions with auxiliary
services as the reasoning network. The observational network
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contains both historical and real-time data sources. The reason-
ing network contains posed queries, i.e., biodiversity assump-
tions, to reason about the absence or presence of observations
in the data sources. Each assumption is associated with has a
set of auxiliary data link services that connect to the observa-
tional network and provide evidence for or against a query.

Consistency is intuitively defined by data links to exactly
the relevant data sources, for each assumption. To express the
observations that are relevant for a monitored assumption, we
consider different kinds of conditions as constraints:

Definition 1 (Conditions):
• A spatial condition sc describes the location of an

observation. In our case, it is a subset of R2 and models
longitude and latitude.

• A temporal condition tc describes the time when an
observation was made. In our case, it is a subset of N+

and models time in epoch.
• An environmental condition ec describes under which

condition an observation was made. In our case, it is a
first-order predicate over the environmental predicates.

• A species condition oc describes which species an obser-
vation describes. In our case, it is a subset of all taxons.

Note that temporal conditions need not be intervals and spatial
conditions need not be connected regions; they may express,
e.g., periods or disconnected unions of connected regions.

In the following, we leave the set of environmental con-
ditions under-specified in this work, and use the GBIF tax-
ons [38] as the species conditions.

Example 1: As a running example of an environmental
DT, we consider the following assumption, derived from the
literature [39]: There are no observations of cod (1) in the
Oslo Fjord, (2) when the water is warmer than 18 degrees,
(3) at daytime in 2025. The species condition occod is the
GBIF taxon id of Gadus morhua: 8084280. The environmental
condition eccod is the expression temperature ≤ 18 and the
temporal condition tccod is the set of all timestamps between
sunrise and sunset of the days in the year 2025. Finally, the
spatial condition sccod is a rectangle covering the whole Oslo
Fjord: {(x, y) | 59.25 ≤ x ≤ 60.00, 10.10 ≤ y ≤ 10.83}.

A. The Observational Network

An observational network is a set of data sources. Each
data source in the observational network is either a historical
or real-time. In either case, we model them as a time-stamped
series of observations with its spatial position. Let V be the
set of observations which are pairs of taxon ids and additional
sensor measurements, e.g., temperature.

Definition 2 (Observational Network):
• An observation v ∈ V is a pair ⟨taxon, D⟩, where
taxon is a GBIF taxon id and D a set of environmental
measurements.

• A data source is a triple src = ⟨dat, pos, id⟩, where
dat : R+ ⇀ V maps timestamps to observations, pos ∈
R2 is a position, and id ∈ N is an identifier.

• An observational network onet is a set of data sources.
Given an index set I and an indexed set of data sources
{srci|i ∈ I}, we write onet = ⟨srci⟩I .

We denote the i’th element of a tuple t = ⟨e1, . . . ⟩ with ei(t).
Observational networks evolve: new historical data sources

are added and new observations are added through real-time
datastreams. Formally, an observational network can evolve in
two ways, which we model this as two different transitions.

We formalize evolution as a transition system, with two
kinds of transition to cover both cases. The underlying transi-
tion system gives us a formal model of the DT that is used to
prove correctness of self-adaptation procedures, i.e., that they
indeed reestablish consistency.

We denote the last time for which an observation is available
in a data source src, resp. an observational network, with

mtim(src) = max dom dat(src)

mtim
(
⟨srci⟩I

)
= maxi∈I mtim(srci)

Definition 3 (Observational Evolution): Let onet = ⟨srci⟩I
be an observational network.

• Adding a new data source srcj with j ̸∈ I, mtim(srcj) ≤
mtim(onet) to onet is denoted as follows.

⟨srci⟩I
src−→ ⟨srci, srcj⟩I∪{j}

The condition on maximal time ensures that the new data
source has no data yet from the perceived future.

• Adding a new observation to existing data sources within
t ∈ N+ time units to onet is denoted as follows.

⟨srci⟩I
t−→ ⟨src′i⟩I

with the following constraints for all i ∈ I:

id(srci) = id(src′i) ∧ pos(srci) = pos(src′i) (1)

∀x ≤ mtim
(
⟨srci⟩I

)
. x(dat(src′i)) = x(dat(srci)) (2)

mtim
(
⟨src′i⟩I

)
= t+ mtim(⟨srci⟩I) (3)

This expresses that all ids and positions are preserved
(Eq. 1), that all observations prior to the advance are
preserved (Eq. 2) and that the time advance is the
maximal time advance for the added observations (Eq. 3).

Example 2: We continue with Example 1. Consider two
different locations that are used for monitoring, where the
DT of the Oslo Fjord project recorded underwater videos:
One at the most narrow point of the fjord, near Drøbak, at
posDrøbak(59.6658, 10.6120) and one at the northermost po-
sition of Nessoddtangen at posNessodd = (59.8694, 10.6551).
Their representation, without observations, is as follows.

srcDrøbak = ⟨datDrøbak, posDrøbak, 1⟩
srcNessodd = ⟨datNessodd, posNessodd, 2⟩

B. The Reasoning Network

An assumption over biodiversity observations is an expres-
sion over different time periods, locations and species, rooted
in prior domain knowledge, and expressed by a domain expert.
For our purposes, an assumption is a central component that
we formalize as a monitored assumption, together with data
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links that connect assumption monitors to the observation
network. Reasoning takes place in the assumption monitor that
creates a verdict on an underlying assumption by analysing
different data sources.

We do not model the internal structure of the assumption
monitor, which we conjecture could consist of several nodes,
but are interested in the decomposition of an assumption into
an assumption monitor and data links. This decomposition is
also the basis for consistency. Formally, we describe decompo-
sition and consistency using monitoring rules, which describe
which data links must exist for a given assumption.

Definition 4 (Monitoring Rule and Data Conditions):
• A data condition is a triple dc = ⟨pol, ec, oc⟩, where

pol ∈ {+,−} denotes whether the assumption reacts
to the presence (+) or absence (−) of data fitting the
environmental condition ec and species condition oc.

• A monitoring rule is a tuple rule = ⟨rid , sc, tc,DC⟩,
where rid is an identifier and DC a set of data conditions.

A monitoring rule describes the spatial sc and temporal tc
regions relevant to an assumption, as well as the conditions
on the observations to validate the underlying assumption.

Example 3: We continue with Example 2. The data con-
ditions for our assumption are as follows. They are derived
from the assumption. Note that we have two data conditions:
the first confirms the assumption, while the second rejects it
by filtering for counterexamples: cods that occur in water that
is assumed to be too warm.

dc+cod = ⟨+, eccod, occod⟩ dc−cod = ⟨−,¬eccod, occod⟩

The corresponding rule is rulecod:

rulecod = ⟨3, sccod, tccod, {dc+cod, dc
−
cod}⟩

Formally, reasoning networks consists of two kinds of ele-
ments: Assumption monitors, which result from queries and are
confined by spatial conditions sc and temporal conditions tc.
They are connected to the second kind of element, data links.
A data link manage the connection between an assumption,
one data source, and one data condition.

Definition 5 (Reasoning Network):
• An assumption monitor is a tuple mon =

⟨aid , rid , sc, tc⟩, where aid is its identifier, rid is
the id of the monitoring rule it uses, and sc and tc are
spatial and temporal conditions.

• A data link is a tuple link = ⟨lid , aid , id , dc⟩, where lid
is its identifier, aid is the identifier of the assumption
monitor it is connected to, id is the identifier of the data
source it is connected to, and dc the data condition it
uses to filter observations.

• A reasoning network is a tuple rnet = ⟨Mon, Link⟩,
where Mon is a set of assumption monitors and Link is a
set of data links, such that the aid of any link ∈ Link is in-
deed the identifier of an assumption monitor mon ∈ Mon.

Example 4: We continue with Example 3. Consider the
following reasoning network, that contains the assumption

from Example 1 and data links that realize the connection
to the data sources at Nessoddtangen.

rnet1cod =
〈{

⟨4, 3, sccod, tccod⟩
}
,
{
⟨7, 4, 2, dc−cod⟩, ⟨6, 4, 2, dc

+
cod⟩

}〉
A reasoning network can also evolve: A user may add a new

assumption to be monitored, which results in a new assumption
monitor. It does not result in new data links. As we will see
shortly, initial decomposition can be achieved using the very
same mechanism as the one used to reestablish consistency.

Definition 6 (Reasoning Evolution): Let mon be an assump-
tion monitor and rnet = ⟨Mon, Link⟩ be a reasoning network
with mon ̸∈ Mon. Its addition is modelled as a transition

⟨Mon, Link⟩ mon−−→ ⟨Mon ∪mon, Link⟩

Finally, a DT (for the scope of this work) is a triple of
an observational network, a reasoning network, and a set of
monitoring rules, such that all identifiers resolve.

Definition 7 (Digital Twins): A digital twin (DT) is a tuple

twin = ⟨onet, rnet,Rule⟩

where onet is an observation network, rnet is a reasoning
network, and Rule is a set of monitoring rules, s.t. the rid
component of each assumption resolves to the identifier of a
rule in Rule, and the id component of each data link resolves
to a data source identifier of a data source in rnet.

DTs evolve if one of their components evolves (cf. Defini-
tions 3 and 6), a new monitoring rule is added or the condition
in a rule is modified. The last case corresponds to changes in
the domain knowledge, such as different data conditions, or
changed spatial/temporal regions in the monitored assumption.
Evolution of DTs is defined in Figure 1.

Example 5: We continue with Example 4. The following
is the state of the DT where only one data source is present,
which then evolves by adding a new data source at Drøbak.〈

{srcNessodd}, rnet1, {rulecod}
〉

→
〈
{srcNessodd, srcDrøbak}, rnet1, {rulecod}

〉
The DT must now react to the new data source, which is

obviously relevant for the assumption we monitor.

⟨onet, rnet,Rule⟩ → ⟨onet, rnet′,Rule⟩
if rnet mon−−→ rnet′ for some mon

⟨onet, rnet,Rule⟩ → ⟨onet′, rnet,Rule⟩
if onet src−→ onet′ for some src

⟨onet, rnet,Rule⟩ → ⟨onet′, rnet,Rule⟩

if onet t−→ onet′ for some t

⟨onet, rnet,Rule⟩ → ⟨onet, rnet,Rule ∪ rule⟩
if rule ̸∈ Role

⟨onet, rnet,Rule⟩ → ⟨onet, rnet,Rule \ {rule} ∪ {rule′}⟩
if rid(rule) = rid(rule′)

Fig. 1. Digital twin evolution
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IV. SELF-ADAPTATION

Consistency: Users use the DT to access data sources and
monitor assumptions about observation. Returning the correct
results from an assumption monitor requires the DT to be
consistent: Each assumption monitor (a) must be linked to all
relevant data sources through data links, and (b) these that
monitors must use the data conditions according to the used
monitoring rule. We define consistency formally in two steps:
spatial consistency and rule consistency.

Spatial consistency states that for each data source in the
spatial region of the assumption, a monitor exists with a data
condition corresponding to the used monitoring rule.

Definition 8 (Spatial Consistency): Let twin =
⟨onet, rnet,Rule⟩ be a DT, and mon ∈ Mon(rnet) be
an assumption monitor. We say that mon is spatially
consistent within twin, if the following condition holds.

∀src ∈ onet. pos(src) ∈ sc(mon) →
∃link ∈ Link(rnet). aid(link) = aid(mon) ∧ id(link) = id(src)

We say that twin is spatially consistent, if all assumption
monitors within are spatially consistent within.

The second DT state in Example 5 is not spatially consis-
tent. Spatial consistency states that the data link exists, while
rule consistency states that the data links fit the rule underlying
the assumption monitor.

Definition 9 (Rule Consistency): Let twin be a spatially
consistent DT of the form ⟨onet, rnet,Rule⟩ , and mon ∈
Mon(rnet) an assumption monitor. Let links(mon) be the data
links assigned to mon and rule(mon) its monitoring rule. We
say that mon is rule consistent in twin, if the following holds.

∀dcs ∈ DC
(
rule(mon)

)
. ∃link ∈ links(mon). dc(link) = dcs

We say that twin is rule consistent, if all assumption monitors
within are rule consistent within. We say that a data link link ∈
links(mon) contributes to mon, if it is a partial witness to its
rule consistency, i.e., ∃dcs ∈ DC

(
rule(mon)

)
. dc(link) = dcs.

Example 6: The first DT state in Example 5 is rule
consistent. Removing any data link makes it rule inconsistent.

Repair: Consistency is declarative and an instance of
declarative lifecycle management [15]. Each rule defines a
membership predicate for elements that is considers (via the
rid ), and a consistency predicate for connected elements (via
the consistency conditions above, which are per assumption
monitor). Repair, is thus abduction: Given an assumption
monitor which is not consistent, we can create a logic rep-
resentation of the DT [13], [40] and use standard abduction
reasoners to ask which elements must be added or removed
to the logical representation to achieve consistency.

This is a general scheme, that can be expressed in the
MAPE-K framework [35], [41] and does not require instan-
tiating the repair function. To make the presentation in this
work self-contained, we nonetheless instantiate it, but stress
that this is not strictly necessary in general [40], [42].

Definition 10 (Consistent Evolution): Let twin =
⟨onet, rnet,Rule⟩ be a DT. The repair function repair(twin)

1 function repair(Digital Twin twin)
2 var links = Link(rnet(twin))
3 //If the rule changed, remove all old links
4 for mon ∈ norule(twin) do
5 for link ∈ nolink(mon) do
6 links := links \ {link}
7 for src ∈ mis(mon), dc ∈ DC(rule(mon)) do
8 links := links ∪ ⟨fresh(), aid(mon), id(src), dc⟩
9 //For each source without correct links, create them
10 for mon ∈ nost(twin, links) do
11 for src ∈ mis(mon), dvc ∈ DC(rule(mon)) do
12 links := links ∪ ⟨fresh(), aid(mon), id(src), dc⟩
13 //Compute output
14 var rnet := ⟨Mon(rnet(twin)), links⟩
15 return ⟨onet(twin), rnet,Rule(twin)⟩
16 end

Listing 1. Repair Function

that returns a rule consistent DT is given in Listing 1. It uses
the following auxiliary functions.

• Function fresh() creates a fresh data link identifier, i.e.,
an identifier not used anywhere in the system.

• Function norule(twin) returns all not rule-consistent as-
sumption monitors.

• Function nolink(mon) returns all data links that are
assigned to mon but do not contribute to its consistency.

• Function nost(twin, links) returns spatially inconsistent
monitored assumptions in twin, if the set links is used
as the underlying set of data links.

• Function mis(mon) returns the set of data sources within
the spatial region of mon that do not have a data link
assigned to them and mon.

The consistent evolution of DTs is defined with a single
transition ⇒. Let ⇒∗ be its reflexive-transitive closure.

twin ⇒ twin′ if twin → twin′′ and repair(twin′′) = twin′

Our main formal result, which follows from the original
framework on declarative self-adaptation [15] is that consis-
tency can be ensured under evolution: After every step, the
repair function reestablishes consistency. We consider running
the repair function after the rarely occurring modifications
of the structure justifiable. Note that the empty DT (i.e., no
monitored assumptions, no data link, no data sources and no
monitoring rules) is trivially rule consistent, so the condition
to start in a rule consistent state is no restrictive in practice.

Theorem 1 (Consistency under Evolution): Let twin be a
rule-consistent DT. Every DT twin′ that is reachable from it,
i.e., twin ⇒∗ twin′, is rule consistent.

Example 7: We continue with Example 4. The following is
the evolution with self-adaptation into a rule consistent state,
where the repaired reasoning network is rnet2cod.〈

{srcNesodd}, rnet1, {rulecod}
〉

⇒
〈
{srcNesodd, srcDrøbak}, rnet2, {rulecod}

〉
with rnet2cod =

〈{
⟨4, 3, sccod, tccod⟩

}
,{

⟨7, 4, 2, dc−cod⟩, ⟨6, 4, 2, dc
+
cod⟩, ⟨9, 4, 1, dc

−
cod⟩, ⟨8, 4, 1, dc

+
cod⟩

}〉
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V. PROTOTYPE AND DISCUSSION

We have implemented our approach and applied it to
observations from underwater cameras in the Oslo Fjord.1

Our prototype uses an industrial computer vision model,
described below. The model we provide is trained to detect
Goldsinny wrasses (Ctenolabrus rupestris, GBIF taxon id
2383163, Bergnebb in Norwegian).

Implementation: The Oslo Fjord DT is an on-going
interdisciplinary project to develop a framework able to answer
user queries about the effect of climate and human stressors
on marine habitats in the Oslo Fjord, by combining knowledge
graphs, simulation models and runtime monitors. The frame-
work combines sensor data (e.g., temperature and turbidity)
with models capturing physical as well as biological aspects
of the fjord system. In this context, we are here interested
in complementing physical measurements with observations
of marine life. To this aim, we deploy underwater cameras
for shorter periods of time, restricted by battery capacity.
These cameras are not able to transmit video live to the
twin; instead, the recordings need to be collected manually,
resulting in batched observations that are fed into a species
detection model. Here, these video recordings constitute our
data sources, while assumptions and links are added manually.

Our implementation is a proof-of-concept to explore self-
adaptation to handle data sources in scientific exploration
of underwater biodiversity observations, and is not yet fully
integrated in the Oslo Fjord DT. The system consists of (1)
a set of lightweight clients managing single data sources,
realizing the observational network, (2) a server, which hosts
the reasoning network and maintains the knowledge graph,
and (3) a ActiveMQ instance serving as the middleware.

Each client manages one data source and maintains a
database that stores the actual observations. The data sources
are based on videos recorded in the Oslo Fjord. To extract
observations, we use a species detection model provided by
Anemic Robotics that generates a list of detected fish species
using computer vision. We store its output, i.e., the label of the
detected fish and the time of the recording, so each video is
processed only once. An example detection is shown in fig. 2.

Each client is connected to a retroactive ActiveMQ queue
and every time a listener registers on the queue, all observa-
tions are resend. This design is chosen to later enable the
use of different models for detection on the same video.
Each observation is sent via one message. Whenever a new
data source is added, a new client is started and a special
registration message is sent. The server implements the self-
adaptation. Each time a data link is created, it connects
to the corresponding ActiveMQ queue, filters according to
the condition and streams the remaining messages to the
assumption monitor. The monitor is added by the user, and
outputs how many observations confirm or refute it.

Expected Benefits: Data Integration and Exploration:
There are numerous EU platforms for sharing environmental
twin data and models, such as The European Digital Twin

1For the implementation, see https://github.com/Edkamb/TwinExplore

Fig. 2. Frame with one detected Goldsinny wrasse at Nesoddtangen.

of the Ocean, EDITO [43], the European Marine Observation
and Data network, EMODnet [44], and others. For marine
twins such as our Oslo Fjord DT, the EU Digital Twin
of the Ocean (DTO), EDITO-infra data lake and EDITO
Model Lab are relevant sharing access points for observations,
historical data, and models. Standard organizations, such as
the Open Geospatial Consortium [45], or Ocean Biodiversity
Information System [46] are defining how data will be in-
tegrated for marine DTs. In this context, we expect that the
proposed framework here will simplify the adaptive integration
of these data sources by demonstrating a general method to
connect them to on-going scientific explorations. In particular,
we emphasize that we do not provide uniform data access,
but uniform integration into self-adaptive layer, based on the
ubiquitous GBIF data model for the critical conditions.

Expected Benefits: Model Integration and Reasoning:
We expect that the self-adaptation will increase the usability
of the Oslo Fjord DT by providing automation support for data
integration. Furthermore, we expect that our approach will
enable easier model integration: While data links described
here only connect a monitored assumption to a data source,
they will be extended to also connect with simulation models
to generate new data, change filters on the data source or
employ different species detection models on stored data
streams. We expect that such a connection will drastically
reduce the need for manual model integration.

VI. CONCLUSION

DTs support management and integration of models and
data, and face similar challenges for both engineered and
natural systems. The synchronization between physical and
digital entities, however, has to address different problems,
due to the different ways data is collected and transmitted.
This work shows that structural self-adaptation, first developed
for DTs in engineering, can be applied to tackle the problems
specific to underwater biodiversity monitoring, namely the
delay of data acquisition and the complex structure domain
experts have to navigate to monitor their assumptions. On the
level of the formalization, an important aspect to investigate
is that data and knowledge may both carry uncertainty, which
must be handled by the network as well.
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