Type-Based Verification of Delegated Control in Hybrid Systems

Eduard Kamburjan'
Michael Lienhardt?

1University of Oslo
20NERA

ABS’23, 04.10.23

Modern Cyber-Physical Systems require Distributed Control and Cloud Systems

= Edge devices in loT
= Digital Twins and Industry 4.0

= Networked devices, e.g., autonomous trains

Engineers can build these devices — but how do we verify them?

CPS verification, program verification and cloud modeling barely intersect.

1/18

Modeling - Hybrid Active Objects

UNIVERSITY

HABS: Hybrid ABS OF 0510

Abstract Behavioral Specification

(1) Modeling, (2) Specification and Verification, and (3) Simulation of Modular
Systems with Active Objects.

Active Objects = objects
+ actor concurrency model
+ condition synchronization
+ explicit time

2/18

UNIVERSITY

HABS: Hybrid ABS OF 0510

Abstract Behavioral Specification

(1) Modeling, (2) Specification and Verification, and (3) Simulation of Modular Hybrid
Systems with Active Objects.

Hybrid Active Objects = objects
+ actor concurrency model
+ condition synchronization
+ explicit time
+ continuous behavior

2/18

Example: Water Ta

class CSingleTank(Real inVal){
physical{
Real 1lvl = inVal : 1lvl’ = flow;
Real flow = -0.5 : flow’ = 0;

Actuator

|Controller

 I—

}
{ this!low(; }
Unit low(){
await diff 1vl <= 3 & flow <= 0;

Sensor _ flow = 0.5; this'up(;
S = = }
' Unit up(O{
' await diff 1vl >= 10 & flow >= 0;
flow = -0.5; this!low();
i e e e e B }
‘ T memsonss » }

Is 3 < 1vl < 10 an invariant (if 3 < inval < 10)? 3/18

Verification - Post-Regions

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant | can be checked modularly with dynamic logic by
showing that every method preserves /.

I —[s]/ Proof Obligation for Discrete Systems

method
excutions

First, we need a logic for hybrid systems.

4/18

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant | can be checked modularly with dynamic logic by
showing that every method preserves /.

I —[s]/ Proof Obligation for Discrete Systems

method
excutions

First, we need a logic for hybrid systems.

4/18

Differential Dynamic Logic

Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

pu=Vx. | oVe| o] ... [[a]e
az=p|vi=t|vi=x|{v=Ff(v)&p}| ...

5/18

Differential Dynamic Logic

Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

pu=Vx. | oVe| o] ... [[a]e
az=p|vi=t|vi=x|{v=Ff(v)&p}| ...

Set a variable to 0, let it raise with slope 1 while it is below 5 and discard all runs where it is

above 5.
[x =0;{x = 1&x <5};7x > 5]x =5

This formula is valid.

5/18

Preliminaries

= We assume that every method starts with an await diff statement.
If it does not, add await diff true.

= The leading guard of a method m is denoted trig,.
= Only Real variables are manipulated.

= Weak negation is denoted Se; > & <= ¢ < &

\. J

An object is safe w.r.t. some formula ¢, if its state is a model for ¢

(a) whenever a method starts and (b) whenever time advances.

For the beginning, we assume that all await are leading and no get or duration occur.

6/18

Basic Regions

Let € be a class with dynamics ode. Each object of C is safe w.r.t. inv and precondition pre if
for every method the following holds:

inv — [?trig,; trans(sy)] (inv A [ode&true]inv)

And additionally for the constructor:

pre — [trans(sini¢)] (inv A [ode&true]inv)

\

7/18

Let C be safe w.r.t. inv. Let ¢t be ¢ with an added method and ¢~ be C with a method
removed.

= C s safe

= To show safety of ¢, only the new method must be verified

= Very modular
= Imprecise: do not use additional information provided the structure
= Cannot verify our water tank

= Can verify self-stabilizing systems without control cycle

8/18

Locally Controlled Regions

Let C be a class with dynamics ode. For each method m let CM, be the set of methods which
are guaranteed to called in every execution. Each object of C is safe w.r.t. inv if for every
method m the following holds:

inv — [?trig,; trans(sy)] <inv A

ode& /\ %trigm,] inv)

m’ €CM,

And analogously for the constructor.

9/18

Locally Controlled Regions

class LocalTank(){

physical{Real 1vl = 5 : 1lvl’ = flow; Real flow = -0.5 : ...}
{ this!'low(O; }

Unit low(){await diff 1vl <= 3; flow = 0.5; this'up();}

Unit up(){await diff 1vl >= 10; flow = -0.5; this!low();}

}

inv — [?1vl <= 3;flow := 0.5](inv A [1lvl’ = flow&1vl <= 10]inv)

10/18

Locally Controlled Regions

class LocalTank(){
physical{Real 1vl = 5 : 1lvl’ = flow; Real flow = -0.5 : ...}
{ this!timed(); }
Unit timed(){
await duration(1,1);
if(lvl >= 9.5) -flow = 0.5;
if(lvl <= 3.5) flow = 0.5;
this!timed () ;

10/18

Locally Controlled Regions

class LocalTank(){
physical{Real 1vl = 5 : 1lvl’ = flow; Real flow = -0.5 : ...}
{ this!timed(); }
Unit timed(){
await duration(1,1);
if(lvl >= 9.5) -flow = 0.5;
if(lvl <= 3.5) flow = 0.5;
this!timed () ;

}

What about systems that decouple control and dynamics?

10/18

Limitations - External Co

class Tank(Real inVal){ /%@ requires 3.5 <=inVal<= 9.5 @x/
physical{ Real 1vl’ = flow; ...} /*@ invariant 3 <=Ivi<= 10 && —0.5 <=flow<= 0.5 @x/

Unit localCtrl(){
if(lvl <= 3.5) flow 0.5;
if(lvl >= 9.5) flow = -0.5;}}

11/18

Limitations - External Co

class Tank(Real inVal){ /#@ requires 3.5 <=inVal<= 9.5 @x/
physical{ Real 1vl’ = flow; ...} /*@ invariant 3 <=Ivi<= 10 && —0.5 <=flow<= 0.5 @x/

Unit localCtrl(){
if(lvl <= 3.5) flow 0.5;
if(lvl >= 9.5) flow = -0.5;}}

[Need to consider other objects to compute post-regions — is the tank controlled?]

class Controller(){
Unit timer(Tank t, Int time){
await duration(1) ;
if(time !'= 0) {
t!localCtrl();
this. timer(t, time - 1);}}}

11/18

Limitations - External Co

class Tank(Real inVal){ /#@ requires 3.5 <=inVal<= 9.5 @x/
physical{ Real 1vl’ = flow; ...} /*@ invariant 3 <=Ivi<= 10 && —0.5 <=flow<= 0.5 @x/

Unit localCtrl(){
if(lvl <= 3.5) flow 0.5;
if(lvl >= 9.5) flow = -0.5;}}

[Need to consider other objects to compute post-regions — is there always one controller?]

class Mobile {
Unit run() {
Tank t = new Tank(4);
Controller ¢ = new localCtrl(); Fut<Unit> f = c.timer(t, 40);
await duration(40) & f;
¢ = new Controller(); f = c.timer(t, -1); }}

11/18

Limitations - External Control

[Subtle timing issues can violate specification]

class Controller (){
Unit timer(Tank t, Int time){
await duration(1);
if(time != 0) {
t!localCtrl();
this. timer (t, time - 1);}}}

class Mobile {
Unit run() {
Tank t = new Tank(4);

Controller ¢ = new localCtrl(); Fut<Unit> f = c.timer(t, 40);
await duration(40) & f;

¢ = new Controller(); f = c.timer(t, -1); }}

11/18

Limitations - External Control

[Subtle timing issues can violate specification]

class Controller (){
Unit timer(Tank t, Int time){
if(time !'= 0) {
await duration (1) ;
t!localCtrl();
this. timer (t, time - 1);}}}

class Mobile {
Unit run() {
Tank t = new Tank(4);

Controller ¢ = new localCtrl(); Fut<Unit> f = c.timer(t, 40);
await duration(40) & f;

¢ = new Controller(); f = c.timer(t, -1); }}

11/18

External Control

Type-Checking External Control

Challenge

= Post-region cannot be computed locally
= External control must be globally ensured

= Obligation for external control can be delegated

Overview Solution

= Controllee gets specification: Temporal, externally controlled post-region (ECP)

= Controller gets specification: controlled objects
= Type system checks

= For every object with an ECP there is always a controller
= Each controller respects the ECP specification of its controllee

From the controllee-view, post-region-based verification is unchanged

12/18

ECP Specification

class Tank(Real inVal){ /@ requires 3.5 <=inVal<= 9.5 @x/

physical{ Real 1vl’ = flow; ...} /*@ invariant 3 <=Ilvi<= 10 && —0.5 <=flow<= 0.5 @Qx/
/*@ timed__requires 1 @/

Unit localCtrl(){
if(lvl <= 3.5) flow
if(lvl >= 9.5) flow

0.5;
-0.5;}}

class Controller(D{
/*@ time_control: t.JlocalCtrl = [1, 1] @x/
Unit timer(Tank t, Int time){

= timed_requires specifies the period of repeated calls to this method

= timed_control p.m= [a,b] specifies what the method periodically calls
= Periodic call to p.m with some ECP, where p is a parameter and thus invariant
= The first time after a time units

= After the last call, b time units remain until it must be called again
13/18

Sketch Type Analysis

ECP Analysis

Three step analysis

= Run a global time analysis, derive for each statement how much time it may require to
execute it (non-modular, lightweight)

= Run type system, to make sure ECP are called correctly (non-modular, lightweight)

= Generate and verify all proof obligations with ddL/KeYmaera X (modular, heavyweight)

Type system operates on the level of locations.

= A ceid is a pair of location and method (e.g. p,m). Idea:

= Keep track of all ceid's and when it must be called again during type checking
= Update maximal time left for each ceid’s to be called

= Check that this time is always positive

= Delegation only through method calls, i.e., tree like structure

14/18

Type System

F,,Fd Fs: I';7I"d

= [registers the ceid'’s that the method under analysis must control, maps to a number
= [, registers the ceid's that we delegated control to and maps them to (fid, tmin, tmax, t):
Future fid, how long they control tyin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

15/18

Type System

F,,Fd Fs: I';7I"d

= [registers the ceid'’s that the method under analysis must control, maps to a number
= [, registers the ceid's that we delegated control to and maps them to (fid, tmin, tmax, t):
Future fid, how long they control tyin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

[, [ceid; — (fid' it th]. . Fs: 15/18

min> il :

Type System

F,,Fd Fs: I';7I"d

= [registers the ceid'’s that the method under analysis must control, maps to a number
= [, registers the ceid's that we delegated control to and maps them to (fid, tmin, tmax, t):
Future fid, how long they control tyin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

[, [ceid; — (fid' it th]. . Fs: 15/18

min> il :

Type System

F,,Fd Fs: I';7I"d

= [registers the ceid'’s that the method under analysis must control, maps to a number
= [, registers the ceid's that we delegated control to and maps them to (fid, tmin, tmax, t):
Future fid, how long they control tyin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t7,t7] C={ilielnt , —tT <0}

min

[, [ceid; — (fid' it t/)] P 15/18

min>

Type System

F,,Fd Fs: I';7I"d

= [registers the ceid'’s that the method under analysis must control, maps to a number
= [, registers the ceid's that we delegated control to and maps them to (fid, tmin, tmax, t):
Future fid, how long they control tyin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t7,t7] C={ilielnt , —tT <0}

min
M, = [ceid; — (fid' e — 7,)] ieC

i
’ tmin

[, [ceid; — (fid' it t/)] P 15/18

min>

Type System

F,,Fd Fs: I';7I"d

= [registers the ceid'’s that the method under analysis must control, maps to a number
= [, registers the ceid's that we delegated control to and maps them to (fid, tmin, tmax, t):
Future fid, how long they control tyin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t7,t7] C={ilielnt , —tT <0}

min
M, = [ceid; — (fid' e — 7,)] ieC

i
’ tmin

r} = [Ceid > [y(ceid) — t+]ceid€dom|—/

r, [ceid,- — (fl'di, th ot ti)] P 15/18

min>

Type System

F,,Fd Fs: I';7I"d

= [registers the ceid'’s that the method under analysis must control, maps to a number
= [, registers the ceid's that we delegated control to and maps them to (fid, tmin, tmax, t):
Future fid, how long they control tyin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t7,t7] C={ilielnt , —tT <0}

min
M, = [ceid; — (fid' e — 7,)] ieC

i
’ tmin

r} = [Ceid > [y(ceid) — t+]ceid€dom|—/

r% = [Ceid,' — (ti + (t+ - trinin))] ieCc

r, [ceid,- — (fl'di, th ot ti)] P 15/18

min>

Type System

F,,Fd Fs: I';7I"d

= [registers the ceid'’s that the method under analysis must control, maps to a number
= [, registers the ceid's that we delegated control to and maps them to (fid, tmin, tmax, t):
Future fid, how long they control tyin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t7,t7] C={ilielnt , —tT <0}

min
M, = [ceid; — (fid' e — 7,)] ieC

) trlnin

r= [ceid — [(ceid) — t+]ceid€d0m|—/
r% = [Ceid,' — (ti + (t+ - trinin))] ieCc

r=riur? Vceid € I). [)(ceid) >0

r, [ceid,- s (fid' tl .t ti)] P r,r, 15/18

Type System

= Rule for method calls is responsible for two things:

= |f one delegates control, move ceid from [, to 4
= |f the method has a ECP, update I,

= When object is created, all its methods with ECP are added to I,

= Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

16/18

Type System

= Rule for method calls is responsible for two things:

= |f one delegates control, move ceid from [, to 4
= |f the method has a ECP, update I,

= When object is created, all its methods with ECP are added to I,

= Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(el,m) € doml
r=r [(el,m) — treq(Tl.m)]

M,Tgt eilm(e,,...,ep)

16/18

Type System

= Rule for method calls is responsible for two things:

= |f one delegates control, move ceid from [, to 4
= |f the method has a ECP, update I,

= When object is created, all its methods with ECP are added to I,

= Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1,m) € doml, Fei:T; tetrl(Ty.m) = [pj,m; > [, t/]]ier jeu
r=r [(el,m) — treq(Tl.m)]

M,Tgt eilm(e,,...,ep)

16/18

Type System

= Rule for method calls is responsible for two things:

= |f one delegates control, move ceid from [, to 4
= |f the method has a ECP, update I,

= When object is created, all its methods with ECP are added to I,

= Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1,m) € doml, Fei:T; tetrl(Ty.m) = [pj,m; > [, t/]]ier jeu

) =T[(e1,m) — treq(T1.m)] =T\ {eimj = _}tierjes

M,Tgt eilm(e,,...,ep)

16/18

Type System

= Rule for method calls is responsible for two things:

= |f one delegates control, move ceid from [, to 4
= |f the method has a ECP, update I,

= When object is created, all its methods with ECP are added to I,

= Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1,m) € doml, Fei:T; tetrl(Ty.m) = [pj,m; > [, t/]]ier jeu
) =T[(e1,m) — treq(T1.m)] =T\ {eimj = _}tierjes
TA(Ty.m) = [t—, tT] Mi(eim) >t

F,Tgt eilm(e,,...,en)

16/18

Type System

= Rule for method calls is responsible for two things:

= |f one delegates control, move ceid from [, to 4
= |f the method has a ECP, update I,

= When object is created, all its methods with ECP are added to I,

= Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1,m) € doml, Fei:T; ttrl(Tym) = [pr,m; — [, t/])ierjes
F; =T [(61,m) — treq(Tl.m)] 7 = ;\{ei’mj — _}ielyjeJ
TA(Tm) =[] Ti(erm) > b
rl’ rd F el!m(ez’ Tt e") : r77 rd[(efamj) — (flda t—, t+7 tjl)]

16/18

Cloud System

= Type system works for Timed ABS
= If model can be separated into timed control structure and hybrid, HABS can be used

= Cyber-physical systems are only at the edge!

Cloud Infrastructure

v
Virtual Machine (VM)

'
.

'

13
v | Task !
B ,,
TN y
.

17/18

Conclusion

Conclusion

= Post-regions for external control
= Type system ensures that control structures respect timing constraints
= Modular in time-analysis

= Modularity of deductive verification preserved

\. J

= Implementation

= Beyond tree structured delegation

= Further post-region patterns

18/18

Conclusion

= Post-regions for external control
= Type system ensures that control structures respect timing constraints
= Modular in time-analysis

= Modularity of deductive verification preserved

Future Work

= Implementation

= Beyond tree structured delegation

= Further post-region patterns

Thank you for your attention

18/18

	Modeling - Hybrid Active Objects
	Verification - Post-Regions
	External Control

