
Deltas for Functional Programs with Algebraic Data Types

Ferruccio Damiani2

Eduard Kamburjan1

Michael Lienhardt3

Luca Paolini2

1University of Oslo, Norway
2University of Turin, Italy
3ONERA, France
SPLC, 08.09.23



Delta-Oriented Programming and Its Assumptions

Feature Model

Delta Operations

Core Variant

1/10



Delta-Oriented Programming and Its Assumptions

class C { void m() { ... } }

delta d;
modifies class C; removes void m();

1/10



Delta-Oriented Programming and Its Assumptions

class C { void m() { ... } }

delta d;
modifies class C; removes void m();

• DOP has so far mostly been investigated for OO
• Family-based analyses, e.g., for typing, available
• DOP requires names to identify modification points
• Natural operation for FP: add/remove/modify named functions
• How to handle pattern matching and algebraic data types?

1/10



Challenges for DOP-FP

data Train = Train(Float pos, Float a, Float v, Spec spec);
data Aspect = Main(HaltAspect ha) | Pre(HaltAspect ha);
data HaltAspect = Stop | Pass;

def Train react(Train train, Aspect asp) =
case asp {

Main(Stop) => setA(train, -1.0);
Main(Pass) => setA(train, 0.0);
... }};

• How to refer to specific branches?
• How to design a family-based type analysis?
• What intermediate properties are required?

2/10



Example: Train Simulation

Simulate

Termination

UntilPos UntilTime

Speed MinMaxA

• Different kinds of aspects (speed limiters) and trains (min/max acceleration)
• Different kinds of simulation (time-bound, position-bound)
• Connection of deltas and feature model omitted in the following

3/10



Language: Syntax by Example

def Train simulate(Pair<Train, List<Signal>> prs) =
simulate(simulateStep(0.2, prs));

def Train react(Train train, Aspect asp) =
case train as lbT {
Train(pos, _, v, spec) =>

case asp as lbA {
Main(Stop) => setA(train, -1.0);
Main(Pass) => setA(train, 0.0);
Pre(Stop) => setA(train, -(v*v/20.0));
Pre(Pass) => setA(train, ...); }};

• Standard functional constructs + optional labels

4/10



Deltas: Syntax by Example

delta dUntilTime;
modifies def Train simulate(Pair<Train, List<Signal>> prs)
= case fst(prs) as lb {

Train(_, _, v, _) => if(v <= 0.0) then fst(prs) else original(prs); };

delta dSpeed;
modifies data HaltAspect { adds Speed(Float limit); }
modifiesCase react { modifiesCase lbT {
modifiesCase lbA {

adds Main (Speed (target)) => setA(train, 0.0);
adds Pre (Speed (target)) => setA(train, ...); }}};

• No modification of constructors (unclear order when modifying parameters)
• Parameters implicitly add functions (Float limit(HaltAspect) = ... ) 5/10



Properties

We aim for the following properties

• Every generatable variant is type-safe (Type Safety)
• No generatable variant has incompatible patterns (Pattern Compatability)

To simplify analysis and provide guidance, we first establish the following properties:

Intermediate Properties
• Label consistency – use of labels is unambiguous
• Type-label-uniformity – constructs with multiple definitions are uniform
• No-useless-operations – no delta operation can be removed

6/10



Family-Based Analysis – Non-Variable Analyses

Label Consistency – Definition
• An SPL is label consistent if every path f . . . l has the same infix in all variants.
• Analysis idea: Check that all declarations of f have the same labels, slight

complication for original

Type Uniformity – Definition

• An SPL is type uniform if every constructor/function is declared with the same
signature in all variants

Partial Typing – Definition

• An SPL is partially typed if in every variant every use of a constructor/function
is well-typed, or the constructor/function does not exist at all

• Analysis idea: Relies on prior analyses, overapproximation of the type table
7/10



Family-Based Analysis – Constraints

• If we have partial typing, we need to ensure that each constructor/function
actually exists when added.

• Idea: collect constraint Φ for dependencies between use-sites and declarations
• In the end check FM ∧ ACT ⇒ Φ and establish type safety

8/10



Family-Based Analysis – Constraints

• If we have partial typing, we need to ensure that each constructor/function
actually exists when added.

• Idea: collect constraint Φ for dependencies between use-sites and declarations
• In the end check FM ∧ ACT ⇒ Φ and establish type safety

Dependency Analysis by Example
• If a function f is used within a delta δ under path ρ, add constraint

Pre(ρ, δ) ⇒ Pre(f)

• Pre(f) encodes the activation condition of all deltas that add f such that no
delta that removes it is activated

• Pre(ρ, δ) is analogous
8/10



Family-Based Analysis – Constraints

• If we have partial typing, we need to ensure that each constructor/function
actually exists when added.

• Idea: collect constraint Φ for dependencies between use-sites and declarations
• In the end check FM ∧ ACT ⇒ Φ and establish type safety

8/10



Properties

• Besides type safety, we show two more properties
• Both are based on different constraints and dependencies, but same scheme

Pattern compatibility
• No generable variant of an SPL has overlapping patterns in a case-expression.
• Constraint express dependencies between variables in patterns and constructors

Applicability consistency
• All variants of an SPL can be generated. No errors occur during flattening.
• Constraint express dependencies between remove operations and add operations

9/10



Conclusion



Conclusion

Integration with OO
• Elegantly integrates with OO for multi-paradigm languages
• Syntactically and semantically analogous operations
• Dependency analysis generalizes to FP for new properties!
• On-going implementation in ABS

Summary
• Extension of DOP to FP
• Family-Based Analyses for patterns and types
• Future Work: Generalization to paradigm-independent framework

Thank you for your attention

10/10



Conclusion

Integration with OO
• Elegantly integrates with OO for multi-paradigm languages
• Syntactically and semantically analogous operations
• Dependency analysis generalizes to FP for new properties!
• On-going implementation in ABS

Summary
• Extension of DOP to FP
• Family-Based Analyses for patterns and types
• Future Work: Generalization to paradigm-independent framework

Thank you for your attention

10/10



Conclusion

Integration with OO
• Elegantly integrates with OO for multi-paradigm languages
• Syntactically and semantically analogous operations
• Dependency analysis generalizes to FP for new properties!
• On-going implementation in ABS

Summary
• Extension of DOP to FP
• Family-Based Analyses for patterns and types
• Future Work: Generalization to paradigm-independent framework

Thank you for your attention10/10


	Conclusion

