
A Hoare Logic for Domain Specification

Eduard Kamburjan1

Dilian Gurov2

DL Workshop, Bergen, 19.06.24

1University of Oslo
2KTH Stockholm

Description Logics in Program Specification

• Abstraction of computational
details from other modules

• Intended computational
behavior of the module itself

• Intended behavior w.r.t.
business/domain logic?

/*@
requires

\forall i. 0 <= i < arr.size -> arr[i] > 0

ensures \result > 0 @*/
int sumArray(int[] arr) { ... }

• Domain bugs are hard to find and express
• How can we use pragmatics of DL/OWL tools inside a proof?
• How can we manage domain and computational specification during proofs?
• How to use description logics for program specification?

1/15

Description Logics in Program Specification

• Abstraction of computational
details from other modules

• Intended computational
behavior of the module itself

• Intended behavior w.r.t.
business/domain logic?

/*@
requires

\forall i. 0 <= i < arr.size -> arr[i] > 0
requires arr != null
ensures \result > 0 @*/
int sumArray(int[] arr) { ... }

• Domain bugs are hard to find and express
• How can we use pragmatics of DL/OWL tools inside a proof?
• How can we manage domain and computational specification during proofs?
• How to use description logics for program specification?

1/15

Description Logics in Program Specification

• Abstraction of computational
details from other modules

• Intended computational
behavior of the module itself

• Intended behavior w.r.t.
business/domain logic?

• Domain bugs are hard to find and express
• How can we use pragmatics of DL/OWL tools inside a proof?
• How can we manage domain and computational specification during proofs?
• How to use description logics for program specification?

1/15

Description Logics in Program Specification

• Abstraction of computational
details from other modules

• Intended computational
behavior of the module itself

• Intended behavior w.r.t.
business/domain logic?

Domain Knowledge Modeling Computational Modeling

Scenario/
Requirements

Program

• Domain bugs are hard to find and express
• How can we use pragmatics of DL/OWL tools inside a proof?
• How can we manage domain and computational specification during proofs?
• How to use description logics for program specification?

1/15

Description Logics in Program Specification

• Abstraction of computational
details from other modules

• Intended computational
behavior of the module itself

• Intended behavior w.r.t.
business/domain logic?

Domain Knowledge Modeling Computational Modeling

Scenario/
Requirements

Program

• Domain bugs are hard to find and express
• How can we use pragmatics of DL/OWL tools inside a proof?
• How can we manage domain and computational specification during proofs?
• How to use description logics for program specification?

1/15

Description Logics in Program Specification

• Abstraction of computational
details from other modules

• Intended computational
behavior of the module itself

• Intended behavior w.r.t.
business/domain logic?

Domain Knowledge Modeling Computational Modeling

Scenario/
Requirements

Program

• Domain bugs are hard to find and express
• How can we use pragmatics of DL/OWL tools inside a proof?
• How can we manage domain and computational specification during proofs?
• How to use description logics for program specification?

1/15

Program Specification

Hoare Triples
Specifies programs in terms of their precondition and postcondition.

{pre}s{post}

• If pre holds in the state before s is executed, and
• the execution of s terminates,
• then post holds in the final state
• Usual notion of validity

{i ≥ 0}i := i + 1;{i > 0}

2/15

Program Specification

State Logic
• Formulas pre, post defined in state logic
• FO logic extended with program variables as terms
• Models are transition systems where program variables are interpreted per states
• Important: state logic is closed under term substitution

(i ≥ 0)[i \ i + 1] = i + 1 > 0

(i ≥ 0)[i \ 0] = 0 > 0

3/15

Hoare Triple

• Used since 70s, in certain variants main approach to program verification
• Weakest Precondition (wp) is backwards reasoning: generate pre from post
• Rules for contracts, loops, recursion, . . .

Example Axiomatic Semantics

` {ϕ[v \ e]}v := e{ϕ}

` pre → pre′ ` {pre′}s{post ′} ` post ′ → post
` {pre}s{post}

Example

` i ≥ 0 → i + 1 > 0 ` {i + 1 > 0}i := i + 1{i > 0} ` i > 0 → i > 0
` {i ≥ 0}i := i + 1{i > 0}

4/15

Hoare Triple

• Used since 70s, in certain variants main approach to program verification
• Weakest Precondition (wp) is backwards reasoning: generate pre from post
• Rules for contracts, loops, recursion, . . .

Example Axiomatic Semantics

` {ϕ[v \ e]}v := e{ϕ}
` pre → pre′ ` {pre′}s{post ′} ` post ′ → post

` {pre}s{post}

Example

` i ≥ 0 → i + 1 > 0 ` {i + 1 > 0}i := i + 1{i > 0} ` i > 0 → i > 0
` {i ≥ 0}i := i + 1{i > 0}

4/15

Hoare Triple

• Used since 70s, in certain variants main approach to program verification
• Weakest Precondition (wp) is backwards reasoning: generate pre from post
• Rules for contracts, loops, recursion, . . .

Example Axiomatic Semantics

` {ϕ[v \ e]}v := e{ϕ}
` pre → pre′ ` {pre′}s{post ′} ` post ′ → post

` {pre}s{post}

Example

` i ≥ 0 → i + 1 > 0 ` {i + 1 > 0}i := i + 1{i > 0} ` i > 0 → i > 0
` {i ≥ 0}i := i + 1{i > 0}

4/15

What is a Car?

Suppose you model the assembly process of a car
1 procedure addWheels(p) nrWheels := p end

Programmer
This procedure sets the number of wheels
in a car to the value of p.

{−}addWheels(p){nrWheels .= p}

Subject Matter Expert
I want that in the end of this step, the car
classifies as a small car.

{−}addWheels(p){Small(c)}

How to enable both of them to specify their respective intent?

• SME does not know about how the car c is encoded
• Programmer does not know what it means for a car to be small.

5/15

What is a Car?

Suppose you model the assembly process of a car
1 procedure addWheels(p) nrWheels := p end

Programmer
This procedure sets the number of wheels
in a car to the value of p.

{−}addWheels(p){nrWheels .= p}

Subject Matter Expert
I want that in the end of this step, the car
classifies as a small car.

{−}addWheels(p){Small(c)}

How to enable both of them to specify their respective intent?

• SME does not know about how the car c is encoded
• Programmer does not know what it means for a car to be small.

5/15

What is a Car?

Suppose you model the assembly process of a car
1 procedure addWheels(p) nrWheels := p end

Programmer
This procedure sets the number of wheels
in a car to the value of p.

{−}addWheels(p){nrWheels .= p}

Subject Matter Expert
I want that in the end of this step, the car
classifies as a small car.

{−}addWheels(p){Small(c)}

How to enable both of them to specify their respective intent?

• SME does not know about how the car c is encoded
• Programmer does not know what it means for a car to be small.

5/15

Giving Meaning to States

Do we really want to use DL to specify state? Do we need to use DL to specify state?

Semantic Lifting
Semantic lifting is a technique to interpret a program state as a knowledge graph.

• Formally: function µ from runtime states to knowledge graphs.

Examples

µ
(
〈i 7→ 5〉

)
=

{
hasValue(iVar, 5), . . .

}
• Lifting µ may add some knowledge K = {wheels(c, nrWheelsVar}

µ
(
〈nrWheels 7→ 4〉

)
=

{
hasValue(nrWheelsVar, 4), wheels(c, nrWheelsVar) . . .

}
Useful for highly domain specific software when combined with reflection
[Programming and Debugging with Semantically Lifted States, ESWC’21]

6/15

Lifted Specification

Ontologies and Description Logics
For domain modeling and specification a rich body of methodologies and tools exist.

HasFourWheels v Small ∃wheels.∃hasValue.4 ≡ HasFourWheels

{
−

p .= 4

}
addWheels(p)

{
Small(c)

−

}

• Upper component specifies the state as interpreted in the domain
• Lower component specifies non-lifted state

7/15

Lifted Specification

Ontologies and Description Logics
For domain modeling and specification a rich body of methodologies and tools exist.

HasFourWheels v Small ∃wheels.∃hasValue.4 ≡ HasFourWheels

{
−

p .= 4

}
addWheels(p)

{
Small(c)

−

}

• Upper component specifies the state as interpreted in the domain
• Lower component specifies non-lifted state

7/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.

Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution
3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) `
{

hasValue(pVar, 4)
p .= 4

}
nrWheels := p{
Small(c)

, HasFourWheels(c), hasValue(wheelsVar, 4)
nrWheels .= 4

}

8/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution
3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) `
{

hasValue(pVar, 4)
p .= 4

}
nrWheels := p{
Small(c), HasFourWheels(c), hasValue(wheelsVar, 4)

nrWheels .= 4

}

8/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution
3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) `
{

hasValue(pVar, 4)
p .= 4

}
nrWheels := p{
Small(c), HasFourWheels(c), hasValue(wheelsVar, 4)

nrWheels .= 4

}

8/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution
3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) `
{

hasValue(pVar, 4)

p .= 4

}
nrWheels := p{
Small(c), HasFourWheels(c), hasValue(wheelsVar, 4)

nrWheels .= 4

}

8/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution
3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) `
{

hasValue(pVar, 4)
p .= 4

}
nrWheels := p{
Small(c), HasFourWheels(c), hasValue(wheelsVar, 4)

nrWheels .= 4

}

8/15

Keeping State and Lifted State Connected

Specification Lifting
Function µ̂ from program assertions to axioms. Must be compatible to state lifting:

σ |= ϕ → µ(σ) |= µ̂(ϕ)

µ̂(v .= l) = {hasValue(vVar, l)}
µ̂−1({hasValue(vVar, l)}) = v .= l

• Inverse lifting also allows to derive conditions in the state logic
• State lifting can be defined for language, specification lifting is per application due

to loss of expressive power
• Not refinement! Lifting gives a different perspective, not a less abstract one

9/15

A Signature Perspective

lifting

recovering

 state
specification

St
at

e
L
og

ic
D

om
ain L

ogic
 lifted state
specification

 domain
specificationinferences

Kernel and Generator
Let Σ be the signature of the domain specification.

• The kernel of µ̂ is a signature ker µ̂ ⊆ Σ.
• A core generator α maps axioms ∆ to axioms α(∆) with α(∆) |= ∆

• Kernel generator can either implement deduction, or abduction
• In case of abduction: ABox abduction with signature abducibles

10/15

A Signature Perspective

lifting

recovering

 state
specification

St
at

e
L
og

ic
D

om
ain L

ogic
 lifted state
specification

 domain
specificationinferences

Kernel and Generator
Let Σ be the signature of the domain specification.

• The kernel of µ̂ is a signature ker µ̂ ⊆ Σ.
• A core generator α maps axioms ∆ to axioms α(∆) with α(∆) |= ∆

• Kernel generator can either implement deduction, or abduction
• In case of abduction: ABox abduction with signature abducibles

10/15

A Signature Perspective

lifting

recovering

 state
specification

St
at

e
L
og

ic
D

om
ain L

ogic
 lifted state
specification

 domain
specificationinferences

Kernel and Generator
Let Σ be the signature of the domain specification.

• The kernel of µ̂ is a signature ker µ̂ ⊆ Σ.
• A core generator α maps axioms ∆ to axioms α(∆) with α(∆) |= ∆

• Kernel generator can either implement deduction, or abduction
• In case of abduction: ABox abduction with signature abducibles

10/15

Validity and Judgement

Validity
Given a compatible pair µ, µ̂, a set of contracts C and a set of axioms K.{

∆1
Φ1

}
s
{

∆2
Φ2

}

is valid if ∀(σ, σ′) ∈ [[s]]C,K .
(
σ |=K

{∆1
Φ1

}
→ σ′ |=K

{∆2
Φ2

})
Next: how to design a sound calculus to prove validity?

C, K `
{

∆1
Φ1

}
s
{

∆2
Φ2

}

11/15

Some Rules

• First you generate the kernel
• Additional premise trivial if α

is deductive

∆2 |=K α(∆2)
C, K `

{∆1
Φ1

}
s
{∆2,α(∆2)

Φ2

}
(post-core)

C, K `
{∆1

Φ1

}
s
{∆2

Φ2

}

• Second you generate state assertions from the
kernel axioms

C, K `
{∆1

Φ1

}
s
{ ∆,∆2

Φ2∧µ̂−1(∆2)
}

(post-inv) sig(∆2) ⊆ ker µ̂
C, K `

{∆1
Φ1

}
s
{∆,∆2

Φ2

}

• Same for precondition
• On state assertions, we can now use standard Hoare rules

12/15

Some Rules

• First you generate the kernel
• Additional premise trivial if α

is deductive

∆2 |=K α(∆2)
C, K `

{∆1
Φ1

}
s
{∆2,α(∆2)

Φ2

}
(post-core)

C, K `
{∆1

Φ1

}
s
{∆2

Φ2

}

• Second you generate state assertions from the
kernel axioms

C, K `
{∆1

Φ1

}
s
{ ∆,∆2

Φ2∧µ̂−1(∆2)
}

(post-inv) sig(∆2) ⊆ ker µ̂
C, K `

{∆1
Φ1

}
s
{∆,∆2

Φ2

}

• Same for precondition
• On state assertions, we can now use standard Hoare rules

12/15

Some Rules

• First you generate the kernel
• Additional premise trivial if α

is deductive

∆2 |=K α(∆2)
C, K `

{∆1
Φ1

}
s
{∆2,α(∆2)

Φ2

}
(post-core)

C, K `
{∆1

Φ1

}
s
{∆2

Φ2

}

• Second you generate state assertions from the
kernel axioms

C, K `
{∆1

Φ1

}
s
{ ∆,∆2

Φ2∧µ̂−1(∆2)
}

(post-inv) sig(∆2) ⊆ ker µ̂
C, K `

{∆1
Φ1

}
s
{∆,∆2

Φ2

}

• Same for precondition
• On state assertions, we can now use standard Hoare rules

12/15

A Car is a Car

• Standard Hoare calculus rules must check that specifications are consistent, and
• remove all domain knowledge, as it may have changed

µ̂(Φ) |=K ∆
(var)

C, K `
{ ∅

Φ[v\expr]
}
v := expr

{∆
Φ

} (skip)
C, K `

{∆
Φ

}
skip

{∆
Φ

}

But now, we can prove that our program does the right thing:

hasValue(wheelsVar, 4) |=K HasFourWheels(c), hasValue(wheelsVar, 4)
C, K `

{ −
p
.=4

}
nrWheels := p

{HasFourWheels(c),hasValue(wheelsVar,4)
nrWheels

.=4
}

C, K `
{ −

p
.=4

}
nrWheels := p

{HasFourWheels(c),hasValue(wheelsVar,4)
−

}
C, K `

{ −
p
.=4

}
nrWheels := p

{HasFourWheels(c)
−

}

13/15

A Car is a Car

• Standard Hoare calculus rules must check that specifications are consistent, and
• remove all domain knowledge, as it may have changed

µ̂(Φ) |=K ∆
(var)

C, K `
{ ∅

Φ[v\expr]
}
v := expr

{∆
Φ

} (skip)
C, K `

{∆
Φ

}
skip

{∆
Φ

}
But now, we can prove that our program does the right thing:

hasValue(wheelsVar, 4) |=K HasFourWheels(c), hasValue(wheelsVar, 4)
C, K `

{ −
p
.=4

}
nrWheels := p

{HasFourWheels(c),hasValue(wheelsVar,4)
nrWheels

.=4
}

C, K `
{ −

p
.=4

}
nrWheels := p

{HasFourWheels(c),hasValue(wheelsVar,4)
−

}
C, K `

{ −
p
.=4

}
nrWheels := p

{HasFourWheels(c)
−

}
13/15

Perspectives

Why not just inverse-lift post-condition before proving anything?

14/15

Perspectives

Why not just inverse-lift post-condition before proving anything?

Justification
• Rules allow domain view at every point during the proof attempt
• Use justifications etc. to have a domain interpretation of failed proofs!
• “Variable p has wrong value” vs. “5 wheels do not make a small car”{

−
p .= 4

}
nrWheels := p + 1

{
Small(c)

−

}

• Possibly more: derive what conditions you would need to derive post-condition

14/15

Perspectives

Why not just inverse-lift post-condition before proving anything?

Contracts
• Use DL reasoners whenever possible: consequence and contracts

(contract)
C, K ` Pre(C, p, e) p(e) Post(C, p, e)

C, K `
{∆′

1
Φ′

1

}
s
{∆′

2
Φ′

2

}
{∆1

Φ1

}
→K

{∆′
1

Φ′
1

} {∆′
2

Φ′
2

}
→K

{∆2
Φ2

}
(cons)

C, K `
{∆1

Φ1

}
s
{∆2

Φ2

}
14/15

Conclusion

Main Theoretical Result
• Sound Lifted Hoare calculus for a while language with loops and procedures.
• Rules for all statements, plus rules for all steps in the lifting procedure.

15/15

Conclusion

Summary
• Using description logics in program verification
• A domain interpretation of contracts without refinement: managing perspectives

15/15

Conclusion

Summary
• Using description logics in program verification
• A domain interpretation of contracts without refinement: managing perspectives

Full details on arxiv
Eduard Kamburjan, Dilian Gurov:
A Hoare Logic for Domain Specification
https://doi.org/10.48550/arXiv.2402.00452

Thank you for your attention
15/15

