Context-aware Trace Contracts

Eduard Kamburjan!
Reiner Hahnle?
Marco Scaletta?

lUniversity of Oslo
2TU Darmstadt
ABS Workshop, 04.10.23

Context beyond States, Calls beyond Synchronicity

1/18

Context beyond States, Calls beyond Synchronicity

1/18

Context beyond States, Calls beyond Synchronicity

= Contracts abstract the call context

1/18

Context beyond States, Calls beyond Synchronicity

= Contracts abstract the call context

= All context encoded in state predicates

1/18

Context beyond States, Calls beyond Synchronicity

() A4

= Contracts abstract the call context

= All context encoded in state predicates

1/18

Context beyond States, Calls beyond Synchronicity

()

= Contracts abstract the call context

= All context encoded in state predicates

1/18

Context beyond States, Calls beyond Synchronicity

() A4

= Contracts abstract the call context

= All context encoded in state predicates

[= Removing the need for ghost histories in states]

= Enabling simpler asynchronous method contracts

1/18

Specification

Synchronous Language

= Imperative language with procedures (m(){s; return})

= Synchronous calls (m(Q) ;), file operations (open(£);,write(£);, close(£);)

= All variables global, no parameters, no return values

Example:

1 do() { open(f); operate(); closeF(); return; }
> operate() { write(f); return; }
3 closeF() { close(f); return; }

2/18

Traces and Trace Logic

A trace is a sequence of states o and events

invoc(m,), start(m, i), ret(i), write(e), . ..

Let ¢ be a state formula. A trace formula 6 has traces as models and is defined by

0 == ON0 | [p] |ev(e)|Oxx0]6-60]| ...

= Important shortcut: s any trace that does not contain any event from &v

= Special case: - is any trace

= Simplification for talk: no variables, only constants (=read-only variables)

3/18

Trace Contract

A trace contract Cy, for procedure m is a triple (Opre|@inner|0post) With

Qpre = Q:Dre : Mpre} Oinner = Wpre} : Hi/nner : Wpost} 9post = w’post] ’ Géost

C o B EH =)
B

~N— ~~ QPOSt

einner

/
Ez)Pre inner ¢P°S)

4/18

Contracts (Ex.)

The contract for operate is

close(f)

close(f),open(f)
Coperate = < open(f) - [true] 0C

[true] [true]

[true] -- close(f) >

5/18

Contracts (Ex.)

The contract for operate is

close(f) | close(f),open(f)

-+ close(f) >

Coperate = < open(f)

5/18

Contracts (Ex.)

The contract for operate is

close(f) | close(f),open(f)

-+ close(f) >

Coperate = < open(f)

The contract for closeF is

close(f)

CcloseF = < open(f)

-+ close(f) ‘>

= No extra state “isOpen(f)"
= No FO history “Vi < |history|. history[i] # open(f)"
*= What to do with 0,067

5/18

Verification

Verification

= The semantics of programs ([s].), trace updates ([i/]s) and formulas ([®]) are
sets of traces (prefixed with 7 or o)

= Symbolic execution idea: reduce program to trace update, have a special solver
for relating trace updates and trace formulas

= {U} : ® — All traces described by U are described by ¢
cE{U} ¢ = [U], C[P]
= {U}s: ® — All traces described by first &/ and then s are described by ¢

cE{Uls: 0 = |J [U]o=*[s]- C [®]
Te[U]o

6/18

Sequent Calculus

rE{Uv == e}s:@

Assign
(Assign) T Ulv = e; 5. 0

MU} - Jel F{U}st; s2: @
C{Uy - [le] F{U}s2: @

()
ME{U}if(e)s1; s2: ®

close(f)

I {U} - open(f)
M= {U}Mvrite(f)} s:

(Write)
r l_ {U}wrlte(f), s (D

7/18

Synchronous Contract Rule

(Call)

M= {Un(); s: @ *x0 %=V

= Split specification into pre-trace, inner trace and post-trace

8/18

Synchronous Contract Rule

FE{UY (P AOG)
r{u} (P AOG)
H{U} (P AO)

= {Un(); s: @ xx0 xxV

(Call)

= Split specification into pre-trace, inner trace and post-trace

= Standard pre-condition

8/18

Synchronous Contract Rule

[0fner] S 101 TEA{UY: (P AGG)

inner

[U run(m, i)} : (® A BB) 08

pre inner

E{UMrun(m, i)} (@A G5e)sx OF

inner

(Cal)
= {Un(); s: @ xx0 xxV

= Split specification into pre-trace, inner trace and post-trace
= Standard pre-condition

= Abstract inner trace with its contract

8/18

Synchronous Contract Rule

[0fner] S 101 TEA{UY: (P AGG)
L {UH{run(m, i)} 2 (© A 05)+ Ofner

F{U}H{run(m, i)} s: (CD/\H’Sre)
= {Un(); s: @ xx0 xxV

wx U A O

mner post

(Call)

Split specification into pre-trace, inner trace and post-trace

Standard pre-condition

= Abstract inner trace with its contract

Additional post-condition

8/18

Proof Obligations

Given a contract of procedure m

< | |)

For each procedure we need to prove the following (slightly simplified)

l_

9/18

Proof Obligations

Given a contract of procedure m

<)

For each procedure we need to prove the following (slightly simplified)

(“Ere—‘ ’ ()/Ennner ’ (()I;ost—‘

+ Sm : /?nnner ’ ((")I;ost—‘

9/18

Proof Obligations

Given a contract of procedure m

<0lr;re ’ |V¢$re—|

(“Ere—‘ ’ ()/Ennner ’ (()I;ost—‘

)

For each procedure we need to prove the following (slightly simplified)

U{start(m, i)} : 05 - [dpe] - U{start(m, i)bsn 2 0'5e - [fpre] - Oinner [Fpost |

9/18

Proof Obligations

Given a contract of procedure m

(0hve - [e]

(prew 9/I|nnner' ((A)I;ost-‘“ post-l 0lpost>

For each procedure we need to prove the following (slightly simplified)

U{start(m, i)} : 05 - [dpe] - U{start(m, i)bsn 2 0'5e - [fpre] - Oinner [Fpost |

» The post-trace 0}, is not part of the proof obligation

pos
= Two-layered soundness: If all proof obligations can be closed, then all
procedures fulfill their contract

9/18

U{start(do, i)} :--+ U{start(do, /) }open(£f); operate(); s :-

10/18

U{start(do, i)} :-- U{start(do, /) }{open(f) }operate () ; s :-- sk - sk -

U{start(do, i)} :--F U{start(do, i) }open(f); operate(); s :-

10/18

(pre) (inner) (post)

U{start(do, i)} :-- U{start(do, i)} {open(f) }operate () ; s i sk -~ sk --
U{start(do, i)} :--F U{start(do, /) }open(£f); operate(); s :-

10/18

U{start(do, 1)} =+ Ufstart(do, 1)} {open()} =~ open(f) “**"" A

(pre)

(pre) (inner) (post)
U{start(do, i)} :-- U{start(do, i)} {open(f) }operate () ; s i sk -~ sk --
U{start(do, i)} :--F U{start(do, /) }open(£f); operate(); s :-

10/18

U{start(do, 1)} =+ Ufstart(do, 1)} {open()} =~ open(f) “**"" A
(pre)
Hclose(f ,open(f) ﬂ [[]]
(inner)

(pre) (inner) (post)
U{start(do, i)} :-- U{start(do, i)} {open(f) }operate () ; s i sk -~ sk --
U{start(do, i)} :--F U{start(do, /) }open(£f); operate(); s :-

10/18

U{start(do, 1)} =+ Ufstart(do, 1)} {open()} =~ open(f) “**"" A

(pre)

close(f) open(f

[1<l

(inner)

U{start(do, i)} :--,U{start(do, i)} {open(f) }{run(operate, 1)} :-- open(f) close(f) - close(f).open(f)

F M{start(do, I‘)}{Open(f)}{run(operate7 1)}5 . open(f) clo??(f) . Close(f):.open(f)

(post)

sk -+ close(f) -

(pre) (inner) (post)
U{start(do, i)} :-- U{start(do, i)} {open(f) }operate () ; s i sk -~ sk --
U{start(do, i)} :--F U{start(do, /) }open(£f); operate(); s :-

10/18

Asynchronous Communication

Asynchronous Language

Asynchronous Calls

= Syntax: !'m()

= Semantics: [s]¢ are all traces produced by s, including its asynchronous calls

Tree-Like Asynchronous Communication

= All processes P; invoked by P are run directly after P terminates.

= From the perspective of the caller of P, all P; are invisible.

= The specification 6., includes the asynchronously called processes

\. J

11/18

O

O
O
O
O

O

12/18

(C O O} [O O OJ
egre n() 9?;1 ner QEOSt

12/18

[E——=0 oo (0—o0—0)
=l)
O——0—0)

= Decoupled pre-state and pre-trace

= Who is obliged to ensure 0,057

12/18

= New judgment: {U} :¢ ® describes global (=including async. calls) traces
oE{U} 6P = U] C[P]

» {U}s :c @ is analogous

= schedule(l{) returns the set of invocation events which are not resolved yet

(asymc) M= {U}{invoc(m,) }m(); s:c® . Coch (return) M= {U}{ret(id)} :¢ ®
async return
’ FE{U}m(); s:c® Hires It {U}return ¢ ¢

schedule() =0 TH{U}: o

(finish)
Fr={U} ¢ o

13/18

Asynchronous Calls

schedule(U) = {invoc(m, i)}

F G
FEA{UY g D #x0 xxW

(ScheduleD)

14/18

Asynchronous Calls

schedule(U) = {invoc(m, i)}
F={U} (S A0G.)
r{u} (P A Gre)
H {U} ‘G (CD A nge)

ScheduleD
(ScheduleD) [(UL g ® wxl +xV

14/18

Asynchronous Calls

schedule(U) = {invoc(m, i)}
[One] S 10T THA{UY: (@A 6Ge)
L {UHrun(m,)} 2 (@ A Gge) ey

F{U}{run(m, i)} G(CD/\Hpre)M on
FEA{U}Y g D *x0 xxW

inner

(ScheduleD)

14/18

Asynchronous Calls

schedule(U) = {invoc(m, i)}
[One] S 10T THA{UY: (@A 6Ge)
r{UHrun(m, i)} : (@ /\9'F',‘re)‘ Oihner

UM run(m, i)} 6 (@ AO5)k O ok x WA 05 o
Mk {L{} g P k0 x5V

(ScheduleD)

= Non-deterministic version explores all possible next scheduling decisions

14/18

Example (Spec. and Code)

1 do() { open(f); !closeF(); operate(); return; }
> operate() { write(f); return; }
3 closeF() { close(f); return; }

cIo?te(f) close(f).,.open(f)

Coperate - < open(f)

- close(f)~->

15/18

Example (Proof Sketch)

It {U}open(£); !closeF(); operate(); return; :g:

16/18

Example (Proof Sketch)

I+ {U}{open(f)}{invoc(closeF())}operate(); return; :g-

It {U}open(£); !closeF(); operate(); return; :g:

16/18

Example (Proof Sketch)

I+ {U}{open(f)}{invoc(closeF(),1)}{run(operate,2)}return; :¢ ® #x* -- close(f) -

"+ {U}{open(f)}{invoc(closeF())}operate(); return; :g-

I {U}open(£); !closeF(); operate(); return; :g:

16/18

Example (Proof Sketch)

M + {U}{open(f)}{invoc(closeF(), 1) }{run(operate,2)}{ret(0)} :¢ ® x -- closeF --

" F {U}{open(f)}{invoc(closeF(), 1)}{ru'n(operate,2)}return; 16 ® *x - close(f) -

I+ {U}{open(f)}{invoc(closeF())}operate(); return; :g-

I {U}open(£); !closeF(); operate(); return; :g:

16/18

Example (Proof Sketch)

"+ {U}{open(f)}{invoc(closeF(), 1) }{run(operate, 2) }{ret(0) }{run(closeF, 1)} :¢ ® x:x - closeF --

" = {U}{open(f)}{invoc(closeF(), 1)}{er(operate,2)}{ret(0)} 16 @ ok - closeF -

I+ {U}{open(f)}{invoc(closeF(), 1)}{ru.n(operate,2)}return; 16 ® *x - close(f) -

e {U}{Open(f)}{invoc(clos.eF())}operate(); return; g

' {U}open(£); !closeF(); operate(); return; :g:

16/18

Example (Proof Sketch)

"""+ {U}{ open(f)}{invoc(closeF(), 1)}{run(oper.ate,2)}{ret(0)}{run(closeF7 1)} : @ *x - closeF -
"+ {U}{open(f)}{invoc(closeF(), 1) }{run(operate, 2) }{ret(0) }{run(closeF, 1)} :¢ ® x:x - closeF --

"+ {U}{open(f)}{invoc(closeF(), 1)}{er(operate.,2)}{ret(0)} ¢ P % - closeF -

I+ {U}{open(f)}{invoc(closeF(), 1)}{ru:n(operate,2)}return; 16 @ #x - close(f) -

[F {U}{open(f)]{invoc(cLoseF())Joperate(); zetura; ig-

I {U}open(£f); 'closeF(); operate(); return; :g-

16/18

Conclusion

Related Approaches

Typestate

» Typestate is bound to data/objects, not a local view of procedures.

17/18

Related Approaches

Typestate

» Typestate is bound to data/objects, not a local view of procedures.

Behavioral Contracts

= Split between parameter-precondition and heap-precondition

= Specify methods that must or may run before a method starts

17/18

Related Approaches

Typestate

» Typestate is bound to data/objects, not a local view of procedures.

Behavioral Contracts

= Split between parameter-precondition and heap-precondition

= Specify methods that must or may run before a method starts

First-order Histories and Ghost Variables

= Generally uncompositional for methods, unwieldy specification language

17/18

Related Approaches

Typestate

» Typestate is bound to data/objects, not a local view of procedures.

Behavioral Contracts

= Split between parameter-precondition and heap-precondition

= Specify methods that must or may run before a method starts

First-order Histories and Ghost Variables

= Generally uncompositional for methods, unwieldy specification language

Session Types for Active Objects

= Top-down, not bottom-up, with no context transmitted down

= |f context is transmitted, they mirror behavioral contracts

17/18

Conclusion

O o () o o

epost
O0—-~0O——=O
einner

o)

18/18

Conclusion

O o 0 n o

epost
O0—-~0O——=O
einner

o)
Oo—O0——0
Context-aware Trace Contracts

= Local specification of global trace context

Modular, local calculus: 1 PO per procedure, all calls abstracted with contracts

= See paper: Event semantics, call management, observations

= Future work: Support for full Asynchronicity

18/18

Conclusion

O o () o

epost
O0—-~0O——=O
einner

o)
Oo—O0——0
Context-aware Trace Contracts

= Local specification of global trace context
= Modular, local calculus: 1 PO per procedure, all calls abstracted with contracts

= See paper: Event semantics, call management, observations

= Future work: Support for full Asynchronicity

\. J

Thank you for your attention,,

	Specification
	Verification
	Asynchronous Communication
	Conclusion

