A Hoare Logic for Domain Specification

Eduard Kamburjan!
Dilian Gurov?
DL Workshop, Bergen, 19.06.24

1University of Oslo
2KTH Stockholm

Description Logics in Program Specification

= Abstraction of computational
details from other modules

= Intended computational
behavior of the module itself

/*@
requires

\forall i. 0 <= i < arr.size -> arr[i] > O

ensures \result > 0 @x/

int sumArray(int[] arr) { ... }

1/15

Description Logics in Program Specification

= Abstraction of computational /%@

details from other modules .
requlres

= Intended computational \forall i. 0 <= i < arr.size -> arr[i] > O

behavior of the module itself requires arr != null
ensures \result > 0 @*/

int sumArray(int[] arr) { ... }

1/15

Description Logics in Program Specification

= Abstraction of computational
details from other modules

= Intended computational
behavior of the module itself

= Intended behavior w.r.t.

business/domain logic?

1/15

Description Logics in Program Specification

= Abstraction of computational

Domain Knowledge Modeling Computational Modeling

details from other modules
= Intended computational ﬁ o
behavior of the module itself | -

» Intended behavior w.r.t. &‘T — (Q]
—p —
0 0 0 Requirements
business/domain logic?)

1/15

Description Logics in Program Specification

= Abstraction of computational

Domain Knowledge Modeling Computational Modeling
details from other modules
» Intended computational ﬁ
behavior of the module itself IJ_, W}
a9
.)
= Intended behavior w.r.t. &‘T p— (Q]
—p —
0 0 0 Requirements
business/domain logic?)

1/15

Description Logics in Program Specification

= Abstraction of computational

Domain Knowledge Modeling Computational Modeling

details from other modules
= Intended computational ﬁ
behavior of the module itself “’gp

= Intended behavior w.r.t. pre—
5 A A Requirements
business/domain logic?

= Domain bugs are hard to find and express
= How can we use pragmatics of DL/OWL tools inside a proof?
= How can we manage domain and computational specification during proofs?

= How to use description logics for program specification?

1/15

Program Specification

Hoare Triples

Specifies programs in terms of their precondition and postcondition.

{pre}s{post}

= If pre holds in the state before s is executed, and
= the execution of s terminates,

then post holds in the final state

Usual notion of validity

{i>0}i = i+1;{i >0}

2/15

Program Specification

= Formulas pre, post defined in state logic

= FO logic extended with program variables as terms

= Models are transition systems where program variables are interpreted per states

= Important: state logic is closed under term substitution

1>0)i\i+1] = i+1>0
(i>0)[i\0] = 0>0

3/15

Hoare Triple

= Used since 70s, in certain variants main approach to program verification
= Weakest Precondition (wp) is backwards reasoning: generate pre from post

= Rules for contracts, loops, recursion, ...

Example Axiomatic Semantics

F{¢lv\el}v = e{¢}

4/15

Hoare Triple

= Used since 70s, in certain variants main approach to program verification
= Weakest Precondition (wp) is backwards reasoning: generate pre from post

= Rules for contracts, loops, recursion, ...

Example Axiomatic Semantics

F pre — pre’ + {pre’}s{post’} F post’ — post
F{¢lv\el}v = e{¢} + {pre}s{post}

4/15

Hoare Triple

= Used since 70s, in certain variants main approach to program verification
= Weakest Precondition (wp) is backwards reasoning: generate pre from post

= Rules for contracts, loops, recursion, ...

Example Axiomatic Semantics

F pre — pre’ + {pre’}s{post’} F post’ — post
F{olv\el}v := e{¢} + {pre}s{post}

Fi>0—=1i+1>0 F{i+1>0}i := i+1{i >0} Fi>0—1i>0
F{i>0}i := i+ 1{i >0}

4/15

Suppose you model the assembly process of a car

1 procedure addWheels(p) nrWheels := p end

5/15

Suppose you model the assembly process of a car

1 procedure addWheels(p) nrWheels := p end

Programmer Subject Matter Expert

This procedure sets the number of wheels | want that in the end of this step, the car

in a car to the value of p. classifies as a small car.
{—}addwWheels(p){nrWheels = p} {—}addWheels(p){Small(c)}

5/15

Suppose you model the assembly process of a car

1 procedure addWheels(p) nrWheels := p end

Programmer Subject Matter Expert

This procedure sets the number of wheels | want that in the end of this step, the car

in a car to the value of p. classifies as a small car.
{—}addwWheels(p){nrWheels = p} {—}addWheels(p){Small(c)}

How to enable both of them to specify their respective intent?

= SME does not know about how the car ¢ is encoded

= Programmer does not know what it means for a car to be small.

5/15

Giving Meaning to States

Do we really want to use DL to specify state? Do we need to use DL to specify state?

Semantic Lifting

Semantic lifting is a technique to interpret a program state as a knowledge graph.

= Formally: function p from runtime states to knowledge graphs.

p((i + 5)) = {hasValue(iVar,5),...}

= Lifting 1+ may add some knowledge K = {wheels(c,nrWheelsVar}

p((nrWheels — 4)) = {hasValue(nrWheelsVar,4), wheels(c,nrWheelsVar)... }

Useful for highly domain specific software when combined with reflection

[Programming and Debugging with Semantically Lifted States, ESWC'21]
6/15

Lifted Specification

Ontologies and Description Logics

For domain modeling and specification a rich body of methodologies and tools exist.

HasFourWheels C Small Jdwheels.JhasValue.4 = HasFourWheels

7/15

Lifted Specification

Ontologies and Description Logics

For domain modeling and specification a rich body of methodologies and tools exist.

HasFourWheels C Small Jdwheels.JhasValue.4 = HasFourWheels

{p ; 4}addWheels(p){Sma];1(C)}

= Upper component specifies the state as interpreted in the domain

= Lower component specifies non-lifted state

7/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.

wheels(c, wheelsVar) I—{ }

nrWheels :=p

{Small(c) }

8/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution
3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) I—{ }

nrWheels :=p
{Small(c), HasFourWheels(c), hasValue(wheelsVar, 4)}

8/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution

3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) I—{ }

nrWheels :=p

Small(c),HasFourWheels(c), hasValue(wheelsVar,4)
nrWheels = 4

8/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution

3. Lift pre-condition, deduce domain pre-conditions

wheels(c, wheelsVar) I—{ -4 }
p =

nrWheels :=p

Small(c),HasFourWheels(c), hasValue(wheelsVar,4)
nrWheels = 4

8/15

Keeping State and Lifted State Connected

Idea: define a compatible lifting of the specification as well.
Perform following steps for wp reasoning:

1. Infer (abduct/deduct) lifted post-condition
2. Recover state post-condition, substitution

3. Lift pre-condition, deduce domain pre-conditions

hasVal Var, 4
wheels(c, wheelsVar) |_{ asValue(pVar,)}

p=4
nrWheels :=p

Small(c),HasFourWheels(c), hasValue(wheelsVar,4)
nrWheels = 4

8/15

Keeping State and Lifted State Connected

Specification Lifting

Function i from program assertions to axioms. Must be compatible to state lifting:

0 = ¢ — p(o) = [i(e)

a(v=1) = {hasValue(vVar,1)}
i ({hasValue(vVar,1)}) = v=1

= Inverse lifting also allows to derive conditions in the state logic
= State lifting can be defined for language, specification lifting is per application due
to loss of expressive power

= Not refinement! Lifting gives a different perspective, not a less abstract one
9/15

A Signature Perspective

S state T lifting Nifted statet domain
! specification } specification! inferences specification /
= N @ A\ recovering S, »IV_/ <o
= 4 b - A <8
wn b .t Seolle”” gt CE
~— - e ae-mmT o

10/15

A Signature Perspective

[S) LT TN T T T 2
o/ \/\(". \/—\ R
3 state v~ lifting Vlifted state?, domain Ve
' . . ' ' . . H) =
ot specification } specification inferences specification /
@ N @ A recovering p, ,'_/ P
EEN p b 2 A <8
n A P Sl -7 i
_____ =~ - a
___________________ o

Kernel and Generator

Let X be the signature of the domain specification.

s The kernel of ji is a signature ker i C ¥.

= A core generator o« maps axioms A to axioms a(A) with o(A) = A

10/15

/ . \/_\ Y
state mlifted state’, domain b

. . 1 . . !)
specification } |‘spec1ﬁcat10nl,' inferences specification -

\ @ N\ recovering N~ S
.
. - N . -

State Logic
2130 urewo(J

Kernel and Generator

Let X be the signature of the domain specification.

s The kernel of ji is a signature ker i C ¥.

= A core generator o« maps axioms A to axioms a(A) with o(A) = A

= Kernel generator can either implement deduction, or abduction

= In case of abduction: ABox abduction with signature abducibles
10/15

Validity and Judgement

Given a compatible pair p, ji, a set of contracts C and a set of axioms K.

{orfe{or)

is valid if ¥(0,0") € [s]c - (U =k {ﬁll} — 0’ Fk {ﬁj})

Next: how to design a sound calculus to prove validity?
AN As
C. Kk

11/15

Some Rules

= First you generate the kernel

= Additional premise trivial if «
is deductive

Ay =K a(Ay)
C, K {g}s{®>e. %))
C.KF {o1}s{o:

(post-core)

12/15

Some Rules

= First you generate the kernel

= Additional premise trivial if «

is deductive

(post-core)

Do =X oAy
€K {5)s(250)

)

}

C.KF{g)s{e:

= Second you generate state assertions from the
kernel axioms

CKF {51)s{,, 25200}
(post-inv) AT CY) Sig(AQ) C ker ﬂ

C.KH {gl}s{A A2

12/15

Some Rules

= First you generate the kernel

= Additional premise trivial if « = Second you generate state assertions from the
is deductive kernel axioms
AA
N EX a(Ay) C,KF {61} s{omaitian)
A Do,a(A (post-inv) Sig(AQ) C ker ﬂ
C, K {g!}s{2¢\"} C, K {51)s{A2

(post-core) = =
C.KkE {¢11}5{¢§}
= Same for precondition

= On state assertions, we can now use standard Hoare rules

12/15

= Standard Hoare calculus rules must check that specifications are consistent, and

= remove all domain knowledge, as it may have changed

) E* A (skip)
CKF {onl iJv = A C, K+ {$)skip{5}
’ ofv\expr] SV T SXPT {s} ’ ¢ ¢

(var)

13/15

= Standard Hoare calculus rules must check that specifications are consistent, and

= remove all domain knowledge, as it may have changed

C,KE {q)[v\gxpr]}v = expr{ﬁ} C. K {g}skip{e}

But now, we can prove that our program does the right thing:

(var)

hasValue(wheelsVar,4) =K HasFourWheels(c), hasValue(wheelsVar,4)

= . _ (HasFourWheels(c),hasValue(wheelsVar,4)
C,KE {p£4}anheels = p{ iheeiecd }

C.KH+ {p;4}nIWheels — p{HasFourWheels(C),ha_sValue(wheelsVar,ll)}

C, K {P;4}anheels — p{HasFourWheels(C)}

13/15

Why not just inverse-lift post-condition before proving anything?

14/15

Perspectives

Why not just inverse-lift post-condition before proving anything?

Justification

= Rules allow domain view at every point during the proof attempt
» Use justifications etc. to have a domain interpretation of failed proofs!

= “Variable p has wrong value” vs. “5 wheels do not make a small car”

- o Small(c)
4 nrWheels = p+1
p = —_

= Possibly more: derive what conditions you would need to derive post-condition

J

\

14/15

Perspectives

Why not just inverse-lift post-condition before proving anything?

= Use DL reasoners whenever possible: consequence and contracts

(contract)

C,Kt Pre(C,p,e) p(e) Post(C,p,e)

A Al
C.K- (558
A A
Gy 5 (5 o 3

C. K {5}s{5?

(cons)

14/15

Conclusion

Main Theoretical Result

= Sound Lifted Hoare calculus for a while language with loops and procedures.

= Rules for all statements, plus rules for all steps in the lifting procedure.

15/15

Conclusion

= Using description logics in program verification

= A domain interpretation of contracts without refinement: managing perspectives

15/15

Conclusion

= Using description logics in program verification

= A domain interpretation of contracts without refinement: managing perspectives

Full details on arxiv

Eduard Kamburjan, Dilian Gurov:

A Hoare Logic for Domain Specification
https://doi.org/10.48550/arXiv.2402.00452

Thank you for your attention

15/15

