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ABSTRACT

Digital twins, which are increasingly adopted in industry, are model-
centric systems used to improve the behavior of a twinned physical
system. Seen as a whole, this system has several layers of self-
adaptation: first, the digital twin manages its physical counterpart
and maintains its models through a feedback loop to, e.g., fine-tune
model parameters. Second, the digital twin needs to deal with un-
foreseen changes in the composition of the physical system, which
require models to be partly replaced or recomposed. To facilitate
research on self-adaptive digital twins, without requiring access to
industrial production systems, this paper presents GreenhouseDT,
an exemplar that explicitly separates these layers of self-adaptation.
GreenhouseDT provides an extensible software architecture for
a digital twin of a simple, low-cost greenhouse, in which plants,
sensors and water pumps constitute the physical system. Green-
houseDT includes an asset model in the digital twin’s knowledge
base and uses reflection to lift twinned configurations into the
knowledge base. We discuss how GreenhouseDT can be extended
with different digital twin capabilities, demonstrated by the addition
of plant health monitoring and model-based control.
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1 INTRODUCTION

Digital twins are an excellent case for applying self-adaptation
techniques. A digital twin [20] is a model-centric system; it main-
tains a digital replica of a physical system and interacts with the
twinned physical system in two ways: the digital twin adapts its
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models of the physical system in near real-time using information
events from the physical system and it can influence the behavior of
the physical system using actuators (e.g., controllers) [11]. Digital
twins can be used for descriptive (“what happened”), predictive
(“what will happen”) and prescriptive (“what if”) analyses [21] of
the twinned physical system, by exploring its models. As such,
many twinned systems are self-adaptive, and can be implemented
following an external approach for self-adaptive systems [24], in
which a managing subsystem (part of the digital twin) controls a
managed subsystem (the physical twin).

Digital twins also need to adapt to changes in the structure of
the physical assets, as they evolve over time; e.g., the twinned phys-
ical assets may pass through different stages of an engineering life
cycle: commissioning, via operations, to decommissioning. Conse-
quently, the digital twin itself (i.e., the managing subsystem of the
self-adaptive system) is also necessarily self-adaptive; the structure
and capabilities of the physical assets evolve over time. This ar-
chitectural self-adaptation (or structural self-adaptation [9]) differs
from behavior self-adaptation, and it is recommended to separate
these concerns into different self-adaptive layers [3]. For digital
twins, behavioral self-adaptation amounts to adjusting the behavior
of the physical twin, whereas architectural self-adaptation corre-
sponds to reconfiguring the digital twin itself to reflect changes in
the structure and requirements of the twinned assets.

We present GreenhouseDT!, an exemplar to investigate self-
adaptive digital twins. GreenhouseDT contributes a software ar-
chitecture that enables exploring solutions not only for behavioral
adaptation of a managed subsystem (the physical twin) but also for
the architectural self-adaptation of the managing subsystem (the
digital twin). Our architecture is based on knowledge graphs [6]
that capture asset models. Asset models [22] (or digital threads [15])
are commonly used in engineering to record the current structure
of the physical system and its changes. Knowledge graphs are a
key technology to digitally represent asset models [18] and play
an important role in digital twin architectures [12, 14, 23, 25], in
particular to connect with standards [1, 13].

Digital twins today are heavily focused on industrial applica-
tions. These are often tightly coupled to complex and expensive
production plants and laboratories, with proprietary solutions and
data. The GreenhouseDT exemplar significantly lowers the barrier
to having an operational digital twin for research purposes and
enables solutions for self-adaptation in digital twins to be explored
and compared. In this paper, we demonstrate such exploration at
the level of architectural self-adaptation.

! Available under https://github.com/smolang/GreenhouseDT
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Approach. The GreenhouseDT exemplar consists of a greenhouse
as its physical system and an extensible software architecture that
realizes the digital twin. The physical twin is a low-cost alternative
to industrial plants, yet it provides exactly the features needed to
explore digital twin technology: an easy-to-install physical system
with off-the-shelf sensors and actuators, and a modular digital twin
software layer. To facilitate the sharing of research results, the phys-
ical twin can be virtualized by replaying recorded data streams. The
main focus of GreenhouseDT is the modular software architecture
of the digital twin, its interconnection with the asset model of the
physical twin, and the use of simulation models for prediction. The
core of the software architecture of GreenhouseDT consists of an
external self-adaptive system which includes a knowledge base
that formalizes the asset model of the physical twin, and support
for model-based predictions; we here use simulation models for
simplicity. We assume that we are given simulation models that cor-
respond to the different entities of the asset model (these decide the
granularity of the architectural self-adaptation, discussed below).
Sensor data (e.g., from humidity sensors) connect the digital twin
to the greenhouse; these are stored in a time-series database which
can be queried from the digital twin. The managing subsystem
of the digital twin uses model-based predictions to decide how to
control the actuators of the managed subsystem; we use a watering
pump as an example of an actuator in the greenhouse.

Self-adaptation of the architectural configuration within the dig-
ital twin is realized by an additional self-adaptation layer that man-
ages the managing system discussed above. This architectural self-
adaptation layer ensures that changes in the asset model, reflecting
changes in the physical system, are detected and that corresponding
repair actions on the simulation model of the managing subsystem
are performed. This way, we can ensure that the simulation model
used to make decisions in the managing subsystem, is correctly con-
figured with respect to the asset model, and thereby that it is kept
in sync with the physical system. Observe that it is assumed that
the asset model is updated to reflect changes in the physical twin;
for simplicity in the exemplar, we let a human operator—generally
an engineer but, for GreenhouseDT, a gardener—perform these
update operations on the asset model.

The main contributions of this paper are

o a self-adaptation digital twin exemplar that can be equipped with
different strategies for self-adaptation, enables the comparison
of different self-adaptation strategies, and can form a basis for
other digital twins; and

e an adaptation logic for architectural self-adaptation, combining
asset models formalized in knowledge graphs with simple predic-
tive decision making, which can easily be extended with other
capabilities and adopted to other models for decision making.

Related Work. Several systems for self-adaptation in digital twins
have been proposed by the literature, but most target engineering
systems that are not suitable as research exemplars, such as the
digital twin architecture proposed by Spaney et al. [19] which adapts
the digital twin’s runtie model to reflect machine degradations in a
manufacturing system. As low-cost solutions, Feng et al propose an
incubator digital twin [4], which targets behavioral self-adaptation.
For architectural self-adaptation, Govindasamy et al. [5] propose
an exemplar for air quality management, based on a self-adaptive
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Figure 1: System Architecture. Components in the physical
twin can be replaced with mock-ups that replay data.

software architecture [2]. Their system targets the evolution of
the digital capabilities by means of domain-specific case-based
reasoning, not structural changes in the physical asset, and does
not contain a knowledge graph for asset management.

2 SYSTEM DESCRIPTION

GreenhouseDT consists of a physical twin (PT) and a digital twin
(DT). The physical twin is the actual greenhouse, together with
sensors and actuators, as well as software operating them. The
digital twin is a simulation model of the greenhouse, together with
an asset model and a time-series database.

2.1 The Need for Self-Adaptation

Whereas behavioral adaptation allows a greenhouse digital twin to
calibrate the frequency or duration for running watering pumps in
a greenhouse to how quickly soil in the pots gets dry, the green-
house digital twin also needs to support architectural configuration.
Consider a greenhouse with two shelves, in which plants are moved
from the lower to the upper shelf after a certain amount of time. The
digital twin must keep track of where a plant is positioned to map it
to the correct sensor stream. Similarly, new knowledge may affect
what is considered the optimal moisture level for a given plant. This
knowledge may stem from new regulations, new objectives such as
minimizing energy, or from contextual knowledge such as seasonal
variation. The digital twin needs to adapt to such knowledge.
GreenhouseDT uses an asset model to capture knowledge about
the domain and structure of the physical twin. We assume that
this asset model is updated when the structure changes or new
knowledge is added. The simulation model must twin this structure,
using the asset model as a proxy. First, observe that these changes
are not detected by the physical system itself, but are reported using
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Figure 2: Structure of the physical twin.

the asset model, because they are not related to unexpected behavior
of a single plant. Second, they are targeting a fundamental property
of the system as a whole: the digtital twin must mirror the physical
twin in behavior and structure. Otherwise, any control decision or
analysis result may cause failure or mistakes when applied to the
physical twin, even if no immediate error is raised.

2.2 System Overview

We first give an overview of the components in both DT and PT,
shown in Figure 1.

Physical Twin. The physical twin of GreenhouseDT consists of
a greenhouse with three shelves, pictured in Figure 2. On each of
the two top shelves there are two plants, each equipped with a
moisture sensor. Each shelf is equipped with a combined humidi-
ty/temperature sensor, and the whole greenhouse has a light sensor.
As for actuators, each plant is connected to one water pump, which
pumps water from a basin at the bottom shelf of the greenhouse.

Each shelf has a Raspberry Pi, which collects and relays data
from the sensors on this shelf. to a time-series database that acts as
an interface to the digital twin. Similarly, each pump is connected to
aRaspberry Pi that receives commands to water its associated plant.
The connections of the Raspberry Pi can be configured locally, but
must adhere to the information of the asset model. The light sensor
is handled by the minicomputer of the top shelf.

Digital Twin. The digital twin of GreenhouseDT uses a message-
oriented middleware to connect the following components:

o Simulation Model: At its core, the digital twin is a program
twinning the structure of the physical twin and providing op-
erations for self-adaptation and control. In this program, each
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relevant part of the asset (e.g., actuators and plants) is represented
by one object, connected according to the asset model.

e Driver: The driver triggers the digital twin’s self-adaptation
and control mechanism. It relays decisions to the actuators and
gets input from a listener of the knowledge graph to trigger self-
adaptation upon any change in the asset model. For simplicity,
decision making is triggered in a fixed, configurable time interval.

o Knowledge Graph: The knowledge graph contains an asset
model, a formal description of the architecture of the physical
twin, in an RDF store.

o Time-Series Database: The time-series database serves as an
interface to the sensors.

The last two components are conceptually straightforward and we
next focus on the first two components.

2.3 Architectural Self-Adaptation

Architectural self-adaptation ensures that the configuration of the
simulation model and its capabilities reacts to changes in the asset.
The simulation model is a semantically lifted program [8], ie., a
program whose current runtime structure is interpreted as a knowl-
edge graph. This interpretation, the lifted state of the program,
contains each object currently present in the simulator, each value
stored in their fields and their connections.

The simulation model is reactive; i.e., it does not perform its
self-adaptation and decision making without an external trigger.
Instead, it is embedded into a driver-component, which, upon every
change of the asset model, triggers architectural self-adaptation.
It is directly connected to both the time-series database (to access
sensor data) and the knowledge graph (to access the asset model).

The architectural self-adaptation of the configuration of the
simulation model executes so-called defect queries on the combined
knowledge graph, which contains both the asset model and the
lifted state of the simulation model. Each defect query corresponds
to one property that connects model and asset; for example, there
must be an asset in the asset model for each object in the simulation,
and there must be an object in the simulation model that contains
the right parameters for each asset for its control. Each defect
query returns witnesses for its defect. The simulation model is
implementing adaptation routines to repair these defects, i.e., to
adapt itself to the changed asset model.

As an example, let us assume that the optimal moisture level
for some asset has changed in the asset model. One of the defect
queries returns as a witness the simulation object that corresponds
to this asset and has the wrong (i.e., old) moisture level and the new
optimal moisture level. The adaptation then updates the optimal
moisture level in this object to the new optimal level.

Control. The driver issues a command to the simulation objects
at regular, configurable intervals, to control the system to read the
recent sensor data and make a decision, which is then transmitted
to the actuators. This may implement behavioral self-adaptation.

3 PHYSICAL TWIN OF GreenhouseDT

The physical twin of GreenhouseDT is a greenhouse, depicted in
Figure 2, including four plants on two shelves, sensors and actua-
tors to realize control, and minicomputers to operate sensors and
actuators. We used Raspberry Pi 4 Model B for the minicomputers.
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Prebuilt indoor greenhouses are widely available, they are oth-
erwise easy to assemble. We used a prebuilt greenhouse with three
levels for the exemplar, as sensors and actuators need to be cali-
brated for the individual asset. On the lowest level is a canister with
water for the watering system. The upper two levels have the same
setup with two plants each. Our system uses basil plants, but any
green plant is suitable.

Sensors. The following sensors monitor the physical twin:

e Light: For the overall greenhouse, one light-sensor monitors
light conditions. Any sensor returning a value from 0-100 after
calibration can be used, for example a webcam.

e Temperature and Humidity: For each shelf, one DHT22 sensor
monitors temperature and humidity. These conditions are similar
for both plants on a shelf, so we did not need one sensor per pot.

e Moisture: Each pot has one capacitive soil moisture sensor.

For each shelf, one minicomputer is used to collect data from all
sensors on the shelf (the light sensor is considered to be part of the
upper shelf) and to send this data to the time series database, as
configured by the asset model. Each plant and sensor is identified
by an alpha-numerical identifier as described in Figure 2.

Actuators. For each plant, there is one R385 water pump, con-
trolled by a minicomputer, that connects the water canister with
the corresponding plant. The actuator listens for messages using
the message broker The URL and topic to which it subscribes and
the basic local setup (e.g., the used GPIO to drive the pump and the
id of the pump) are configured locally. The actuator activates the
pump for the given amount of seconds that it receives in a message.

Distributing Experiments and Extensions. To share data and re-
produce results of software artifacts for digital twins, a fully physical
setup is not always suitable. For this reason, it is possible in Green-
houseDT to have a virtual greenhouse and feed prerecorded data
to the InfluxDB to replay a situation. Similarly, it is possible in
GreenhouseDT to issue a sequence of queries to the asset model,
described below, to replay changes in the virtual greenhouse.

GreenhouseDT is modular with respect to the structure of the
physical twin: Other sensors and actuators can be added, reusing
most of the software on the minicomputers and without modifying
the architecture. This modularity is discussed in detail in Section 5.

4 DIGITAL TWIN OF GreenhouseDT

GreenhouseDT realizes the simulation model in form of a program
that mirrors the structure of the physical twin and connects to the
infrastructure needed to communicate with the physical twin. To
adapt to the changes in the configuration of the physical twin, this
configuration is captured in an asset model.

4.1 Asset Model

The asset model is a knowledge graph that contains an OWL on-
tology describing the concepts needed to specify the greenhouse,
and data that expresses its current configuration. The main classes
and properties of the ontology are given in Figure 3. The ontology
expresses the existence and properties of greenhouses, pots, and
shelves. Additionally, it refers to water tanks/canisters, pumps and
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Class: ast:Greenhouse

1
2 SubClassOf:

3 ast:hasWaterTank exactly 1 ast:WaterTank,
4 ast:hasLightStrength some ast:percentage,
5 ast:hasShelf min 1 ast:Shelf

6 Class: ast:Pot

7 SubClassOf:

8 ast:hasPlant max 1 ast:Plant,

9 ast:hasMoisture some ast:percentage,

10 ast:isWateredBy exactly 1 ast:Pump

11 Class: ast:Shelf

12 SubClassOf:

13 ast:hasHumidity some ast:percentage,

14 ast:hasTemperature some xsd:double,
15 ast:hasPot min 1 ast:Pot

16 DataProperty: ast:hasHumidityGpioPin

17 Domain: ast:Shelf Range: xsd:int

18 DataProperty: ast:hasIdealMoisture

19 Domain: ast:Plant Range: xsd:double
20 DataProperty: ast:hasIdealTemperature
21 Domain: ast:Plant Range: xsd:double

Figure 3: Excerpt of the GreenhouseDT ontology.

plants. For simplicity in GreenhouseDT, we consider a specific on-
tology (and not a general description of greenhouses from an IoT
or Smart Agriculture perspective): a greenhouse has two shelves,
exactly one canister and a current light strength. A pot has at most
one plant, exactly one pump and a current moisture level, while
a shelf has a current humidity and temperature level, as well as
exactly two pots. To model the ideal moisture and temperature for
plant, two different data properties are used: ast:hasIdealMoisture
and ast:hasIdealTemperature. To connect the configuration of the
physical twin, the GPIO pin for the humidity sensor is also part of
the asset model, using the data property ast:hasHumidityGpioPin.
Figure 4 illustrates the representation of information about the
greenhouse, its top shelf and the left pot and plant there. This on-
tology can easily be generalised or adopted to greenhouses with
different layouts (see Section 6).

4.2 Simulation Model

The simulation model is written in SMOL [8], an object-oriented
language that can be semantically lifted; i.e., every runtime state
can be interpreted as a knowledge graph. Every kind of asset is
modeled by one class (e.g., plant, pump, and shelf). Figure 5 shows
the class for plants, a data class with three fields that correspond to
values from an asset model. A SMOL object is a twin of an asset if
they have the same plantId. The method getPotMoisture realizes
the connection to the time series database. Note that the control
and self-adaptation logic is external to these classes.

The simulation model is started once the digital twin is initialized
and is afterwards used in two ways: for adaptive control and for
architectural self-adaptation. For adaptive control, where a decision
procedure is executed for each plant to determine whether, and for
how long, the pump should be activated. This is done by a procedure
executed by the simulation driver, detailed below. For architectural
self-adaptation, the simulation driver executes another procedure
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1 Individual: ast:greenhouse

2 Types: ast:Greenhouse

3 Facts: ast:hasShelf ast:shelf1,

4 ast:hasShelf ast:shelf2,

5 ast:hasWaterTank ast:waterTank
6 Individual: ast:shelf1

7 Types: ast:Shelf

¢ Facts: ast:hasHumidityGpioPin 4,

9 ast:hasShelfFloor "1",

10 ast:hasTemperatureGpioPin 4
1 ast:composedOf ast:potl,
12 ast:composedOf ast:pot2

13 Individual: ast:pot1

14 Types: ast:Pot

15 Facts: ast:hasPlant ast:basill,
16 ast:isWateredBy ast:pumpl,
17 ast:hasPotPosition "left"

Figure 4: Excerpt of the GreenhouseDT asset model.

that semantically lifts the program state of the simulation model
and then runs defects queries on the combined knowledge graph.
For example, the query in the upper part of Figure 6 detects the
defect that the optimal moisture level of a plant has changed, while
the lower part shows an except of the repair function that sets the
moisture level to the correct, new value.

4.3 Digital Twin Infrastructure

The simulation model is connected to (a) an InfluxDB database,
where each Plant object retrieves the recent values from the sen-
sors of its plant, (b) a Fuseki SPARQL endpoint that stores the asset
model, and (c) the simulation driver. The simulation driver, imple-
mented in Java, has the task to regularly trigger adaptive control
and, upon changes in the asset model, architectural self-adaptation.

The communication between actuators, asset model, and the sim-
ulation driver is implemented using an ActiveMQ message broker
middleware. Each query that changes the knowledge graph (i.e.,
every Update query), also triggers a message that causes the simu-
lation driver to start architectural reconfiguration. Other messages
are sent by the simulation driver after triggering control to issue
commands to the actuators.

Lastly, the digital twin infrastructure includes a graphical web
interface that visualizes the data in the time series database, the logs
of the simulation model (i.e., control decisions and reconfigurations)
and the updating queries for the asset model.

5 USING GreenhouseDT

We now discuss how to install and extend the GreenhouseDT exem-
plar, with a focus on the software components. Detailed instructions
on hardware and software setup, including instructions for cali-
bration, are available as part of the exemplar. GreenhouseDT is
distributed in two forms: (1) a VM and two images for the Rasp-
berry Pi’s as an easy to install and use solution, and (2) an open
source repository. The VM and images are generated from the open
source repository. To redistribute data, the VM can be used with
prerecorded data without the Raspberry Pi OS images.
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Installing the Minicomputers. To install the minicomputers for
the sensors, one has to configure (a) their connection to the other
components and (b) their local parameters.

For the former, we need a URL, organization and access token of
the InfluxDB time series database, enter the minicomputer’s ID in
the asset model (used to write into the correct bucket), and the IDs
of the shelf and plants it manages. Furthermore, the URL and topic
of the message broker must be provided.

For the latter, we need the GPIO pins, and maximal and minimal
values for all connected sensors, e.g., minimal and maximal lux
values from the light sensor. These values are used to normalize the
output—all data in the time series database range between 0 and 100.
The data is automatically sent to the configured database. The mes-
sage broker loads a new configuration when a new configuration
file is sent, e.g., to use a different GPIO pin.

Installing the microcomputers for the actuators similarly requires
to configure the connection to the message broker, the GPIO of the
actual pump and the ID according to the asset model.

Setting up the Digital Twin. The digital twin VM runs the simula-
tion driver and the two databases, contains the asset model for the
knowledge graph and a predefined schema design for the influxDB
time series database. To run driver and databases on different ma-
chines, one can either set them up manually and reconfigure the
connection, or follow the instruction in the open source repository.

Configuration is split in several files. The driver’s connection
to the databases is configured by the main file config_local.yml.
Each shelf i is configured in a file config_shelf_i.ini, where i is
the ID of the shelf in the asset model. These files mirror the config-
uration of the sensor minicomputers—whenever they are modified
locally in the digital twin, they are also sent via the message broker
to the corresponding minicomputer where they are loaded.

6 EVALUATION

For convenience, GreenhouseDT provides a dashboard monitoring
the state and communication of the system. In particular, it shows
the moisture level of the plants, queries run on the knowledge
graph and output from the simulation driver. To demonstrate simple
reconfiguration, a preconfigured scenario adds a new plant to the
asset model and shows how the digital twin reconfigures.

We evaluate the extensibility of GreenhouseDT by adding two
new capabilities; both fully implemented and part of the exemplar.
For a detailed description of which parts of the code have been
modified, we refer to the online documentation.

6.1 Plant Health Monitoring

We first extend the twin with the capability to detect the health sta-
tus of a plant. This extension is representative for new capabilities
obtained by extending the physical twin or its digital requirements,
e.g., adding new sensors, actuators, or assets to the physical system,

An infrared camera is added to the physical twin, and the as-
set model and databases are extended to keep track of limits for
recorded NDVI? values. Depending on this value, the digital twin
will report on the current health status. The health statuses provide
a classification over the NDVI measurements, specified in the asset

?Normalized difference vegetation index, a measure that can be used for the health
analysis of vegetation [10].
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class Plant extends Twin (String plantId, Double idealMoisture, String plantType)

Double getPotMoisture()

List<Double> influxReturn = access(/+ InfluxQL query+/, INFLUXDB("config_local.yml"), /«parameter: +/ this.plantId);

return influxReturn.get(0);

1
2
3
4 //default: aggregated value, depending on InfluxQL query
6 end

7

Figure 5: A class representing the simulation model of a plant.

1 SELECT ?0bj ?idealMoistureNew {

2 ?0bj a prog:Plant;

3 prog:Plant_plantId ?plantId ;

4 prog:Plant_idealMoisture ?idealMoisture .
5 ?y rdf:type ast:Plant;

6 ast:hasPlantId ?plantld ;

7 ast:hasIdealMoisture ?idealMoistureNew .

¢ FILTER(?idealMoisture != ?idealMoistureNew ) }

1 List<MoiRepair> repairs = construct(Q); //query above
> for r in repairs do
3 r.obj.idealMoisture = r.idealMoistureNew; end

Figure 6: Architectural self-adaptation.

model. These statuses may change over time; GreenhouseDT auto-
matically detects the current classification from the asset model—
the statuses are treated as a kind of digital asset, and can can be used,
e.g., to adjust watering or for reporting. To add health monitoring,
we need to (a) add an infrared sensor, (b) extend the asset model
and the influxDB schema, and (c) extend the simulation model.

e Physical Twin: The physical twin is extended with a Pi Cam v2

NolR without an infrared filter. The software of the corresponding

minicomputer is extended in two ways: (1) the configuration is

extended with a new bucket and normalization range, and (2)

the code for reading sensor data is extended to capture images,

calculate the average NDVI per pixel and write to the time series
database. Auxiliary functions for such tasks are available.

Digital Twin Infrastructure: The time series database schema

is extended with the corresponding buckets for NVDI value,

and the asset model with a class ast:HealthState for a possible
health status, with properties ast:minNVDI and ast:maxNVDI for

the threshold values, between which a plant is considered in a

given health state.> The driver does not need to be extended.

o Simulation Model: The simulation model needs two extensions.
The architectural self-adaptation is implemented by adding defect
queries that detect changing NDVI limits, similar to the optimal
moisture levels, and the addition or removal of NDVI sensors
for a given plant. Additionally, health statuses and their defect
queries need to be added. For this purpose, the simulation model
provides an interface (KindModel) that needs to be implemented
and initialized on startup. Finally, the KindModel instantiation

3For simplicity, we here assume that only adult plants of a rather similar size are used,
as the average NDVI per pixel will be lower if there is less leaf area.

for plants needs to be extended to detect which status a plant
has and output it to the user.

6.2 Model-Based Control

Let us now extend the twin with the capability to perform model-
based control. This extension is representative for new capabilities
based on extending the simulation model.

The decision to water is no longer made based on the measure-
ments from the moisture sensor, but rather on a digital shadow [20],
i.e., a model that predicts the moisture level. We monitor the model
drift by comparison to the sensor stream, automatically reconfigur-
ing the model if it drifts too far for reliable model-based control.

Neither physical twin, asset model nor time series data base need
to be extended. The simulation driver and model is extended as
follows. First, the behavior of the moisture level is approximated
by a simple linear model in OpenModelica [17] and exported as a
simulation unit using the FMI [16] interface. Second, each plant in
the simulation model is extended with an instance of this simulation
unit, using the available SMOL-FMI interface [7]. Upon creation of
anew object, the unit is initialized using the last read moisture level
from InfluxDB. Third, the decision procedure is changed to base
the decision to water on the simulated moisture level, not the read
one. Finally, a new drift procedure that is added. This procedure
is called each time the sensor stream is read and advances the
simulation accordingly. The procedure compares the last values in
the time series database with the simulated values at this time. If
the difference is too big (i.e., the model drifted too far), the model
is automatically reset with the last, correct sensor value.

7 CONCLUSION

GreenhouseDT is a digital twin exemplar that emphasizes the soft-
ware architecture and self-adaptation aspects of digital twins, based
on knowledge graphs and asset models, two technologies widely
used in Industry 4.0 and related initiatives. The exemplar is an
easy-to-install low-cost alternative to expensive or highly complex
industrial digital twin that often come with proprietary solutions
and data. GreenhouseDT is extensible, and easy to distribute for
reproducibility and replication of research results. The former is
facilitated by an extendable architecture, while the latter is enabled
through the ability to share data and results through replays, which
does not require the physical system to be recreated.
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