
Type-Based Verification of Delegated Control in Hybrid Systems

Eduard Kamburjan1

Michael Lienhardt2

1University of Oslo
2ONERA

ABS’23, 04.10.23

Motivation

Modern Cyber-Physical Systems require Distributed Control and Cloud Systems

• Edge devices in IoT
• Digital Twins and Industry 4.0
• Networked devices, e.g., autonomous trains

Engineers can build these devices – but how do we verify them?
CPS verification, program verification and cloud modeling barely intersect.

1/18

Modeling - Hybrid Active Objects

HABS: Hybrid ABS

Abstract Behavioral Specification

(1) Modeling, (2) Specification and Verification, and (3) Simulation of Modular

Hybrid

Systems with Active Objects.

Hybrid

Active Objects = objects
+ actor concurrency model
+ condition synchronization
+ explicit time

+ continuous behavior

2/18

HABS: Hybrid ABS

Abstract Behavioral Specification

(1) Modeling, (2) Specification and Verification, and (3) Simulation of Modular Hybrid
Systems with Active Objects.

Hybrid Active Objects = objects
+ actor concurrency model
+ condition synchronization
+ explicit time
+ continuous behavior

2/18

Example: Water Tank

Sensor

Actuator

Controller

time in seconds

level
drain

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

class CSingleTank(Real inVal){
physical{

Real lvl = inVal : lvl’ = flow;
Real flow = -0.5 : flow’ = 0;

}
{ this!low(); }
Unit low(){

await diff lvl <= 3 & flow <= 0;
flow = 0.5; this!up();

}
Unit up(){

await diff lvl >= 10 & flow >= 0;
flow = -0.5; this!low();

}
}

Is 3 ≤ lvl ≤ 10 an invariant (if 3 ≤ inVal ≤ 10)? 3/18

Verification - Post-Regions

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant I can be checked modularly with dynamic logic by
showing that every method preserves I.

I →[s]I Proof Obligation for Discrete Systems

t

method
excutions

First, we need a logic for hybrid systems.

4/18

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant I can be checked modularly with dynamic logic by
showing that every method preserves I.

I →[s]I Proof Obligation for Discrete Systems

t

method
excutions

First, we need a logic for hybrid systems.

4/18

Differential Dynamic Logic

Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

ϕ ::=∀x . ϕ | ϕ ∨ ϕ | ¬ϕ | . . . | [α]ϕ
α ::=?ϕ | v := t | v := ∗ | {v′ = f (v)&ϕ} | . . .

Example

Set a variable to 0, let it raise with slope 1 while it is below 5 and discard all runs where it is
above 5. [

x := 0; {x′ = 1&x ≤ 5}; ?x ≥ 5
]
x .= 5

This formula is valid.

5/18

Differential Dynamic Logic

Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

ϕ ::=∀x . ϕ | ϕ ∨ ϕ | ¬ϕ | . . . | [α]ϕ
α ::=?ϕ | v := t | v := ∗ | {v′ = f (v)&ϕ} | . . .

Example

Set a variable to 0, let it raise with slope 1 while it is below 5 and discard all runs where it is
above 5. [

x := 0; {x′ = 1&x ≤ 5}; ?x ≥ 5
]
x .= 5

This formula is valid.

5/18

Setup

Preliminaries
• We assume that every method starts with an await diff statement.

If it does not, add await diff true.
• The leading guard of a method m is denoted trigm.
• Only Real variables are manipulated.
• Weak negation is denoted ¬̃e1 ≥ e2 ⇐⇒ e1 ≤ e2

Safety

An object is safe w.r.t. some formula ϕ, if its state is a model for ϕ

(a) whenever a method starts and (b) whenever time advances.

For the beginning, we assume that all await are leading and no get or duration occur.

6/18

Basic Regions

Theorem
Let C be a class with dynamics ode. Each object of C is safe w.r.t. inv and precondition pre if
for every method the following holds:

inv →
[
?trigm; trans(sm)

](
inv ∧ [ode&true]inv

)
And additionally for the constructor:

pre →
[
trans(sinit)

](
inv ∧ [ode&true]inv

)

t t

7/18

Basic Regions

Lemma
Let C be safe w.r.t. inv. Let C+ be C with an added method and C− be C with a method
removed.

• C− is safe
• To show safety of C+, only the new method must be verified

• Very modular
• Imprecise: do not use additional information provided the structure
• Cannot verify our water tank
• Can verify self-stabilizing systems without control cycle

8/18

Locally Controlled Regions

Theorem
Let C be a class with dynamics ode. For each method m let CMn be the set of methods which
are guaranteed to called in every execution. Each object of C is safe w.r.t. inv if for every
method m the following holds:

inv → [?trigm; trans(sm)]
(

inv ∧
[

ode&
∧

m′∈CMm

¬̃trigm′

]
inv
)

And analogously for the constructor.

t t

9/18

Locally Controlled Regions

class LocalTank(){
physical{Real lvl = 5 : lvl’ = flow; Real flow = -0.5 : ...}
{ this!low(); }
Unit low(){await diff lvl <= 3; flow = 0.5; this!up();}
Unit up(){await diff lvl >= 10; flow = -0.5; this!low();}
}

inv → [?lvl <= 3; flow := 0.5](inv ∧ [lvl’ = flow&lvl <= 10]inv)

10/18

Locally Controlled Regions

class LocalTank(){
physical{Real lvl = 5 : lvl’ = flow; Real flow = -0.5 : ...}
{ this!timed(); }
Unit timed(){

await duration(1,1);
if(lvl >= 9.5) -flow = 0.5;
if(lvl <= 3.5) flow = 0.5;
this!timed();

}
}

10/18

Locally Controlled Regions

class LocalTank(){
physical{Real lvl = 5 : lvl’ = flow; Real flow = -0.5 : ...}
{ this!timed(); }
Unit timed(){

await duration(1,1);
if(lvl >= 9.5) -flow = 0.5;
if(lvl <= 3.5) flow = 0.5;
this!timed();

}
}

What about systems that decouple control and dynamics?

10/18

Limitations - External Control

class Tank(Real inVal){ /∗@ requires 3.5 <=inVal<= 9.5 @∗/
physical{ Real lvl’ = flow; ...} /∗@ invariant 3 <=lvl<= 10 && −0.5 <=flow<= 0.5 @∗/
Unit localCtrl(){
if(lvl <= 3.5) flow = 0.5;
if(lvl >= 9.5) flow = -0.5;}}

11/18

Limitations - External Control

class Tank(Real inVal){ /∗@ requires 3.5 <=inVal<= 9.5 @∗/
physical{ Real lvl’ = flow; ...} /∗@ invariant 3 <=lvl<= 10 && −0.5 <=flow<= 0.5 @∗/
Unit localCtrl(){
if(lvl <= 3.5) flow = 0.5;
if(lvl >= 9.5) flow = -0.5;}}

Need to consider other objects to compute post-regions – is the tank controlled?

class Controller(){
Unit timer(Tank t, Int time){

await duration(1);
if(time != 0) {

t!localCtrl();
this.timer(t, time - 1);}}}

11/18

Limitations - External Control

class Tank(Real inVal){ /∗@ requires 3.5 <=inVal<= 9.5 @∗/
physical{ Real lvl’ = flow; ...} /∗@ invariant 3 <=lvl<= 10 && −0.5 <=flow<= 0.5 @∗/
Unit localCtrl(){
if(lvl <= 3.5) flow = 0.5;
if(lvl >= 9.5) flow = -0.5;}}

Need to consider other objects to compute post-regions – is there always one controller?

class Mobile {
Unit run() {
Tank t = new Tank(4);
Controller c = new localCtrl(); Fut<Unit> f = c.timer(t, 40);
await duration(40) & f;
c = new Controller(); f = c.timer(t, -1); }}

11/18

Limitations - External Control

Subtle timing issues can violate specification

class Controller(){
Unit timer(Tank t, Int time){

await duration(1);
if(time != 0) {

t!localCtrl();
this.timer(t, time - 1);}}}

class Mobile {
Unit run() {
Tank t = new Tank(4);
Controller c = new localCtrl(); Fut<Unit> f = c.timer(t, 40);
await duration(40) & f;
c = new Controller(); f = c.timer(t, -1); }}

11/18

Limitations - External Control

Subtle timing issues can violate specification

class Controller(){
Unit timer(Tank t, Int time){

if(time != 0) {
await duration(1);
t!localCtrl();
this.timer(t, time - 1);}}}

class Mobile {
Unit run() {
Tank t = new Tank(4);
Controller c = new localCtrl(); Fut<Unit> f = c.timer(t, 40);
await duration(40) & f;
c = new Controller(); f = c.timer(t, -1); }}

11/18

External Control

Type-Checking External Control

Challenge

• Post-region cannot be computed locally
• External control must be globally ensured
• Obligation for external control can be delegated

Overview Solution
• Controllee gets specification: Temporal, externally controlled post-region (ECP)
• Controller gets specification: controlled objects
• Type system checks

• For every object with an ECP there is always a controller
• Each controller respects the ECP specification of its controllee

• From the controllee-view, post-region-based verification is unchanged

12/18

ECP Specification

class Tank(Real inVal){ /∗@ requires 3.5 <=inVal<= 9.5 @∗/
physical{ Real lvl’ = flow; ...} /∗@ invariant 3 <=lvl<= 10 && −0.5 <=flow<= 0.5 @∗/
/∗@ timed_requires 1 @∗/
Unit localCtrl(){
if(lvl <= 3.5) flow = 0.5;
if(lvl >= 9.5) flow = -0.5;}}

class Controller(){
/∗@ time_control: t.localCtrl = [1, 1] @∗/
Unit timer(Tank t, Int time){

• timed_requires specifies the period of repeated calls to this method
• timed_control p.m= [a,b] specifies what the method periodically calls

• Periodic call to p.m with some ECP, where p is a parameter and thus invariant
• The first time after a time units
• After the last call, b time units remain until it must be called again

13/18

Sketch Type Analysis

ECP Analysis

Three step analysis
• Run a global time analysis, derive for each statement how much time it may require to

execute it (non-modular, lightweight)
• Run type system, to make sure ECP are called correctly (non-modular, lightweight)
• Generate and verify all proof obligations with ddL/KeYmaera X (modular, heavyweight)

Type system operates on the level of locations.

• A ceid is a pair of location and method (e.g. p,m). Idea:
• Keep track of all ceid’s and when it must be called again during type checking
• Update maximal time left for each ceid’s to be called
• Check that this time is always positive
• Delegation only through method calls, i.e., tree like structure

14/18

Type System

Γl , Γd ` s : Γ′
l , Γ′

d

• Γl registers the ceid’s that the method under analysis must control, maps to a number
• Γd registers the ceid’s that we delegated control to and maps them to (fid , tmin, tmax , t):

Future fid , how long they control tmin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t−, t+] C = {i | i ∈ I ∧ t i
min − t+ < 0}

Γ′
d =

[
ceidi 7→ (fid i , t i

min − t+, t i
max − t−, t i)

]
i∈I\C

Γ1
l =

[
ceid 7→ Γl(ceid) − t+]

ceid∈domΓl

Γ2
l =

[
ceidi 7→ (t i + (t+ − t i

min))
]

i∈C

Γ′
l = Γ1

l ∪ Γ2
l ∀ceid ∈ Γ′

l . Γ′
l(ceid) ≥ 0

Γl ,
[
ceidi 7→ (fid i , t i

min, t i
max , t i)

]
i∈I ` s : Γ′

l , Γ′
d

15/18

Type System

Γl , Γd ` s : Γ′
l , Γ′

d

• Γl registers the ceid’s that the method under analysis must control, maps to a number
• Γd registers the ceid’s that we delegated control to and maps them to (fid , tmin, tmax , t):

Future fid , how long they control tmin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t−, t+] C = {i | i ∈ I ∧ t i
min − t+ < 0}

Γ′
d =

[
ceidi 7→ (fid i , t i

min − t+, t i
max − t−, t i)

]
i∈I\C

Γ1
l =

[
ceid 7→ Γl(ceid) − t+]

ceid∈domΓl

Γ2
l =

[
ceidi 7→ (t i + (t+ − t i

min))
]

i∈C

Γ′
l = Γ1

l ∪ Γ2
l ∀ceid ∈ Γ′

l . Γ′
l(ceid) ≥ 0

Γl ,
[
ceidi 7→ (fid i , t i

min, t i
max , t i)

]
i∈I ` s :

Γ′
l , Γ′

d

15/18

Type System

Γl , Γd ` s : Γ′
l , Γ′

d

• Γl registers the ceid’s that the method under analysis must control, maps to a number
• Γd registers the ceid’s that we delegated control to and maps them to (fid , tmin, tmax , t):

Future fid , how long they control tmin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t−, t+] C = {i | i ∈ I ∧ t i
min − t+ < 0}

Γ′
d =

[
ceidi 7→ (fid i , t i

min − t+, t i
max − t−, t i)

]
i∈I\C

Γ1
l =

[
ceid 7→ Γl(ceid) − t+]

ceid∈domΓl

Γ2
l =

[
ceidi 7→ (t i + (t+ − t i

min))
]

i∈C

Γ′
l = Γ1

l ∪ Γ2
l ∀ceid ∈ Γ′

l . Γ′
l(ceid) ≥ 0

Γl ,
[
ceidi 7→ (fid i , t i

min, t i
max , t i)

]
i∈I ` s :

Γ′
l , Γ′

d

15/18

Type System

Γl , Γd ` s : Γ′
l , Γ′

d

• Γl registers the ceid’s that the method under analysis must control, maps to a number
• Γd registers the ceid’s that we delegated control to and maps them to (fid , tmin, tmax , t):

Future fid , how long they control tmin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t−, t+] C = {i | i ∈ I ∧ t i
min − t+ < 0}

Γ′
d =

[
ceidi 7→ (fid i , t i

min − t+, t i
max − t−, t i)

]
i∈I\C

Γ1
l =

[
ceid 7→ Γl(ceid) − t+]

ceid∈domΓl

Γ2
l =

[
ceidi 7→ (t i + (t+ − t i

min))
]

i∈C

Γ′
l = Γ1

l ∪ Γ2
l ∀ceid ∈ Γ′

l . Γ′
l(ceid) ≥ 0

Γl ,
[
ceidi 7→ (fid i , t i

min, t i
max , t i)

]
i∈I ` s :

Γ′
l , Γ′

d

15/18

Type System

Γl , Γd ` s : Γ′
l , Γ′

d

• Γl registers the ceid’s that the method under analysis must control, maps to a number
• Γd registers the ceid’s that we delegated control to and maps them to (fid , tmin, tmax , t):

Future fid , how long they control tmin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t−, t+] C = {i | i ∈ I ∧ t i
min − t+ < 0}

Γ′
d =

[
ceidi 7→ (fid i , t i

min − t+, t i
max − t−, t i)

]
i∈I\C

Γ1
l =

[
ceid 7→ Γl(ceid) − t+]

ceid∈domΓl

Γ2
l =

[
ceidi 7→ (t i + (t+ − t i

min))
]

i∈C

Γ′
l = Γ1

l ∪ Γ2
l ∀ceid ∈ Γ′

l . Γ′
l(ceid) ≥ 0

Γl ,
[
ceidi 7→ (fid i , t i

min, t i
max , t i)

]
i∈I ` s :

Γ′
l , Γ′

d

15/18

Type System

Γl , Γd ` s : Γ′
l , Γ′

d

• Γl registers the ceid’s that the method under analysis must control, maps to a number
• Γd registers the ceid’s that we delegated control to and maps them to (fid , tmin, tmax , t):

Future fid , how long they control tmin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t−, t+] C = {i | i ∈ I ∧ t i
min − t+ < 0}

Γ′
d =

[
ceidi 7→ (fid i , t i

min − t+, t i
max − t−, t i)

]
i∈I\C

Γ1
l =

[
ceid 7→ Γl(ceid) − t+]

ceid∈domΓl

Γ2
l =

[
ceidi 7→ (t i + (t+ − t i

min))
]

i∈C

Γ′
l = Γ1

l ∪ Γ2
l ∀ceid ∈ Γ′

l . Γ′
l(ceid) ≥ 0

Γl ,
[
ceidi 7→ (fid i , t i

min, t i
max , t i)

]
i∈I ` s :

Γ′
l , Γ′

d

15/18

Type System

Γl , Γd ` s : Γ′
l , Γ′

d

• Γl registers the ceid’s that the method under analysis must control, maps to a number
• Γd registers the ceid’s that we delegated control to and maps them to (fid , tmin, tmax , t):

Future fid , how long they control tmin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t−, t+] C = {i | i ∈ I ∧ t i
min − t+ < 0}

Γ′
d =

[
ceidi 7→ (fid i , t i

min − t+, t i
max − t−, t i)

]
i∈I\C

Γ1
l =

[
ceid 7→ Γl(ceid) − t+]

ceid∈domΓl

Γ2
l =

[
ceidi 7→ (t i + (t+ − t i

min))
]

i∈C

Γ′
l = Γ1

l ∪ Γ2
l ∀ceid ∈ Γ′

l . Γ′
l(ceid) ≥ 0

Γl ,
[
ceidi 7→ (fid i , t i

min, t i
max , t i)

]
i∈I ` s :

Γ′
l , Γ′

d

15/18

Type System

Γl , Γd ` s : Γ′
l , Γ′

d

• Γl registers the ceid’s that the method under analysis must control, maps to a number
• Γd registers the ceid’s that we delegated control to and maps them to (fid , tmin, tmax , t):

Future fid , how long they control tmin, tmax and when control must be called afterwards t

Rule for time advance without calls (simplified)

TA(s) = [t−, t+] C = {i | i ∈ I ∧ t i
min − t+ < 0}

Γ′
d =

[
ceidi 7→ (fid i , t i

min − t+, t i
max − t−, t i)

]
i∈I\C

Γ1
l =

[
ceid 7→ Γl(ceid) − t+]

ceid∈domΓl

Γ2
l =

[
ceidi 7→ (t i + (t+ − t i

min))
]

i∈C

Γ′
l = Γ1

l ∪ Γ2
l ∀ceid ∈ Γ′

l . Γ′
l(ceid) ≥ 0

Γl ,
[
ceidi 7→ (fid i , t i

min, t i
max , t i)

]
i∈I ` s : Γ′

l , Γ′
d 15/18

Type System

• Rule for method calls is responsible for two things:
• If one delegates control, move ceid from Γl to Γd

• If the method has a ECP, update Γl

• When object is created, all its methods with ECP are added to Γl

• Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1, m) ∈ domΓl ` ei : Ti tctrl(T1.m) = [pi , mj 7→ [tj , t ′
j]]i∈I,j∈J

Γ′
l = Γl

[
(e1, m) 7→ treq(T1.m)

]
Γ′′

l = Γ′
l \ {ei , mj 7→ _}i∈I,j∈J

TA(T1.m) = [t−, t+]

Γl(ei .mj) ≥ tj

Γl , Γd ` e1!m(e2, . . . , en) : Γ′′
l , Γd [(ei , mj) 7→ (fid , t−, t+, t ′

j)]

16/18

Type System

• Rule for method calls is responsible for two things:
• If one delegates control, move ceid from Γl to Γd

• If the method has a ECP, update Γl

• When object is created, all its methods with ECP are added to Γl

• Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1, m) ∈ domΓl

` ei : Ti tctrl(T1.m) = [pi , mj 7→ [tj , t ′
j]]i∈I,j∈J

Γ′
l = Γl

[
(e1, m) 7→ treq(T1.m)

]

Γ′′
l = Γ′

l \ {ei , mj 7→ _}i∈I,j∈J

TA(T1.m) = [t−, t+]

Γl(ei .mj) ≥ tj

Γl , Γd ` e1!m(e2, . . . , en)

: Γ′′
l , Γd [(ei , mj) 7→ (fid , t−, t+, t ′

j)]

16/18

Type System

• Rule for method calls is responsible for two things:
• If one delegates control, move ceid from Γl to Γd

• If the method has a ECP, update Γl

• When object is created, all its methods with ECP are added to Γl

• Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1, m) ∈ domΓl ` ei : Ti tctrl(T1.m) = [pi , mj 7→ [tj , t ′
j]]i∈I,j∈J

Γ′
l = Γl

[
(e1, m) 7→ treq(T1.m)

]

Γ′′
l = Γ′

l \ {ei , mj 7→ _}i∈I,j∈J

TA(T1.m) = [t−, t+] Γl(ei .mj) ≥ tj

Γl , Γd ` e1!m(e2, . . . , en)

: Γ′′
l , Γd [(ei , mj) 7→ (fid , t−, t+, t ′

j)]

16/18

Type System

• Rule for method calls is responsible for two things:
• If one delegates control, move ceid from Γl to Γd

• If the method has a ECP, update Γl

• When object is created, all its methods with ECP are added to Γl

• Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1, m) ∈ domΓl ` ei : Ti tctrl(T1.m) = [pi , mj 7→ [tj , t ′
j]]i∈I,j∈J

Γ′
l = Γl

[
(e1, m) 7→ treq(T1.m)

]
Γ′′

l = Γ′
l \ {ei , mj 7→ _}i∈I,j∈J

TA(T1.m) = [t−, t+] Γl(ei .mj) ≥ tj

Γl , Γd ` e1!m(e2, . . . , en)

: Γ′′
l , Γd [(ei , mj) 7→ (fid , t−, t+, t ′

j)]

16/18

Type System

• Rule for method calls is responsible for two things:
• If one delegates control, move ceid from Γl to Γd

• If the method has a ECP, update Γl

• When object is created, all its methods with ECP are added to Γl

• Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1, m) ∈ domΓl ` ei : Ti tctrl(T1.m) = [pi , mj 7→ [tj , t ′
j]]i∈I,j∈J

Γ′
l = Γl

[
(e1, m) 7→ treq(T1.m)

]
Γ′′

l = Γ′
l \ {ei , mj 7→ _}i∈I,j∈J

TA(T1.m) = [t−, t+] Γl(ei .mj) ≥ tj

Γl , Γd ` e1!m(e2, . . . , en)

: Γ′′
l , Γd [(ei , mj) 7→ (fid , t−, t+, t ′

j)]

16/18

Type System

• Rule for method calls is responsible for two things:
• If one delegates control, move ceid from Γl to Γd

• If the method has a ECP, update Γl

• When object is created, all its methods with ECP are added to Γl

• Full system needs context-awareness and some other rules (see paper)

Rule for calls (simplified)

(e1, m) ∈ domΓl ` ei : Ti tctrl(T1.m) = [pi , mj 7→ [tj , t ′
j]]i∈I,j∈J

Γ′
l = Γl

[
(e1, m) 7→ treq(T1.m)

]
Γ′′

l = Γ′
l \ {ei , mj 7→ _}i∈I,j∈J

TA(T1.m) = [t−, t+] Γl(ei .mj) ≥ tj

Γl , Γd ` e1!m(e2, . . . , en) : Γ′′
l , Γd [(ei , mj) 7→ (fid , t−, t+, t ′

j)]

16/18

Cloud System

• Type system works for Timed ABS
• If model can be separated into timed control structure and hybrid, HABS can be used
• Cyber-physical systems are only at the edge!

Virtual Machine (VM)

Task

Node

Task

Node

Cloud Infrastructure

Virtual Machine (VM)

Task

Node

17/18

Conclusion

Conclusion

Summary

• Post-regions for external control
• Type system ensures that control structures respect timing constraints
• Modular in time-analysis
• Modularity of deductive verification preserved

Future Work
• Implementation
• Beyond tree structured delegation
• Further post-region patterns

Thank you for your attention

18/18

Conclusion

Summary

• Post-regions for external control
• Type system ensures that control structures respect timing constraints
• Modular in time-analysis
• Modularity of deductive verification preserved

Future Work
• Implementation
• Beyond tree structured delegation
• Further post-region patterns

Thank you for your attention
18/18

	Modeling - Hybrid Active Objects
	Verification - Post-Regions
	External Control

