A Hoare Logic for Domain Specification

Eduard Kamburjan¹

Dilian Gurov²

DL Workshop, Bergen, 19.06.24

¹University of Oslo

²KTH Stockholm

- Abstraction of computational details from other modules
- Intended computational behavior of the module itself

```
/*@
requires
  \forall i. 0 <= i < arr.size -> arr[i] > 0
ensures \result > 0 @*/
```

int sumArray(int[] arr) { ... }

- Abstraction of computational details from other modules
- Intended computational behavior of the module itself

```
requires
  \forall i. 0 <= i < arr.size -> arr[i] > 0
requires arr != null
ensures \result > 0 @*/
int sumArray(int[] arr) { ... }
```

- Abstraction of computational details from other modules
- Intended computational behavior of the module itself
- Intended behavior w.r.t. business/domain logic?

- Abstraction of computational details from other modules
- Intended computational behavior of the module itself
- Intended behavior w.r.t. business/domain logic?

- Abstraction of computational details from other modules
- Intended computational behavior of the module itself
- Intended behavior w.r.t. business/domain logic?

- Abstraction of computational details from other modules
- Intended computational behavior of the module itself
- Intended behavior w.r.t. business/domain logic?

- Domain bugs are hard to find and express
- How can we use pragmatics of DL/OWL tools inside a proof?
- How can we manage domain and computational specification during proofs?
- How to use description logics for program specification?

Program Specification

Hoare Triples

Specifies programs in terms of their precondition and postcondition.

$$\{pre\}s\{post\}$$

- If pre holds in the state before s is executed, and
- the execution of s terminates,
- then *post* holds in the final state
- Usual notion of validity

$$\{\mathtt{i} \geq 0\}\mathtt{i} \; := \; \mathtt{i} + \mathtt{1}; \{\mathtt{i} > 0\}$$

Program Specification

State Logic

- Formulas *pre*, *post* defined in state logic
- FO logic extended with program variables as terms
- Models are transition systems where program variables are interpreted per states
- Important: state logic is closed under term substitution

$$(i \ge 0)[i \setminus i + 1] = i + 1 > 0$$

 $(i \ge 0)[i \setminus 0] = 0 > 0$

Hoare Triple

- Used since 70s, in certain variants main approach to program verification
- Weakest Precondition (wp) is backwards reasoning: generate pre from post
- Rules for contracts, loops, recursion, ...

Example Axiomatic Semantics

$$\vdash \{\phi[\mathbf{v} \setminus \mathbf{e}]\}\mathbf{v} := \mathbf{e}\{\phi\}$$

Hoare Triple

- Used since 70s, in certain variants main approach to program verification
- Weakest Precondition (wp) is backwards reasoning: generate pre from post
- Rules for contracts, loops, recursion, . . .

Hoare Triple

- Used since 70s, in certain variants main approach to program verification
- Weakest Precondition (wp) is backwards reasoning: generate pre from post
- Rules for contracts, loops, recursion, ...

Example Axiomatic Semantics
$$\frac{}{ \vdash \{\phi[v \setminus e]\}v \ := \ e\{\phi\}} \frac{\vdash \mathit{pre} \to \mathit{pre}' \qquad \vdash \{\mathit{pre}'\}s\{\mathit{post}'\} \qquad \vdash \mathit{post}' \to \mathit{post}}{ \vdash \{\mathit{pre}\}s\{\mathit{post}\}}$$

What is a Car?

Suppose you model the assembly process of a car

```
procedure addWheels(p) nrWheels := p end
```

What is a Car?

Suppose you model the assembly process of a car

```
procedure addWheels(p) nrWheels := p end
```

Programmer

This procedure sets the number of wheels in a car to the value of p.

$$\{-\} \texttt{addWheels(p)} \{ \texttt{nrWheels} \doteq \texttt{p} \}$$

Subject Matter Expert

I want that in the end of this step, the car classifies as a small car.

```
\{-\}addWheels(p)\{Small(c)\}
```

What is a Car?

Suppose you model the assembly process of a car

```
procedure addWheels(p) nrWheels := p end
```

Programmer

This procedure sets the number of wheels in a car to the value of p.

$$\{-\}$$
addWheels(p) $\{$ nrWheels \doteq p $\}$

Subject Matter Expert

I want that in the end of this step, the car classifies as a small car.

```
\{-\}addWheels(p)\{Small(c)\}
```

How to enable both of them to specify their respective intent?

- SME does not know about how the car c is encoded
- Programmer does not know what it means for a car to be small.

Giving Meaning to States

Do we really want to use *DL* to specify state? Do we need to use *DL* to specify *state*?

Semantic Lifting

Semantic lifting is a technique to interpret a program state as a knowledge graph.

 \bullet Formally: function μ from runtime states to knowledge graphs.

Examples

$$\mu(\langle \mathtt{i} \mapsto \mathtt{5} \rangle) = \{\mathtt{hasValue}(\mathtt{iVar}, \mathtt{5}), \dots\}$$

 $\blacksquare \ \, \mathsf{Lifting} \,\, \mu \,\, \mathsf{may} \,\, \mathsf{add} \,\, \mathsf{some} \,\, \mathsf{knowledge} \,\, \mathbf{K} = \{\mathtt{wheels(}c,\mathtt{nrWheelsVar}\} \\$

$$\mu\big(\langle \mathtt{nrWheels} \mapsto \mathsf{4} \rangle\big) = \big\{\mathtt{hasValue}\big(\mathtt{nrWheelsVar}, \mathsf{4}\big), \mathtt{wheels}\big(c, \mathtt{nrWheelsVar}\big) \dots \big\}$$

Useful for highly domain specific software when combined with reflection

Lifted Specification

Ontologies and Description Logics

For domain modeling and specification a rich body of methodologies and tools exist.

 $ext{HasFourWheels} \sqsubseteq ext{Small} \qquad \exists ext{wheels}. \exists ext{hasValue}. 4 \equiv ext{HasFourWheels}$

Lifted Specification

Ontologies and Description Logics

For domain modeling and specification a rich body of methodologies and tools exist.

 $ext{HasFourWheels} \sqsubseteq ext{Small} \qquad \exists ext{wheels.} \exists ext{hasValue.} 4 \equiv ext{HasFourWheels}$

- Upper component specifies the state as interpreted in the domain
- Lower component specifies non-lifted state

Idea: define a compatible lifting of the specification as well.

Idea: define a compatible lifting of the specification as well.

- 1. Infer (abduct/deduct) lifted post-condition
- 2. Recover state post-condition, substitution
- 3. Lift pre-condition, deduce domain pre-conditions

```
\verb|wheels(|c|, wheelsVar|)| + \left\{ \\ | nr \forall heels| := p \\ \left\{ Small(c), HasFour \forall heels(c), has \forall alue(wheels \forall ar, 4) \right\} \\ | (a) | (b) | (b) | (b) | (c) | (c
```

Idea: define a compatible lifting of the specification as well.

- 1. Infer (abduct/deduct) lifted post-condition
- 2. Recover state post-condition, substitution
- 3. Lift pre-condition, deduce domain pre-conditions

Idea: define a compatible lifting of the specification as well.

- 1. Infer (abduct/deduct) lifted post-condition
- 2. Recover state post-condition, substitution
- 3. Lift pre-condition, deduce domain pre-conditions

Idea: define a compatible lifting of the specification as well.

- 1. Infer (abduct/deduct) lifted post-condition
- 2. Recover state post-condition, substitution
- 3. Lift pre-condition, deduce domain pre-conditions

```
\begin{split} \text{wheels($c$, wheelsVar$)} \vdash & \left\{ \begin{aligned} \text{hasValue(pVar, 4)} \\ \text{p} &\doteq 4 \end{aligned} \right\} \\ \text{nrWheels} &:= \text{p} \\ & \left\{ \begin{aligned} \text{Small($c$), HasFourWheels($c$), hasValue(wheelsVar, 4)} \\ \text{nrWheels} &\doteq 4 \end{aligned} \right\} \end{split}
```

Specification Lifting

Function $\widehat{\mu}$ from program assertions to axioms. Must be compatible to state lifting:

$$\sigma \models \phi \rightarrow \mu(\sigma) \models \widehat{\mu}(\phi)$$

$$\widehat{\mu}(\mathbf{v} \doteq \mathbf{l}) = \{\mathtt{hasValue}(\mathbf{vVar}, \mathbf{l})\}$$

$$\widehat{\mu}^{-1}(\{\mathtt{hasValue}(\mathbf{vVar}, \mathbf{l})\}) = \mathbf{v} \doteq \mathbf{l}$$

- Inverse lifting also allows to derive conditions in the state logic
- State lifting can be defined for language, specification lifting is per application due to loss of expressive power
- Not refinement! Lifting gives a different perspective, not a less abstract one

A Signature Perspective

A Signature Perspective

Kernel and Generator

Let Σ be the signature of the domain specification.

- The kernel of $\widehat{\mu}$ is a signature **ker** $\widehat{\mu} \subseteq \Sigma$.
- A core generator α maps axioms Δ to axioms $\alpha(\Delta)$ with $\alpha(\Delta) \models \Delta$

A Signature Perspective

Kernel and Generator

Let Σ be the signature of the domain specification.

- The kernel of $\widehat{\mu}$ is a signature **ker** $\widehat{\mu} \subseteq \Sigma$.
- A core generator α maps axioms Δ to axioms $\alpha(\Delta)$ with $\alpha(\Delta) \models \Delta$
- Kernel generator can either implement deduction, or abduction
- In case of abduction: ABox abduction with signature abducibles

Validity and Judgement

Validity

Given a compatible pair $\mu, \widehat{\mu}$, a set of contracts ${\bf C}$ and a set of axioms ${\bf K}.$

is valid if $\forall (\sigma,\sigma') \in \llbracket s \rrbracket_{\mathbf{C},\mathbf{K}} \cdot \left(\sigma \models_{\mathbf{K}} \{^{\Delta_1}_{\Phi_1}\} \to \sigma' \models_{\mathbf{K}} \{^{\Delta_2}_{\Phi_2}\}\right)$

Next: how to design a sound calculus to prove validity?

$$\mathbf{C}, \mathbf{K} \vdash \left\{ \begin{matrix} \Delta_1 \\ \Phi_1 \end{matrix} \right\} s \left\{ \begin{matrix} \Delta_2 \\ \Phi_2 \end{matrix} \right\}$$

Some Rules

- First you generate the kernel
- $\begin{tabular}{ll} \blacksquare & {\bf Additional \ premise \ trivial \ if \ } \alpha \\ & {\bf is \ deductive} \\ \end{tabular}$

$$\begin{array}{c} \Delta_2 \models^{\mathbf{K}} \alpha(\Delta_2) \\ \text{(post-core)} \ \, \frac{\mathbf{C}, \mathbf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2, \alpha(\Delta_2) \\ \Phi_2 \end{smallmatrix} \right\}}{\mathbf{C}, \mathbf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2 \\ \Phi_2 \end{smallmatrix} \right\}} \end{array}$$

Some Rules

- First you generate the kernel
- Additional premise trivial if α is deductive

$$\begin{array}{c} \Delta_2 \models^{\mathbf{K}} \alpha(\Delta_2) \\ \text{(post-core)} & \frac{\mathbf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2, \alpha(\Delta_2) \\ \Phi_2 \end{smallmatrix} \right\}}{\mathbf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2 \\ \Phi_2 \end{smallmatrix} \right\}} \end{array}$$

 Second you generate state assertions from the kernel axioms

$$(\text{post-core}) \frac{ \begin{array}{c} \Delta_2 \models^{\mathsf{K}} \alpha(\Delta_2) \\ \mathbf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2, \alpha(\Delta_2) \\ \Phi_2 \end{smallmatrix} \right\} }{ \mathbf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2, \alpha(\Delta_2) \\ \Phi_2 \end{smallmatrix} \right\} } \\ \end{array} } \\ (\text{post-inv}) \frac{ \begin{array}{c} \mathbf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2, \Delta_2 \\ \Phi_2 \end{smallmatrix} \right\} }{ \mathbf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2, \Delta_2 \\ \Phi_2 \end{smallmatrix} \right\} } } \operatorname{sig}(\Delta_2) \subseteq \ker \widehat{\mu}$$

Some Rules

- First you generate the kernel
- Additional premise trivial if α is deductive

 Second you generate state assertions from the kernel axioms

$$\frac{\Delta_2 \models^{\mathsf{K}} \alpha(\Delta_2)}{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2, \alpha(\Delta_2) \\ \Phi_2 \end{smallmatrix} \right\}}{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2, \alpha(\Delta_2) \\ \Phi_2 \end{smallmatrix} \right\}} \qquad \text{(post-inv)} \qquad \frac{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2 \\ \Phi_2 \end{smallmatrix} \right\}}{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta_2 \\ \Phi_2 \end{smallmatrix} \right\}} \operatorname{sig}(\Delta_2) \subseteq \ker \widehat{\mu}$$

$$-\mathsf{inv}) \, \frac{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta, \Delta_2 \\ \Phi_2 \land \widehat{\mu}^{-1}(\Delta_2) \end{smallmatrix} \right\}}{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta_1 \\ \Phi_1 \end{smallmatrix} \right\} s \left\{ \begin{smallmatrix} \Delta, \Delta_2 \\ \Phi_2 \end{smallmatrix} \right\}} \, \mathsf{sig}(\Delta_2) \subseteq \mathsf{ker}$$

- Same for precondition
- On state assertions, we can now use standard Hoare rules

A Car is a Car

- Standard Hoare calculus rules must check that specifications are consistent, and
- remove all domain knowledge, as it may have changed

$$\frac{\widehat{\mu}(\Phi) \models^{\mathsf{K}} \Delta}{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \emptyset \\ \Phi[v \setminus \exp r] \end{smallmatrix} \right\} v \ := \ \exp\left\{ \begin{smallmatrix} \Delta \\ \Phi \end{smallmatrix} \right\}} \tag{skip)} \frac{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta \\ \Phi \end{smallmatrix} \right\} \mathsf{skip} \left\{ \begin{smallmatrix} \Delta \\ \Phi \end{smallmatrix} \right\}}{\mathsf{C}, \mathsf{K} \vdash \left\{ \begin{smallmatrix} \Delta \\ \Phi \end{smallmatrix} \right\} \mathsf{skip} \left\{ \begin{smallmatrix} \Delta \\ \Phi \end{smallmatrix} \right\}}$$

A Car is a Car

- Standard Hoare calculus rules must check that specifications are consistent, and
- remove all domain knowledge, as it may have changed

But now, we can prove that our program does the right thing:

Perspectives

Why not just inverse-lift post-condition before proving anything?

Perspectives

Why not just inverse-lift post-condition before proving anything?

Justification

- Rules allow domain view at every point during the proof attempt
- Use justifications etc. to have a domain interpretation of failed proofs!
- "Variable p has wrong value" vs. "5 wheels do not make a small car"

$$\left\{egin{array}{l} - \\ { t p \doteq 4} \end{array}
ight\}$$
nrWheels $:= { t p+1} \left\{egin{array}{l} { t Small}(c) \\ - \end{array}
ight\}$

• Possibly more: derive what conditions you would need to derive post-condition

Perspectives

Why not just inverse-lift post-condition before proving anything?

Contracts

Use DL reasoners whenever possible: consequence and contracts

$$\begin{aligned} \textbf{C}, \textbf{K} &\vdash \big\{ \frac{\Delta_1'}{\Phi_1'} \big\} s \big\{ \frac{\Delta_2'}{\Phi_2'} \big\} \\ \textbf{(cons)} &\frac{ \big\{ \frac{\Delta_1}{\Phi_1} \big\} \rightarrow_{\textbf{K}} \big\{ \frac{\Delta_1'}{\Phi_1'} \big\} \qquad \big\{ \frac{\Delta_2'}{\Phi_2'} \big\} \rightarrow_{\textbf{K}} \big\{ \frac{\Delta_2}{\Phi_2} \big\} }{\textbf{C}, \textbf{K} &\vdash \big\{ \frac{\Delta_1}{\Phi_1} \big\} s \big\{ \frac{\Delta_2}{\Phi_2} \big\} } \end{aligned}$$

Conclusion

Main Theoretical Result

- Sound Lifted Hoare calculus for a while language with loops and procedures.
- Rules for all statements, plus rules for all steps in the lifting procedure.

Conclusion

Summary

- Using description logics in program verification
- A domain interpretation of contracts without refinement: managing perspectives

Conclusion

Summary

- Using description logics in program verification
- A domain interpretation of contracts without refinement: managing perspectives

Full details on arxiv

Eduard Kamburjan, Dilian Gurov:

A Hoare Logic for Domain Specification

https://doi.org/10.48550/arXiv.2402.00452

Thank you for your attention