
Deductive Verification of Active Objects with Crowbar

Eduard Kamburjana, Marco Scalettab, Nils Rollshausenb

aUniversity of Oslo, Oslo, Norway
bTechnische Universität Darmstadt, Darmstadt, Germany

Abstract

We present Crowbar, a deductive verification tool for the Active Object lan-
guage ABS. Crowbar implements novel specification approaches specifically
for distributed systems. For user interaction, counterexamples are presented
as executable programs. Crowbar has a modular structure to explore further
approaches, and was applied in the largest Active Objects verification study.

Keywords: Deductive Verification, Symbolic Execution, Active Objects

1. Introduction1

Deductive verification of functional properties is a static analysis tech-2

nique that uses program logics to verify the behavior of programs against3

user-provided specification. Provers implementing such program logics, for4

example the KeY [1] prover, have been successfully used to detect bugs in well-5

tested libraries [2, 3] for sequential programs. KeY implements heavyweight6

symbolic execution (SE), where the program is transformed into first-order7

formulas by keeping track of symbolic values throughout program execution.8

Heavyweight symbolic execution is able to deal with unbounded systems by9

additional user-provided specification, for example through additional invari-10

ants that have to be preserved by loops.11

For distributed systems, more complex specification languages than for12

sequential programs are needed. The specific concurrency model plays a ma-13

jor role in the design of specification languages and program logics, and in this14

work we present a heavyweight symbolic execution tool for Active Objects.15

Email addresses: eduard@ifi.uio.no (Eduard Kamburjan),
scaletta@cs.tu-darmstadt.de (Marco Scaletta),
nils.rollshausen@stud.tu-darmstadt.de (Nils Rollshausen)

Preprint submitted to Science of Computer Programming November 17, 2022

Active Objects [4] are an object-oriented, actor-based concurrency model for16

distributed systems, developed specifically with a focus on analyzability and17

implemented in the ABS language [5]. ABS has been applied as a modeling tool18

to a multitude of domains, ranging from cloud systems [6, 7, 8, 9], over rail-19

way operations [10] and memory systems [11] to computational biology [12].20

A prototypical extension of KeY, KeY-ABS [13], showed that the general21

ideas of heavyweight symbolic execution indeed carry over to ABS [14]. How-22

ever, new specification approaches [15, 16, 17], program logics [18, 19], inte-23

gration with static analyses [20] and further case studies [21] have revealed24

that the structure of KeY with its tight integration of Java-specifics is not25

suited to handle (a) the specification languages needed for Active Objects26

and (b) parts of the ABS language that clash with Java specifics. For exam-27

ple, the functional sublanguage of ABS, exceptions and method contracts are28

not supported. Consequently, KeY-ABS supports only object invariants and a29

small subset of ABS – namely the one which has similar semantics to Java.30

Crowbar is the an alternative system, implemented from scratch and31

based on the Behavioral Program Logic (BPL) [18]. It covers full coreABS1,32

delegates part of the proof obligation to external static analyses and uses the33

newly developed specification approaches for Active Objects, such as coop-34

erative contracts [17]. Crowbar is not interactive, i.e., the user cannot see35

the proof in the program logic. To realize feedback, it instead integrates a36

counterexample generation that presents failed proof branches completely in37

terms of the program: the counterexample is output as an ABS program that38

is executable and contains only the statements needed to reproduce a run39

described by the failed proof branch. Thus, the user is not exposed to the40

underlying program logic. To accommodate the need for quick prototyping41

of new specification approaches, Crowbar has a modular structure suited for42

prototypical exploration of novel approaches: it is easy to add new BPL43

calculi. Crowbar was used for the biggest Active Object verification case44

study [22], that goes beyond the capabilities of prior systems in (1) language45

coverage, (2) complexity of specification, and (3) lines of code.46

Targeted Problem.. Crowbar can verify functional properties of Active Ob-47

jects specified by cooperative method contracts [17] and local session types for48

Active Objects [15], both formalized in the Behavioral Program Logic [18]. It49

implements delegating parts of the proof obligation to external static analy-50

1ABS without its extensions for, e.g., timed models.

2

ses and has a modular structure that enables easy extendability to implement51

further behavioral specifications, which we describe in more details below.52

Structure.. This article is structured as follows. Sec. 2 introduces Active53

Objects, ABS, the used specification languages, symbolic execution and gives54

an example. Sec. 3 describes the structure of Crowbar. Sec. 4 describes the55

implementation in more detail, the aforementioned case study and compares56

Crowbar with KeY-ABS and other related tools. Sec. 5 gives an example of the57

usage of Crowbar and the counterexample generator before Sec. 6 concludes.58

For the technical documentation we refer to the documentation of Crowbar59

at https://github.com/Edkamb/crowbar-tool/wiki, the theoretical back-60

ground is referred to in the corresponding parts of Sec. 2.61

2. Background62

To verify the safety of a program one must specify its expected behavior63

and translate the specified program into a set of proof obligations. If all proof64

obligations can be discharged, then the program is safe, where under safety65

we understand (local) partial correctness [23]: if every process terminates,66

then the program behaves as specified and no process throws an exception.67

For distributed systems, with their inherit non-determinism, it is crucial68

that the specification is modular. This means that changes in one part of69

the program should not invalidate all proof obligations. Thus, the design of70

specification techniques is a balancing act between strong abstraction with71

high modularity and weak abstraction with high expressive power [5]. ABS72

and Crowbar are specifically designed to explore this trade-off by integrating73

different approaches in one system to compare them in practice. Crowbar is74

also modular in its approach to integration and allows to interact with type75

systems and static analyses.76

2.1. Active Objects and ABS77

Active Objects are an actor-based, object-oriented concurrency model78

which realizes strong encapsulation. At its core, an Active Object program79

consists of a set of objects, which communicate with each other using asyn-80

chronous method calls, and futures to retrieve the return value of a method81

call. In each object, at most one process is active at any time, meaning that82

there is no interleaving within an objects. The objects are preemption-free:83

3

https://github.com/Edkamb/crowbar-tool/wiki

a process must explicitly deschedule itself before another can become active.84

Objects can be created at runtime.85

In more details, it is based on the following features for concurrency:86

Strong Encapsulation. Every object is strongly encapsulated at runtime,87

such that no other object can access its fields, not even objects of the88

same class.89

Asynchronous Calls with Futures. Each method call to another object90

is asynchronous and generates a future. Futures can be passed around91

and are used to synchronize on the process generated by the call. Once92

the called process terminates, its future is resolved and the return value93

can be retrieved. We say that the process computes its future.94

Cooperative Scheduling. At every point in time, at most one process is95

active per object and a running process cannot be interrupted unless it96

explicitly releases the object. This is done either by termination with a97

return statement or with an await g statement that waits until guard g98

holds. A guard polls whether a future is resolved or whether a boolean99

condition holds.100

Concurrent systems are challenging for SE, but Active Objects allow to per-101

form local SE on single methods through their strong encapsulation and de-102

coupling of caller and callee processes. Special care, however, has to be taken103

to keep track of futures and correct handling of state when using await. We104

introduce the ABS language using an example to demonstrate these features.105

ABS. The Abstract Behavioral Specification language (ABS) is an implemen-106

tation of Active Objects with a rich toolkit of static analyses. It supports107

extensions of Active Objects such as product lines [24], timed [25], hybrid [26],108

resource [27] models or open systems [28]. The fragment which only imple-109

ments the core Active Objects features is referred to as coreABS. Crowbar110

only supports coreABS2. Beyond the object-oriented language, ABS has a sim-111

ple (no function passing) functional sublanguage for data processing. For a112

detailed tutorial we refer to the online material of ABS3.113

2It also supports product lines in the sense that after a variant is generated, Crowbar
can verify it. It does not perform a family-based analysis [29].

3http://abs-models.org

4

2.2. Specification114

Specification of Active Objects must take concurrency into account, even115

method contracts require special attention due to, among others, the time gap116

between calling a method and starting its execution. For Crowbar we support117

state object invariants, behavioral method contracts and local session types.118

Crowbar specifications are part of the input ABS file using Spec-annotations :119

Each ABS statement and definition s can be prefixed with an annotation120

using the [T: e]s syntax, where T is a type and e an expression. Spec defines121

the data type for specifications, which must be provided as the expression122

of the annotation. Spec-annotations are ignored at runtime. Additionally,123

loops are annotated with loop invariants using WhileInv.124

Behavioral Method Contracts. A method can be annotated with Ensures and125

Requires as post and preconditions. In interfaces, these specifications can126

only contain parameters (and result, the special variable for the return127

value). For an example, we refer to Fig. 1.128

Following the principles behind the Java Modeling Language (JML) [30],129

Crowbar supports old to refer to the pre-state of the method and last to130

refer to the pre-state of the last suspension, i.e., the state before the last131

await statement was executed, or the pre-state of the method if no await was132

executed yet. Additionally, Crowbar supports the post and preconditions133

at await suspension statements, as well as Succeeds and Overlaps context134

sets [17]: if the precondition of a method contains assertions about the heap,135

then it is not clear which method is responsible to establish it — due to136

the concurrency model, the caller has no control over the fields of the callee137

object. Context sets specify for a method m the following: the methods in138

Succeeds must have run and must establish the precondition as their post-139

condition. The methods in Overlaps may have run and must preserve the140

precondition.141

Object Invariants. Objects are annotated with creation conditions (Requires142

) and object invariants (ObjInv). A creation condition describes the param-143

eters of the constructor (analogously to asynchronous contracts), while the144

object invariant has to hold after the constructor terminate and whenever a145

process is scheduled or descheduled.146

Local Session Types. Lastly, Crowbar supports a variant of local session147

types. A local session type for ABS is represented as a string and specifies calls,148

5

synchronization, sequence, repetition and alternative. Alternative is speci-149

fied using +, repetition with *, suspension with Susp(ϕ) (where ϕ specifies150

the state before suspension, and analogously for calls !) and synchronization151

with Get(e), where e is the targeted expression. Session types specify how152

roles in a protocol communicate. The mapping of roles to fields is specified153

with [Spec: Role("name",this.field)]. For details we refer to [18, 31, 15].154

For example, the following expresses that the statement s first calls155

method m on role f and then n on role g. Finally, the last action is a return156

in a state where result == 0 holds (i.e., the return value is zero). No other157

communication, synchronization or suspension happens. This is annotated158

using [Spec: Local("f!m.g!n.Put(result == 0)")]. The systems are inde-159

pendent: it is not necessary to specify a local type.160

2.3. Examples161

Example Contracts and Invariants. We give a short example on ABS and its162

specification below. For brevity’s sake, we only give asynchronous method163

contracts and the object invariant.164

Consider Lst. 1. The class Monitor has two fields: s which is a server that165

is monitored and beats, a counter for successful requests to s. The method166

heartbeat sends a request to itself (l. 7) by an asynchronous method call167

(by using !). Afterwards, the return value of the call is retrieved (l. 8, using168

get). This blocks the process until the httpRequest process has terminated.169

No other process can run on this object until this happens. If the request170

was successful, beats is increased by 1. Method reset waits without blocking171

until the number of success reaches a passed threshold and resets beats.172

Synchronous calls are possible (l. 10) on this.173

Specifications are annotations of the form [Spec: KIND(e)], where KIND174

is the used specification pattern. Fig. 1 gives an overview over the keywords175

for the specification patterns and where to annotate them. In the exam-176

ple, a creation condition and an object invariant are specified for the class177

Monitor. They state that the passed server must be non-null and stays non-178

null throughout execution (l. 1). The method contract states that the beats179

field is increased. This is not the case, and we return to the fault in Sec. 5.180

Example Local Session Types. Fig. 2 shows an example how the specifications181

work together when using local session types. The class C uses a protocol with182

three roles, that are declared in the class header using Role. Additionally,183

an object invariant is used to declare that all the fields are non-null. The184

6

1 [Spec:Requires(this.s != null)][Spec:ObjInv(this.s != null)]
2 class Monitor(Server s) {

3 Int beats = 0;

4 [Spec:Ensures(this.beats >= old(this.beats) &&

5 result == this.beats)]
6 Int heartbeat() {

7 Fut<Int> req = s!httpRequest();

8 Int status = req.get;
9 if(status == 200) { this.beats = this.beats + 1;}

10 else { this.handleError(); }

11 return this.beats;
12 }

13 Unit reset(Int i){ await this.beats == i; this.beats = 0; }

14 Unit handleError() { this.beats = 0; /* ... */ }

15 }

Listing 1: An example ABS program with specification.

sole shown method, getExpLocalAliasing, is using a type where as the first185

action the client is called on method a. The connection of the field this.186

c and the role client is established through the aforementioned class-level187

specification. The invariant is needed to show that no exception is thrown.188

The other actions specify a synchronization on the future stored in variable189

f and a termination without a specific post-condition.190

2.4. Symbolic Execution191

Symbolic execution describes the execution of a program (or statement)192

with symbolic values. A symbolic value is a placeholder and can be described193

by condition collecting during the symbolic execution. Heavyweight sym-194

bolic execution is used as a proof strategy for a sequent calculus of first-order195

dynamic logics in, e.g., JavaDL [1], ABSDL [32] or DTL [33] and has success-196

fully applied to discover highly involved bugs in non-concurrent libraries of197

mainstream languages [2, 3]. One of the shortcomings of symbolic execution198

with dynamic logics is that they first fully symbolically execute the program199

and then evaluate the post-condition. For distributed systems the specifica-200

tion, however, often contains a temporal element and can be partially checked201

already during symbolic execution.202

The Behavioral Program Logic (BPL) [18] is a generalization of dynamic203

7

1 [Spec: Role("server", this.s)][Spec: Role("client", this.c)]
2 [Spec: Role("database", this.d)]
3 [Spec: ObjInv(this.s != null && this.c != null && this.d != null)]
4 class C(Server s, Client c, Database d) {

5 [Spec:Local("client!a(true).Get(f).Put(true)")]

6 Unit getExpLocalAliasing() {

7 Fut<Int> f = this.c!a();
8 Fut<Int> sth = f;

9 Int a = sth.get;
10 }

11 ...

12 }

Figure 2: An example ABS program with a local session type.

logic. It uses behavioral modalities, which we informally introduce now,204

to enable such symbolic execution strategies. BPL is based on behavioral205

specifications T = (αT, τT). Set τT is the set of terms of the specification,206

and function αT provides the semantics: it maps elements of τT to trace207

formulas. Behavioral specification are referred to in the logic using behavioral208

modalities, which have the form [s αT τ], with τ ∈ τT being a specification209

term. Its semantics expresses partial correctness: a state σ satisfies the210

modality, if every trace θ of a normally terminating run of s from σ is a211

model for the trace formula αT(τ). We omit α from examples for brevity.212

A sequent has the form Γ⇒ {U}[s α τ],∆, where Γ and ∆ are two sets213

of formulas, and represents a symbolic state, where s is the statement left to214

symbolically execute, U is the state update (i.e., a syntactic representation215

of accumulated substitutions [34]), and τ is the specification term, e.g., the216

post-condition, and
∧

Γ ∧ ¬
∨

∆ describes the accumulated knowledge and217

path condition. An example rule for symbolic execution in sequent calculi218

is the following rule, that expresses a split over the branches of a branching219

statement for post-conditions ϕ.220

Γ, {U}e⇒ {U}[s1 ϕ],∆ Γ, {U}¬e⇒ {U}[s2 ϕ],∆

Γ⇒ {U}[if(e) s1 else s2 ϕ],∆
221

Behavioral specifications separate syntax of the specification (τ) and its222

semantics as a trace specification (α). This distinction enables behavioral223

8

symbolic execution: the design of τ can now aim to have a simple proof224

calculus that is not restricted by the structure of the logic underlying α.225

Furthermore, τ can serve as an interface to external analyses.226

Established calculi for dynamic logics perform symbolic execution by re-227

ducing the statement inside a modality without considering the specification.228

In contrast, for each step in a behavioral type system [35], the statement is229

matched with the current specification. BPL combines both: a logical frame-230

work with a behavioral type-style calculus, which we call guided SE.231

For example, the local session type given above is expressed with the232

modality
[
s f!m.g!n. ↓ result == 0

]
. One (slightly prettified) rule for233

session types is the following. The first premise checks that the role and field234

coincide, the second premise reduces the type during the symbolic execution235

step. Note that this premise contains no modality – we call such branches236

side-branches. We stress that the conclusion of the rule has to match (1) the237

call in specification and statement and (2) the method names both syntacti-238

cally. If matching fails, SE stops.239

Γ⇒ {U}this.f .
= r,∆ Γ⇒ {U}

[
s L

]
,∆

Γ⇒ {U}
[
this.f!m();s r!m.L

]
,∆

240

3. Software Framework241

At its core, Crowbar is a heavyweight symbolic execution (SE) engine, i.e.,242

it uses contracts and loop invariants to build a SE tree that abstracts from all243

possible runs. As discussed the used program logic allows for guided SE: the244

specification is used to guide the construction of the SE tree. Construction245

may abort if there is not possible that any further execution may satisfy246

the specification. For example, if the specification expresses that the first247

interaction is a call to a method m, but the first call is to a method n, then248

guided SE will immediately abort the proof. The leaves of the SE tree, after249

SE successfully finished, are logical formulas that are passed to SMT-solvers.250

Fig. 3 illustrates guided SE using our example for Session Types. The251

node marked with (1) is not generated, as the type system ensures that this.f252

is always non-null (due to being annotated with NonNull). The other dashed253

nodes are omitted because the method is specified to make two calls, but254

executes three. It does not check any steps after the second call as these are255

already following a wrong execution path. We omitted (a) the update, (b) the256

collected path condition and (c) the role check branches in the illustration.257

9

1 class C([NonNull]I f){

2 I g;

3 [Spec: f !m.g!n. ↓ ϕ]
4 Unit m(){

5 this.f!m();
6 this.g!m();
7 this.f!m();
8 return 0;

9 }

10 }
this.f!m(); this.g!m();

this.f!m(); return 0;
 f!m().g!n. ↓ ϕ

this.g!m(); this.f!m(); return 0; g!n. ↓ ϕ

this.f!m(); return 0; ↓ ϕ

return 0;

ϕ

(1) this.f != null

this.g != null

this.f != null

Figure 3: Illustration of guided SE. Verification of the method to the left results in a
symbolic execution tree where the dashed nodes are not generated.

3.1. Software Functionalities258

Crowbar implements the three specification paradigms described in Sec. 2259

and the assert statement for ABS: object invariants [36], predicates that have260

to hold at every point a process gains or loses control over its object, co-261

operative contracts [17], a generalization of method contracts to distributed262

systems, and local Session Types [37, 16, 15], a protocol language for allowed263

communication actions.264

It generates proof obligations in BPL and has two additional mechanisms265

to interact with the outside: (1) Counterexample Generation: If a proof obli-266

gation fails, all failed proof branches are translate back into an ABS program,267

using the values extracted from the SMT solver proof attempt at the leaf.268

This allows the user to investigate the failure without being exposed to the269

underlying program logic. (2) Static Nodes: Cooperative Contracts and Ses-270

sion Types rely on additional mechanisms to guarantee safety of composition271

(propagation for contracts and projection for Session Types). These mecha-272

nisms are external to the program logic and Crowbar, thus, outputs a static273

node to communicate that the program is safe, if these external conditions274

hold.275

A verification attempt with Crowbar outputs either (1) yes, (2) yes with276

external condition or (3) no with counterexample (if generation succeeds).277

Crowbar supports pre-/post-conditions for the functional sublanguage.278

Crowbar also integrates results directly from the ABS compiler: the AST has279

nullability annotations, and expressions are not checked for null-access if the280

type system already ensures this.281

10

Figure 4: Structure of Crowbar.

3.2. Software Architecture282

Crowbar has a pipeline setup with front-end, middle-end and back-end, as283

shown in Fig. 4.284

Front-end. The front-end uses the ABS parser to generate an annotated AST285

and extracts, per method, one statement s and one specification term τ for286

this method. The statement is translated into an internal representation287

(IR) to normalize the AST. For example, each call has a target variable. The288

specification term language depends on the specification mechanism chosen289

by the user. The front-end furthermore sets up a program repository to290

manage the specification and connects the IR with the original.291

Middle-end. The middle-end implements SE using the chosen set of rules.292

When SE finishes, all leaves of the SE trees are either static nodes, discussed293

above, logical nodes, which are first-order formulas whose validity ensures294

that this branch is safe. Guided SE is realized by matching the current295

specification term on the current program and reducing both in one SE step.296

Back-end. The back-end of Crowbar passes logical nodes to external SMT-297

LIB solvers. If all logical nodes can be proven to be valid, then the program is298

considered safe up to external restrictions, which are output as static nodes.299

If one of the logical nodes fails to be proven valid, Crowbar attempts to300

construct a counterexample program [38] by extracting value from the coun-301

terexample model output by the SMT solver and reconstructing a minimal302

runnable program directly from the path of the SE tree taken to this leaf. If303

a SMT model is not available, counterexample generation fails. Generating304

the SMT-LIB input requires the repository to ensure correct typing.305

11

4. Implementation and Empirical Results306

Implementation. Crowbar is implemented in Kotlin in 5500 lines of SLoC (ac-307

cording to cloc [39]), and a ANTLRv4 parser for local Session Types. The308

build system is using gradle, the used testing framework is kotest. User man-309

ual and developer documentation on adding a new specification/verification310

module is available in the github repository. We performed two evaluations:311

For a performance evaluation, we use the absexamples4 repository, where312

case studies and examples from the development of ABS are collected. We313

have loaded all 647 methods which are fall into the CoreABS fragment and314

used Crowbar to verify the default specification. As the default specification315

is not meaningful, we additionally adopted two bigger examples to CoreABS316

(WaterTank.abs, 60 LoC, chat.abs, 307 LoC), specified and verified that no317

exceptions are thrown (and a simple functional invariant of the water tank:318

water level never drops below 0). Benchmarking was run on a 8-core i7-8565U319

CPU with 1.80GHz and 32GB RAM on a Ubuntu 20.04.5 laptop. On aver-320

age, 10 symbolic execution steps are performed (with 171 symbolic execution321

steps for the biggest), which on average needs ∼ 110ms (with 1650ms).322

As Crowbar requires a fully specified program to return meaningful re-323

sults, we performed the following case study for functional correctness for a324

qualitative evaluation.325

Case Study. Crowbar is used in the biggest verification case study for Active326

Objects [22]: A model extracted from C code [40] with 260 lines of ABS code,327

with 5 classes (with invariants and creation conditions), 5 interfaces (with 19328

method contracts) and 1 function with a contract. The verification succeeds329

fully automatically. In contrast, the previously biggest case study [14] has330

140 LoC for 1 class (with invariant) and requires manual interaction.331

Coverage and Comparison with KeY-ABS. Crowbar covers full coreABS, i.e.,332

ABS without its extensions for time or variability. Specification in Crowbar is333

purely in terms of the program, i.e., using expressions, using the specification334

patterns described in Sec. 2.335

Table 1 gives the syntax for specifications and compares Crowbar and336

KeY-ABS with respect to language and specification coverage. Note that KeY-337

ABS does not support several statements of ABS, such as case, throw, try,338

4https://github.com/abstools/absexamples

12

Feature Support Specification KeY-ABS SN1

Asynchronous Contr. Yes Requires, Ensures on methods in interfaces Yes§ No
Synchronous Contr. Yes Requires, Ensures on methods in classes No Yes

Cooperative Contr. Yes
Succeeds, Overlaps on methods and await
Resolves on get

No Yes

Object Invariants Yes Requires, ObjInv on classes Yes† No
Function Contracts Yes Requires, Ensures on functions No No
Loop Invariants Yes WhileInv on loops No No
Session Types Partiala Role on classes, Local on methods No Yes
old and last Yes No -
Counterexamples Yes No -
History Specification Partialb Yes -
First-order logic Specification No Yes -
Exceptions and assert Yes Partial‡ -
Functions and ADTs Yes No -
a No passive choice and exceptions. b Can be partially encoded by hand. 1 SN = static nodes.
§ Encodable. † No creation condition. ‡ Only null access

Table 1: Overview over feature support in Crowbar for coreABS.

and assert.5 For a detailed discussions on the limitations on the underly-339

ing ABSDL logic we refer to Kamburjan [31, Ch.2]. A further point worth340

mentioning is that KeY-ABS does not support specification within the pro-341

gram and takes it as additional input. In contrast, Crowbar supports all342

this and connects specification and program tightly by using annotations for343

specifications.344

Limitations. Crowbar is limited to partial correctness of coreABS. Further-345

more, Crowbar does not support passive choice and exceptions in local types,346

which are an open research question. Additionally, it does not support first-347

order specifications and specification of the history of events, which however348

can be added manually by the user: Histories can be added by introducing349

a special ADT for events and a field of list type in every class that managed350

explicitly. Due to its design, Crowbar relie on the counterexample generation351

to interact between user and proof, as it relies on an automatic SMT solver352

for its backend. Additionally, Crowbar can output the symbolic execution353

tree, as well as the concrete SMT-LIB output.354

5A reason for the limitations is that it reuses KeY-Java internally, which do not support,
for example, functional structures, and encode assumptions that are valid for Java, but
not ABS directly in the code. An example for the last point is that in ABS, classes cannot
be extended, while Java supports code inheritance.

13

1 class CeFrame {

2 Int beats = 21239; String s = "o_3";

3 Unit ce() { // Snippet from: heartbeat
4 String req = "fut_1";

5 Int status = 5; //Int status = (req).get
6 if((status == 200)){}

7 else {// this.handleError();
8 //Assume following effects while blocked:
9 this.beats = 21238;

10 }

11 // Evaluates to: 21238
12 println(toString(this.beats));
13 // Failed postcondition:
14 // (heap.beats>=old.beats)
15 // /\ (result=heap.beats)
16 // Failed to show the sub−obligations:
17 // (select(anon(heap), this.beats)
18 // >=heap.beats)
19 }

20 }

Figure 5: An example for counterexample generation with Crowbar.

Related Tools. We already discussed KeY-ABS in detail above. Chisel [41] is355

a tool for hybrid Active Objects that generates proof obligations in dL [42],356

which in turn has three implementations as KeY-style symbolic execution357

engines [43] for a minimal hybrid programming language.358

Outside the KeY-family, the Why3 [44] and Boogie [45] frameworks pro-359

vide deductive verification middle-ends based on SE. Their separation of360

verification technique and programming language makes them not suited for361

our situation: we target a specific concurrency model with a tight coupling362

of specification and verification.363

For Active Objects, Rebeca [46] supports model checking [47], which is364

limited to bounded systems and supports no modular specifications. Re-365

garding deductive verification, KeY-ABS and Crowbar are the only systems366

for Active Objects. For actors, there exists a proposed program logic by367

Gordon [48] and a number of static analyses for Erlang, for which we refer to368

an overview in the work of Bagherzadeh et al. [49]. Note, however, that pure369

actors are not object-oriented, and that they do not implement cooperative370

scheduling or futures.371

5. Illustrative Example372

We give an example how to specify, verify and investigate a program and373

continue with the code specified in Lst. 1. The following attempts verifica-374

14

tion:375

> crowbar example.abs --method Module.Monitor.heartbeat -inv376

The switch --method verifies a single method and requires its fully qual-377

ified name, in this case Module.Monitor.heartbeat. The proof attempt378

fails: There is no contract given for handleError, so it is not specified how379

the method changes the field heartbeat. The -inv flag activates the coun-380

terexample generator, which outputs the counterexample shown in Fig. 5. All381

context interactions of the method (calls, suspension, synchronization, etc.)382

are removed to ensure that it can be executed on its own. Furthermore, it383

adds comments about extracted values and what interactions have been re-384

moved. Here, it shows that if the value of heartbeat was 21239 before and385

handleError changes it to 21238, then a part of the post-condition does not386

hold. The code is executable: as all context is removed, the programer may387

now examine and manipulate the counterexample using standard debugging388

techniques.389

6. Conclusion390

Impact. Crowbar is an important step in the empirical research on analy-391

sis of Active Objects: it is the first verification tool to cover full coreABS392

and implements novel specification and verification techniques in a flexible393

framework that allows one to investigate further new approaches with little394

overhead. In particular, we are now able to verify feature-rich programs, such395

as the C extraction case study. For potential impact, Crowbar enables us to396

tackle the numerous ABS case studies focusing on their specification without397

modifying them to fit the very restricted fragment supported by prior tools.398

Future Work. We plan to use Crowbar to implement novel heavyweight sym-399

bolic execution systems, in particular the probabilistic dynamic logic of Pardo400

et al. [50], for which development has started, and a concurrent setting for the401

dynamic logic for memory access patterns [51]. As for planned extensions,402

we plan to integrate delta-oriented verification [52] next, as well as integrate403

first-order specifications and automate the handling of histories.404

15

Bibliography405

[1] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, M. Ul-406

brich (Eds.), Deductive Software Verification - The KeY Book - From407

Theory to Practice, Vol. 10001 of LNCS, Springer, 2016. doi:10.1007/408

978-3-319-49812-6.409

[2] S. de Gouw, J. Rot, F. S. de Boer, R. Bubel, R. Hähnle, Openjdk’s410

java.utils.collection.sort() is broken: The good, the bad and the worst411

case, in: CAV (1), Vol. 9206 of LNCS, Springer, 2015, pp. 273–289.412

[3] S. de Gouw, F. S. de Boer, R. Bubel, R. Hähnle, J. Rot, D. Steinhöfel,413

Verifying OpenJDK’s sort method for generic collections, J. Autom.414

Reason. 62 (1) (2019) 93–126.415

[4] F. S. de Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C.416

Din, E. B. Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes,417

A. M. Yang, A survey of active object languages, ACM Comput. Surv.418

50 (5) (2017) 76:1–76:39. doi:10.1145/3122848.419

[5] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS:420

A core language for abstract behavioral specification, in: FMCO,421

Vol. 6957 of LNCS, Springer, 2010, pp. 142–164. doi:10.1007/422

978-3-642-25271-6_8.423

[6] G. Turin, A. Borgarelli, S. Donetti, E. B. Johnsen, S. L. T. Tar-424

ifa, F. Damiani, A formal model of the kubernetes container frame-425

work, in: T. Margaria, B. Steffen (Eds.), ISoLA, Vol. 12476 of Lec-426

ture Notes in Computer Science, Springer, 2020, pp. 558–577. doi:427

10.1007/978-3-030-61362-4_32.428

[7] J. Lin, I. C. Yu, E. B. Johnsen, M. Lee, ABS-YARN: A formal framework429

for modeling hadoop YARN clusters, in: P. Stevens, A. Wasowski (Eds.),430

FASE, Vol. 9633 of Lecture Notes in Computer Science, Springer, 2016,431

pp. 49–65. doi:10.1007/978-3-662-49665-7_4.432

[8] J. Lin, M. Lee, I. C. Yu, E. B. Johnsen, Modeling and simulation of433

spark streaming, in: L. Barolli, M. Takizawa, T. Enokido, M. R. Ogiela,434

L. Ogiela, N. Javaid (Eds.), AINA, IEEE Computer Society, 2018, pp.435

407–413. doi:10.1109/AINA.2018.00068.436

16

http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1145/3122848
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-030-61362-4_32
http://dx.doi.org/10.1007/978-3-030-61362-4_32
http://dx.doi.org/10.1007/978-3-030-61362-4_32
http://dx.doi.org/10.1007/978-3-662-49665-7_4
http://dx.doi.org/10.1109/AINA.2018.00068

[9] E. Albert, F. S. de Boer, R. Hähnle, E. B. Johnsen, R. Schlatte,437

S. L. T. Tarifa, P. Y. H. Wong, Formal modeling and analysis of re-438

source management for cloud architectures: an industrial case study439

using real-time ABS, Serv. Oriented Comput. Appl. 8 (4) (2014) 323–440

339. doi:10.1007/s11761-013-0148-0.441

[10] E. Kamburjan, R. Hähnle, S. Schön, Formal modeling and analysis442

of railway operations with active objects, Sci. Comput. Program. 166443

(2018) 167–193. doi:10.1016/j.scico.2018.07.001.444

[11] N. Bezirgiannis, F. S. de Boer, E. B. Johnsen, K. I. Pun, S. L. T. Tarifa,445

Implementing SOS with active objects: A case study of a multicore446

memory system, in: R. Hähnle, W. M. P. van der Aalst (Eds.), FASE,447

Vol. 11424 of Lecture Notes in Computer Science, Springer, 2019, pp.448

332–350. doi:10.1007/978-3-030-16722-6_20.449

[12] C. Consortium, Compugene, www.compugene.tu-darmstadt.de (2019).450

[13] C. C. Din, R. Bubel, R. Hähnle, KeY-ABS: A deductive verification tool451

for the concurrent modelling language ABS, in: CADE’25, Vol. 9195 of452

LNCS, 2015, pp. 517–526. doi:10.1007/978-3-319-21401-6_35.453

[14] C. C. Din, S. L. T. Tarifa, R. Hähnle, E. B. Johnsen, History-based spec-454

ification and verification of scalable concurrent and distributed systems,455

in: ICFEM, Vol. 9407 of LNCS, Springer, 2015, pp. 217–233.456

[15] E. Kamburjan, T. Chen, Stateful behavioral types for active objects, in:457

IFM, Vol. 11023 of LNCS, Springer, 2018, pp. 214–235.458

[16] E. Kamburjan, C. C. Din, T. Chen, Session-based compositional anal-459

ysis for actor-based languages using futures, in: ICFEM, Vol. 10009 of460

Lecture Notes in Computer Science, 2016, pp. 296–312.461

[17] E. Kamburjan, C. C. Din, R. Hähnle, E. B. Johnsen, Behavioral con-462

tracts for cooperative scheduling (2020).463

[18] E. Kamburjan, Behavioral program logic, in: TABLEAUX, Vol. 11714464

of LNCS, Springer, 2019, pp. 391–408.465

[19] R. Bubel, C. C. Din, R. Hähnle, K. Nakata, A dynamic logic with traces466

and coinduction, in: TABLEAUX, Vol. 9323 of LNCS, Springer, 2015,467

pp. 307–322.468

17

http://dx.doi.org/10.1007/s11761-013-0148-0
http://dx.doi.org/10.1016/j.scico.2018.07.001
http://dx.doi.org/10.1007/978-3-030-16722-6_20
http://dx.doi.org/10.1007/978-3-319-21401-6_35

[20] E. Kamburjan, Detecting deadlocks in formal system models with con-469

dition synchronization, in: AVOCS, Vol. 76 of ECEASST, 2018.470

[21] E. Kamburjan, R. Hähnle, Deductive verification of railway operations,471

in: RSSRail, Vol. 10598 of LNCS, Springer, 2017, pp. 131–147.472

[22] E. Kamburjan, N. Wasser, The right kind of non-determinism: Using473

concurrency to verify C programs with underspecified semantics 365474

(2022) 1–16.475

[23] C. A. R. Hoare, An axiomatic basis for computer programming, Com-476

mun. ACM 12 (10) (1969) 576–580.477

[24] D. Clarke, R. Muschevici, J. Proença, I. Schaefer, R. Schlatte, Vari-478

ability modelling in the ABS language, in: B. K. Aichernig, F. S.479

de Boer, M. M. Bonsangue (Eds.), FMCO, Vol. 6957 of Lecture Notes480

in Computer Science, Springer, 2010, pp. 204–224. doi:10.1007/481

978-3-642-25271-6_11.482

[25] J. Bjørk, F. S. de Boer, E. B. Johnsen, R. Schlatte, S. L. T. Tarifa, User-483

defined schedulers for real-time concurrent objects, Innov. Syst. Softw.484

Eng. 9 (1) (2013) 29–43. doi:10.1007/s11334-012-0184-5.485

[26] E. Kamburjan, S. Mitsch, M. Kettenbach, R. Hähnle, Modeling and486

verifying cyber-physical systems with hybrid active objects, CoRR487

abs/1906.05704. arXiv:1906.05704.488

[27] R. Schlatte, E. B. Johnsen, E. Kamburjan, S. L. T. Tarifa, Model-489

ing and analyzing resource-sensitive actors: A tutorial introduction,490

in: F. Damiani, O. Dardha (Eds.), COORDINATION, Vol. 12717 of491

Lecture Notes in Computer Science, Springer, 2021, pp. 3–19. doi:492

10.1007/978-3-030-78142-2_1.493

[28] R. Schlatte, E. B. Johnsen, J. Mauro, S. L. T. Tarifa, I. C. Yu, Re-494

lease the beasts: When formal methods meet real world data, in: F. S.495

de Boer, M. M. Bonsangue, J. Rutten (Eds.), It’s All About Coordina-496

tion - Essays to Celebrate the Lifelong Scientific Achievements of Farhad497

Arbab, Vol. 10865 of Lecture Notes in Computer Science, Springer, 2018,498

pp. 107–121. doi:10.1007/978-3-319-90089-6_8.499

18

http://dx.doi.org/10.1007/978-3-642-25271-6_11
http://dx.doi.org/10.1007/978-3-642-25271-6_11
http://dx.doi.org/10.1007/978-3-642-25271-6_11
http://dx.doi.org/10.1007/s11334-012-0184-5
http://arxiv.org/abs/1906.05704
http://dx.doi.org/10.1007/978-3-030-78142-2_1
http://dx.doi.org/10.1007/978-3-030-78142-2_1
http://dx.doi.org/10.1007/978-3-030-78142-2_1
http://dx.doi.org/10.1007/978-3-319-90089-6_8

[29] E. Kuiter, A. Knüppel, T. Bordis, T. Runge, I. Schaefer, Verification500

strategies for feature-oriented software product lines, in: P. Arcaini,501

X. Devroey, A. Fantechi (Eds.), VaMoS, ACM, 2022, pp. 12:1–12:9.502

doi:10.1145/3510466.3511272.503

[30] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,504

J. Kiniry, P. Chalin, D. M. Zimmerman, W. Dietl, JML Reference Man-505

ual, draft revision 2344 (May 2013).506

[31] E. Kamburjan, Modular verification of a modular specification: Be-507

havioral types as program logics, Ph.D. thesis, Technische Universität508

Darmstadt (2020).509

[32] C. C. Din, O. Owe, Compositional reasoning about active objects with510

shared futures, Formal Aspects Comput. 27 (3) (2015) 551–572.511

[33] B. Beckert, D. Bruns, Dynamic logic with trace semantics, in: CADE,512

Vol. 7898 of LNCS, Springer, 2013, pp. 315–329.513

[34] B. Beckert, A dynamic logic for the formal verification of java card514

programs, in: Java Card Workshop, Vol. 2041 of LNCS, Springer, 2000,515

pp. 6–24.516

[35] D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. Deniélou,517

S. J. Gay, N. Gesbert, E. Giachino, R. Hu, E. B. Johnsen, F. Martins,518

V. Mascardi, F. Montesi, R. Neykova, N. Ng, L. Padovani, V. T. Vascon-519

celos, N. Yoshida, Behavioral types in programming languages, Found.520

Trends Program. Lang. 3 (2-3) (2016) 95–230.521

[36] C. C. Din, O. Owe, A sound and complete reasoning system for asyn-522

chronous communication with shared futures, J. Log. Algebraic Methods523

Program. 83 (5-6) (2014) 360–383.524

[37] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session525

types, in: POPL, ACM, 2008, pp. 273–284.526

[38] N. Rollshausen, Counterexample generation for formal verification of527

abs, Bachelor Thesis, TU Darmstadt, available at https://tuprints.528

ulb.tu-darmstadt.de/17856/ (2021).529

[39] CLOC tool, version 1.82.530

19

http://dx.doi.org/10.1145/3510466.3511272
https://tuprints.ulb.tu-darmstadt.de/17856/
https://tuprints.ulb.tu-darmstadt.de/17856/
https://tuprints.ulb.tu-darmstadt.de/17856/

[40] N. Wasser, A. H. Tabar, R. Hähnle, Automated model extraction: From531

non-deterministic C code to active objects, Sci. Comput. Program. 204532

(2021) 102597.533

[41] E. Kamburjan, From post-conditions to post-region invariants: Deduc-534

tive verification of hybrid objects, in: HSCC’21, ACM, 2021.535

[42] A. Platzer, The complete proof theory of hybrid systems, in: LICS,536

IEEE Computer Society, 2012, pp. 541–550.537

[43] S. Mitsch, A. Platzer, A retrospective on developing hybrid system538

provers in the KeYmaera family - A tale of three provers, in: 20 Years of539

KeY, Vol. 12345 of Lecture Notes in Computer Science, Springer, 2020,540

pp. 21–64.541

[44] J.-C. Filliâtre, A. Paskevich, Why3 — where programs meet provers, in:542

M. Felleisen, P. Gardner (Eds.), ESOP, Vol. 7792 of Lecture Notes in543

Computer Science, Springer, 2013, pp. 125–128.544

[45] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, K. R. M. Leino, Boogie:545

A modular reusable verifier for object-oriented programs, in: FMCO,546

Vol. 4111 of LNCS, 2005.547

[46] M. Sirjani, A. Movaghar, A. Shali, F. S. de Boer, Modeling and veri-548

fication of reactive systems using rebeca, Fundam. Informaticae 63 (4)549

(2004) 385–410.550

[47] M. Sirjani, A. Movaghar, A. Shali, F. S. de Boer, Model checking,551

automated abstraction, and compositional verification of rebeca mod-552

els, J. Univers. Comput. Sci. 11 (6) (2005) 1054–1082. doi:10.3217/553

jucs-011-06-1054.554

[48] C. S. Gordon, Modal assertions for actor correctness, in: F. Bergenti,555

E. Castegren, J. D. Koster, J. Franco (Eds.), AGERE!@SPLASH, ACM,556

2019, pp. 11–20. doi:10.1145/3358499.3361221.557

[49] M. Bagherzadeh, N. Fireman, A. Shawesh, R. Khatchadourian, Actor558

concurrency bugs: a comprehensive study on symptoms, root causes,559

API usages, and differences, Proc. ACM Program. Lang. 4 (OOPSLA)560

(2020) 214:1–214:32. doi:10.1145/3428282.561

20

http://dx.doi.org/10.3217/jucs-011-06-1054
http://dx.doi.org/10.3217/jucs-011-06-1054
http://dx.doi.org/10.3217/jucs-011-06-1054
http://dx.doi.org/10.1145/3358499.3361221
http://dx.doi.org/10.1145/3428282

[50] R. Pardo, E. B. Johnsen, I. Schaefer, A. Wasowski, A specification logic562

for programs in the probabilistic guarded command language, in: IC-563

TAC, Vol. 13572 of Lecture Notes in Computer Science, Springer, 2022,564

pp. 369–387.565

[51] R. Bubel, R. Hähnle, A. H. Tabar, A program logic for dependence566

analysis, in: IFM, Vol. 11918 of Lecture Notes in Computer Science,567

Springer, 2019, pp. 83–100.568

[52] M. Scaletta, R. Hähnle, D. Steinhöfel, R. Bubel, Delta-based verifica-569

tion of software product families, in: E. Tilevich, C. D. Roover (Eds.),570

GPCE, ACM, 2021, pp. 69–82.571

21

Required Metadata572

Current code version573

Ancillary data table required for subversion of the codebase. Kindly re-574

place examples in right column with the correct information about your cur-575

rent code, and leave the left column as it is.576

Nr. Code metadata description Please fill in this column
C1 Current code version v1.1.2
C2 Permanent link to code/repository

used for this code version
https://github.com/Edkamb/crowbar-
tool/releases/tag/v1.1.2

C3 Permanent link to Reproducible
Capsule

doi.org/10.24433/CO.6726262.v1

C4 Legal Code License BSD-3-Clause
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Kotlin, gradle, antlr, github

C7 Compilation requirements, operat-
ing environments & dependencies

Z3, Java ≥ 1.11

C8 If available Link to developer docu-
mentation/manual

https://github.com/Edkamb/crowbar-
tool/wiki

C9 Support email for questions eduard@ifi.uio.no

Table 2: Code metadata (mandatory)

22

	Introduction
	Background
	Active Objects and ABS
	Specification
	Examples
	Symbolic Execution

	Software Framework
	Software Functionalities
	Software Architecture

	Implementation and Empirical Results
	Illustrative Example
	Conclusion

