
A Hybrid Programming Language for
Formal Modeling and Verification of Hybrid Systems
Eduard Kamburjan1,3, Stefan Mitsch2, and Reiner Hähnle3

1 Department of Informatics, University of Oslo, Norway
eduard@ifi.uio.no

2 Computer Science Department, Carnegie Mellon University, USA
smitsch@cs.cmu.edu

3 Department of Computer Science, Technische Universität Darmstadt, Germany
haehnle@cs.tu-darmstadt.de

Abstract
Designing and modeling complex cyber-physical
systems (CPS) faces the double challenge of com-
bined discrete-continuous dynamics and concurrent
behavior. Existing formal modeling and verifica-
tion languages for CPS expose the underlying proof
search technology. They lack high-level structuring
elements and are not efficiently executable. The
ensuing modeling gap renders formal CPS models
hard to understand and to validate. We propose a
high-level programming-based approach to formal

modeling and verification of hybrid systems as a hy-
brid extension of an Active Objects language. Well-
structured hybrid active programs and requirements
allow automatic, reachability-preserving transla-
tion into differential dynamic logic, a logic for hy-
brid (discrete-continuous) programs. Verification is
achieved by discharging the resulting formulas with
the theorem prover KeYmaera X. We demonstrate
the usability of our approach with case studies.

2012 ACM Subject Classification Distributed programming languages, Model verification and validation,
Logic and verification, Timed and hybrid models
Keywords and phrases Active Objects, Differential Dynamic Logic, Hybrid Systems
Digital Object Identifier 10.4230/LITES.xxx.yyy.p
Received Date of submission. Accepted Date of acceptance. Published Date of publishing.

Editor LITES section area editor

1 Introduction1

Networked cyber-physical systems (CPS) are a main driving force of innovation in computing,2

from manufacturing to everyday appliances. But to design and model such systems poses3

a double challenge: first, their hybrid nature, with both continuous physical dynamics and4

complex computations in discrete time steps. Second, their concurrent nature: distributed,5

active components (sensors, actuators, controllers) execute simultaneously and communicate6

asynchronously. It is notoriously difficult to get CPS models right. Formal modeling languages,7

including hybrid automata [5], hybrid process algebra [27], and logics for hybrid programs [65],8

can be used to formally verify properties of CPS. Contrary to simulation frameworks, such as9

Ptolemy [71] or Simulink, however, these languages were designed for verification and are based on10

concepts of the underlying verification technology: automata, algebras, formulas. Their minimalist11

syntax lacks standard structuring elements of programming languages such as types, scopes,12

methods, complex commands, futures, etc. Thus it is hard to adequately represent concurrently13

executing, communicating, hybrid components with symbolic data structures and computations,14

for example, servers or cloud applications.15

Moreover, “low-level” models are hard to validate, i.e. to ensure that a CPS model reflects16

the designer’s intention, because these formalisms are not (efficiently) executable. To bridge17

© Eduard Kamburjan, Stefan Mitsch and Reiner Hähnle;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. XXX, Issue YYY, pp. 1–34
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LITES.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

2 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

the modeling gap we propose a high-level programming-based approach to formal modeling and18

verification of hybrid systems.19

The basis of our approach is an Active Objects (AO) language [29] called ABS [48]. AO languages20

combine OO programming with strong encapsulation as well as asynchronous, parallel execution.21

Their concurrency model permits to decompose concurrent execution into sequential execution in22

a compositional manner. We chose ABS for its formal semantics, its open source implementation23

tool chain, and its demonstrated scaling on massively distributed systems [75], but our approach24

is applicable to other AO languages. ABS is efficiently executable via compilation to Erlang and25

was used to model complex, real-world systems for cloud processing [3], virtualized services [49],26

data processing [56], and railway operations [53]. However, it lacks the capability to model hybrid27

systems. The first main contribution of this paper is the design of the Hybrid ABS (HABS) language,28

a conservative (syntax and semantics preserving) extension of ABS, generalizing the Active Objects29

paradigm to Hybrid Active Objects (HAO): AO with continuous dynamics. Obviously, it is30

necessary to accordingly extend the formal semantics of ABS and its runtime environment. This is31

our second main contribution. Our third main contribution is the implementation of HABS and a32

formal verification tool for it.33

Our approach to formal verification of HABS programs is based on reachability-preserving34

translation into an existing verification formalism for hybrid programs. We choose differential35

dynamic logic (dL) [66, 68, 69], as implemented in the KeYmaera X system [36], because it is36

based on an imperative programming language that is a good match for the sequential fragment37

of HABS and verification in dL has been demonstrated to scale to realistic systems (e.g., [47]). The38

translation from HABS to dL involves to decompose a given HABS verification problem into a set of39

independent sequential dL problems. This is possible, because we impose an interaction pattern40

for communication on HABS that is less restrictive than available component-based techniques [64],41

yet is general enough to permit intuitive and concise modeling of relevant case studies. The42

identification of this pattern, the generation of dL verification conditions, and a reachability43

preservation theorem constitute our fourth main contribution.44

The overall approach is illustrated in Fig. 1: A CPS is modeled as an HABS program with the45

aim to analyze its properties statically. One formulates desired properties as invariants that are46

formally verified to hold under certain assumptions. Before verification is attempted, the model is47

validated by executing it in the runtime environment to ensure that it behaves as intended. A48

visualization component helps to analyze behavior over time. Subsequently, the verification claim49

is automatically decomposed and translated into a set of dL verification problems discharged in50

KeYmaera X (optionally, formally verified runtime monitors [63] and formally verified machine51

code is available from KeYmaera X through VeriPhy [18]). Both, unexpected runtime behavior52

and failed verification attempts, serve to fix the model and/or the claimed properties.53

HABS Model

Hybrid Class

Specification
Contracts/Invariants

-proof obligations KeYmaera X

Erlang code
Execution+
Visualization

decomposition

Verification

compilation

Validation
Hybrid Classmodeling

Distributed CPS

Figure 1 Structure of HABS workflow.

The paper is structured as follows. Sect. 2 gives an informal example of an HABS model with a54

distributed water tank controller. Sect. 3 formally defines syntax and semantics of HABS. Sect. 455

describes modeling patterns. Sect. 5 gives theoretical background on dL, the translation into dL,56

E. Kamburjan, S. Mitsch and R. Hähnle 3

the decomposition theorem, and tells how to prove correctness. It also contains a distributed57

controller case study. Finally, Sect. 6 discusses related and future work and concludes.58

2 Distributed Hybrid Systems by Example59

Active Objects [29] are objects that realize actor-based concurrency [44] with futures [28] and60

cooperative scheduling: Active Objects communicate via asynchronous method calls. On the61

caller side, each method invocation generates a future as a handle to retrieve the call’s result,62

once it is available. The caller may synchronize on that future, i.e. suspend and wait until it is63

resolved. At most one process is running on an Active Object at any time. That process suspends64

when it encounters the synchronization statement await on an unresolved future or a false Boolean65

condition. Once the guard becomes true, the process may be re-scheduled. All fields are strictly66

object-private.67

Running a Hybrid Active Objects (HAO) model of a CPS can be pictured as follows: each68

object is capable of modeling a physical object, for example, a water tank. It may declare physical69

behavior via ordinary differential equations (ODEs) over “physical” fields, as well as discrete70

behavior via class and method declarations that can be used to control physical behavior. Once71

an HAO starts executing, the values of the physical fields evolve, governed by their ODEs, even72

when the controller is idle. This models the intuition that a physical system evolves independently73

of any observers and controllers.74

Object orientation allows natural modeling of hybrid systems: continuous behavior is attached75

to an object, not a process. Processes realize discrete control behavior related to sensors and76

controllers. Specifically, the controller methods of an object may wait to execute until a certain77

physical state is reached (event-triggered control, for example, “tank is nearly full”). This “sensing”78

is modeled with getter methods of physical fields. Obviously, for validation the HABS runtime79

system must solve the differential equations in the physical model to determine the time point80

when such a waiting controller can start at the earliest; for verification, ODEs need not be solvable;81

they are analyzed with invariant-based techniques [67, 70]. Another communication pattern82

for controllers—time-triggered control—is provided by fixed sampling durations. More complex83

control patterns can be realized by waiting until the result of a subcomputation, i.e. a future, is84

ready.85

Whenever a control process is activated, it can modify the physical state through actuators86

(for example, close a valve). In consequence, there are no timed race conditions, but the physical87

state might be changed by any process at the time it is scheduled. Actuation is modeled with88

setter methods of physical fields. Execution of control methods is assumed to take no physical89

time, unless explicitly modeled to do so.90

Generally, a CPS can be modeled by several HAOs that communicate with each other via91

asynchronous method calls, for example, modeling a central controller. Often a controller object92

has no associated physical behavior; vice versa, an object that models physics, may not contain93

any control, but only sensor and actuator methods.94

We demonstrate HAOs using three variants of water tank models. The first model, TankMono,95

is a single water tank that keeps its water level between two thresholds. It is modeled as a single96

object that integrates control and physics. The second model, TankTick, is also a single water tank,97

but it is modeled with two separate objects for tank and controller. The final model, TankMulti,98

is a distributed system of n TankMono tanks that, in addition to the local threshold, maintain a99

global threshold over the sum of all local water levels.100

4 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

1 interface ISingleTank {
2 /∗@ ensures 3 <= outLevel() <= 10 @∗/
3 Real outLevel();
4 /∗@ ensures −1/2 <= outDrain() <= 1/2 @

∗/
5 Real outDrain();
6 }
7 /∗@ requires 4 <= inVal <= 9 @∗/
8 class CSingleTank(Real inVal)
9 implements ISingleTank {

10 /∗@ invariant
11 3 <= level <= 10
12 & −1/2 <= drain <= 1/2
13 & (drain<0−>level>3)
14 & (drain>0−>level<10) @∗/

15 physical {
16 Real level = inVal : level’ = drain;
17 Real drain = -1/2 : drain’ = 0;
18 }
19 Unit run() { this!ctrl(); }
20 Unit ctrl() {
21 await diff (level<=3 & drain<=0) | (level>=10 & drain>=0);
22 if (level <= 3) drain = 1/2;
23 else drain = -1/2;
24 this.ctrl();
25 }
26 Real outDrain() { return this.drain; }
27 Real outLevel() { return this.level; }
28 }

Figure 2 TankMono: A water tank as a single HAO.

time in seconds

level
drain

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

Figure 3 Simulation Output of TankMono with inVal = 5.

2.1 Base System: TankMono101

Fig. 2 shows an HAO model of a water tank whose physical section makes it either fill with 1
2 l/sec102

or drain at the same rate, according to the initial values and governing ODEs of the level and103

drain fields. Method ctrl() realizes a control loop that switches the drain field between those104

states so that the water level stays between 3l and 10l. The controller ctrl waits until the water105

level reaches the upper or lower limit, i.e. until the condition in Fig. 2, Line 21 holds. Depending106

on the case, it changes the state and calls itself recursively.107

The JML style [20] comments in Fig. 2 contain an assumption on the initial state of inVal108

and a conjectured safety invariant and conjectured output guarantees that, in this case, can be109

proven: if the initial level is between 4l and 9l, then it always stays between 3l and 10l. Note110

that Lines 13–14 express a safety invariant that must be shown to be true, rather than control111

conditions. Intuitively, Line 13 expresses the property that the tank won’t drain below a threshold112

(level > 3) even if water is leaking from it (drain < 0). Similarly, Line 14 expresses that the tank113

won’t overflow (level < 10) even if water is pumped into the tank (drain > 0). Prior to formal114

verification of this property one typically runs tests to see whether the model behaves as intended.115

Our implementation allows to simulate and visualize an HAO model. The graph in Fig. 3 shows116

the behavior of a CSingleTank object instantiated with inVal = 5. In Sect. 5 we show how the117

class is translated into dL and how to prove the safety invariant in KeYmaera X for any object118

created with a parameter that satisfies the precondition. The only methods exposed to clients in119

the interface are outDrain() and outLevel().120

E. Kamburjan, S. Mitsch and R. Hähnle 5

2.2 Discrete Controller: TankTick121

The ctrl() method in TankMono corresponds to a perfect sensor/controller that physically122

reacts to the water level and drain. TankTick splits controller and sensor into two objects and123

uses a clock to read the water level at certain intervals. This corresponds to a closed-loop control124

system with a discrete-time controller that samples the plant behavior.125

1 interface Tank {
2 /∗ requires −1/2 <= newD <= 1/2; ∗/
3 Unit inDrain(Real newD);
4 /∗ ensures 3 <= outLevel() <= 10; ∗/
5 Real outLevel();
6 }
7 class CTank(Real inVal) implements Tank {
8 physical {
9 Real level = inVal : level’ = drain;

10 Real drain = -1/2 : drain’ = 0;
11 }
12 Unit run() { }
13 /∗ requires newD > 0 −> level <= 9.5 ∗/
14 /∗ requires newD < 0 −> level >= 3.5 ∗/
15 /∗ timed_requires inDrain < 1 ∗/
16 Unit inDrain(Real newD) { drain = newD; }
17 Real outLevel() { return level; }
18 }

19 /∗ requires 0 < tick < 1 & inVal > 3.5∗/
20 class FlowCtrl(Tank t, Real tick, Real inVal) {
21 /∗ invariant (drain > 0 −> level <= 9.5)
22 & (drain < 0 −> level >= 3.5) ∗/
23 Real drain = -1/2;
24 Real level = inVal;
25
26 Unit run() { this!ctrlFlow(); }
27
28 Unit ctrlFlow() {
29 await duration(tick,tick);
30 level = t.outLevel();
31 if (level <= 3.5) drain = 1/2;
32 if (level >= 9.5) drain = -1/2;
33 t!inDrain(drain);
34 this.ctrlFlow();
35 }
36 }

Figure 4 TankTick: A water tank modeled as two HAOs. Invariant and precondition of CTank are as
in Fig. 2.

Fig. 4 shows a water tank realized by a controller FlowCtrl and a Tank implementation CTank.126

The tank has an in-port (setter) method inDrain() and an out-port (getter) method outLevel().127

It has no active discrete behavior on its own (the run method is empty), but its state changes128

nonetheless due to the continuous physical block. The FlowCtrl controller’s fields drain, level are129

its local copies of the state of the tank: CTank.drain, CTank.level are different fields from FlowCtrl130

.drain, FlowCtrl.level, respectively, residing in different objects. The ctrlFlow() method first131

updates level, decides on the state of drain, then pushes the (possibly changed) state of drain to132

the tank. No time passes in the controller, which ensures that the copied fields are synchronized133

at the end of the round. As the Tank’s fields are not directly accessible by the FlowCtrl instance,134

it is not possible to wait on the Tank’s level with an await diff statement. Instead, the controller135

uses await duration to run every tick seconds: tick is the sampling time of the controller.136

Figure 5 Simulation Output of TankTick with
inVal = 5 for 30s.

The Tank interface specification declares an137

input requirement and a guarantee on returned138

values. The input requirement of the inDrain139

() specification is a constraint on the input140

parameter newD; specifically, it means that the141

tank can only be instructed to fill if there is142

sufficient capacity left (similar for draining).143

The initial requirement is sufficient to establish144

the controller’s invariant, which in turn ensures145

that the tank’s requirements are met. The146

timed_requires clause stipulates that inDrain147

() is called at least once per second, which148

suffices for the output guarantee. Fig. 5 shows149

example output. We stress that all calls to Tank methods are asynchronous.150

6 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

1 class CControl(List<ISingleTank> tanks,
2 Real totalLower,
3 Real totalHigher,
4 Real tick)
5 implements IControl {
6 Unit run() {
7 await duration(tick, tick);
8 Real total = 0;
9 List<ISingleTank> lower = list[];

10 List<ISingleTank> higher = list[];
11 foreach (next in tanks) {
12 Real val = next.outLevel();
13 Real dir = next.outDrain();
14 if (dir < 0 && val > 3)
15 lower = Cons(next, lower);
16 if (dir > 0 && val < 10)
17 higher = Cons(next, higher);
18 total = total + val;
19 }
20 if (total <= totalLower+1)
21 foreach (lnext in lower)
22 lnext!inDrain(1/2);
23 if (total >= totalHigher-1)
24 foreach (hnext in higher)
25 hnext!inDrain(-1/2);
26 this.run();
27 }
28 }

tank1
tank2

tank3
tank4

read total
0

5

10

15

20

25

0 5 10 15 20 25 30 35 40
time in seconds

Figure 6 TankMulti: A controller for n TankMono instances and an example simulation output.
Interface omitted.

2.3 Distributed Tank Control: TankMulti151

Consider a system where n water tanks are monitored by a central controller that aims to keep152

the sum of all water levels between some thresholds. The code in Fig. 6 shows a controller that153

monitors a list of ISingleTank (Fig. 2) instances. Each tick seconds the central controller iterates154

over the list of tanks and if their combined level is almost at the upper threshold, the controller155

drains all water tanks with rising levels (analogously for the lower threshold). Single water tanks156

still ensure that their local thresholds are observed. To allow the CControl instance to manipulate157

the ISingleTank instances, we add the following method to CSingleTank (and an analogous method158

to the interface):159

1 /∗ requires newD > 0 −> level < 10 ∗/
2 /∗ requires newD < 0 −> level > 3 ∗/
3 /∗ requires −1/2 <= newD <= 1/2 ∗/
4 Unit inDrain(Real newD) { this.drain = newD; }

160

Contrary to the contract in TankTick, we do not need to specify how frequently the method161

is called, because this information is available in the guard of the ctrl method of the instances.162

The recursive call at the end of ctrl ensures that there is always one process executing ctrl for163

each instance of FlowCtrl.164

The graph in Fig.6 shows the simulation output for four water tanks with different initial165

values. The upper thresholds are managed by the distributed controller and the water tanks166

cooperatively: Only tanks 1 and 4 reach their local upper thresholds, the others are drained by the167

distributed controller to maintain the global threshold. The lower local thresholds are managed168

locally, the lower global threshold is never reached.169

E. Kamburjan, S. Mitsch and R. Hähnle 7

2.4 Futures170

Future-based communication allows to decouple the call of a method from retrieving its result. For171

example, consider the code in Fig. 7. Class Node can perform some complex and time consuming172

computations on behalf of class Client. To enable load balancing the client has only a reference173

to an interface Server, which relays its request. The Server performs basic load balancing by a174

round-robin scheduling on a list of nodes. It then returns to the issuing client the future of the175

relayed request without having to wait for the computation to finish (Line 17). The client can then176

retrieve the future (Line 7) to synchronize on it without blocking the interface server (Line 8).

1 class Node {
2 Real compute_internal(Real r1, Real r2, Real r3){ ... }
3 }
4 class Client(Server s){
5 Unit run(){
6 Fut<Fut<Real>> ffr = s!compute(1,2);
7 Fut<Real> fr = ffr.get;
8 Real r = fr.get;
9 ...

10 }
11 }
12 class Server(Queue<Node> internal, Real param){
13 Fut<Real> compute(Real r1, Real r2){
14 Node n = internal.pop();
15 Fut<Real> fr = n!compute_internal(r1,r2,param);
16 internal.push(n);
17 return fr;
18 }
19 }

Figure 7 An example for load balancing using futures. Interfaces omitted.

177

3 Hybrid Active Objects178

An informal description of the intended semantics of Hybrid Abstract Objects in the Hybrid179

Abstract Behavioral Specification (HABS) language was provided in Section 2. The present section180

gives a formal account of its syntax and semantics. HABS is an extension of the Active Object181

language ABS [48]. ABS itself extends standard OO concepts as follows:182

Encapsulation. All fields are strictly object-private.183

Cooperative Scheduling. Active Objects cannot be preempted: a process running in an object184

may not be interrupted by other processes, unless the active process suspends itself or terminates.185

Asynchronous Calls, Futures. All method calls to other objects are asynchronous. Every call not186

only generates a process on the callee side, but a future that points to that process. A process187

may pass around a future or synchronize with it to read the return value of the associated process188

once it has terminated.189

As a Timed Active Object language, HABS also features:190

Simulation Time. HABS allows to manipulate simulation time by explicitly advancing (and reading)191

an internal clock with specific statements. Simulation time is independent of the wall time.192

8 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

3.1 Syntax193

The syntax of HABS is given by the grammar in Fig. 8 and explained in the following section.194

With e we denote standard expressions over fields f, variables v and operators |, &, >=, <=, +, -, *,195

/. Types T are all interface names, type-generic futures Fut<T>, lists List<T>, Real, Int, Unit and196

Bool. We also assume the usual functions for lists, etc.197

Prgm ::= ID CD Main ID ::= interface I [extends I]?{MS} Programs, Interfaces

Main ::= {s?} Main

CD ::= class C [implements I]? [(T f)]?{Phys? FD Met Run?} Classes

Run ::= Unit run() {s} FD ::= T f = e Run Method and Fields

Phys ::= physical {DED} DED ::= Real f = e : f’ = e Physical Block

MS ::= T m(T v) Met ::= MS {s;return e;} Signatures, Methods

s ::= while (e) {s} | if (e) {s} [else {s}]? | s;s
| await g | [T? e]? = rhs Statements

g ::= duration(e,e) | diff e | e? Guards

rhs ::= e | new C(e) | e.get | e!m(e) RHS Expressions

Figure 8 HABS grammar. T ranges over types, I over interfaces and C over classes. Differential expression
de are normal expressions extended with a derivation operator e’.

A program contains a main method Main, interfaces ID and classes CD. Interfaces are standard,198

the main method contains a list of object creations. Classes can have parameters Tf, these are199

fields being initialized during object creation. Classes have fields FD, methods Met, an optional200

run method Run to start a process, and an optional physical block Phys that declares physical201

fields. A declaration of a physical field is a field declaration followed by a differential equation.202

A differential equation is an equation between two differential expressions, which are standard203

expressions extended with a derivation operator e’ for de
dt . HABS supports explicit autonomous204

differential equations. The differential expressions and the field initialization form an initialized205

ordinary differential equation, e.g., Real f = 0: f’ = 5-f. Note that f = 0 specifies the initial206

value of f, whereas the differential equation f’ = 5-f is phrased in terms of the time-varying value207

of f, so models logarithmic growth towards f = 5.208

Methods and statements are mostly standard, we focus on HAO-specific constructs. Methods209

are called asynchronously with e!m(e), i.e., after the call, the caller continues execution without210

waiting for the callee to finish. Instead, the caller generates a future. A future identifies the call211

and can be passed around by the caller. A process interacts in two ways with a future: either by212

awaiting its result with await e? on the guard e?, or by reading its value with e.get. Statements213

e.get block the reading object—no other process may run on it. In contrast, statements await g214

release the process control over the object while waiting for the guard g to hold. The guard is215

either a future guard e?, a differential guard diff e, or a timed guard duration(e1,e2). The future216

guard e? awaits the result of future e, the differential guard diff e suspends the process until the217

expression e evaluates to true, and the timed guard duration(e1,e2) suspends the process for at218

least e1 time units1. The notation T v = o.m() is short for Fut<T> f = o!m(); T v = f.get; (a219

call followed by a synchronization).220

1 The parameter e2 is used by certain scheduling policies [16], and is not relevant for HABS.

E. Kamburjan, S. Mitsch and R. Hähnle 9

3.2 Semantics of HABS221

HABS extends the structural operational semantics (SOS) for Timed ABS [16] in three aspects: (i) it222

includes physical behavior in the object state; (ii) determines whether a differential guard holds223

and, if not, when it will at the earliest; (iii) updates the state whenever time passes. This affects224

only expression evaluation and auxiliary functions. No new SOS rule is needed. In the following225

we extend the core of the ABS SOS semantics [16] to hybrid systems.226

3.2.1 States227

The state of an object has three parts: (i) a store ρ that maps (physical and non-physical) fields228

to values, and the variables of the active process2 to values; (ii) ODE , the differential equations229

from its physical block; (iii) F , the set of current solutions of ODE3. A solution f is a function230

from time to a store which only contains the physical fields. The set F may change, because the231

ODEs are solved as an initial-value problem with the current state of the physical fields as the232

initial values. For each f ∈ F and each physical field f the following holds: f(0)(f) = ρ(f), i.e.,233

the initial value f(0)(f) of physical field f is the current value ρ(f) in the store ρ. We denote the234

solutions of ODE with initial values from ρ by sol(ODE , ρ). We define runtime configurations235

formally:236

tcn ::= clock(e) cn cn ::= cn cn | fut | msg | ob
ob ::= (o, ρ,ODE , F. , prc, prc) msg ::= msg(o, e, f)

prc ::= (τ, f, rs) | ⊥ rs ::= s | suspend;s fut ::= fut(f, e)

Figure 9 Runtime Syntax of HABS.

I Definition 1 (Runtime Configuration [16]). The runtime syntax of HABS is summarized in Fig. 9:237

f ranges over future identities, o over object identities, ρ, τ over stores, i.e., assignments from238

fields or variables to values. A timed configuration has a clock clock with the current time, as239

an expression of Real type and an object configuration cn. An object configuration cn consists240

of messages msg, futures fut, objects ob, and can be composed cn cn (as usual, composition is241

commutative and associative). A message msg(o, e, f) records callee o, passed parameters e and242

the generated future f . A future configuration fut(f, e) connects the future f with its return value243

e. An object (o, ρ, F,ODE , prc, prc) has an identifier o, an object store ρ, the current solutions F ,244

an active process prc and a queue of inactive processes. ODE is taken from the class declaration.245

A process is either terminated ⊥ or has the form (τ, f, rs): the process store τ with current state246

of the local variables, its future f , and the statement rs left to execute. The runtime syntax also247

allows the suspend statement, which is used to deschedule a process. Dotted underlined elements248

are an extension of HABS relative to ABS (also in Fig. 10 below).249

Given a process store τ and an object store ρ we use σ = ρ ◦ τ to denote the state of both250

fields and local variables. We first define the evaluation of expressions and guards.251

2 Recall that the active process executes the ABS methods, it does not relate to physical behavior.
3 The solutions computed relative to the initial values (state) at the last suspension.

10 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

3.2.2 Evaluation of Expressions252

Expressions e are evaluated with a function JeKF,tσ over a store σ and a set of solutions F at t time253

units in the future. The semantics of expressions containing physical fields is as follows.254

I Definition 2 (Semantics of Expressions). Let F be the set of solutions. Given a store σ, we can255

check whether F is a model of an expression e after t time units. Let fp be a physical field and fd256

a non-physical field of o. The semantics of fields fp, fd, unary operators ∼ ∈ {!,- } and binary257

operators ⊕ ∈ {|, &, >=, <=, +, -, *, /} is defined as follows:258

JfdKF,tσ = σ(fd) JfpKF,tσ =
{
v if ∀f ∈ F. v = f(t)(fp)
∞ otherwise259

J∼eKF,tσ = ∼JeKF,tσ Je1 ⊕ e2KF,tσ = Je1KF,tσ ⊕ Je2KF,tσ260
261

Outside differential guards, only the evaluation in the current state JeKF,0σ is needed, which is262

ρ(fp) from f(0)(fp) and this expression is never ∞. We identify JeKFσ and JeKσwith JeKF,0σ .263

3.2.3 Evaluation of Guards264

The semantics of an await g statement is to suspend until the guard holds, i.e. until JgKFσ evaluates265

to true. For example, a duration guard duration(e1,e2) evaluates to true if Je1KFσ ≤ 0. Defining266

the semantics of guards requires two operations: An extension of the evaluation function that267

returns true if the guard holds and the maximal time elapse mteFσ returning the time t that may268

elapse before the guard evaluates to true, or ∞ if it never does.269

First we define mte(e): the maximal time that may elapse without missing an event is the270

minimal time needed by the system to evolve into a state where the guard is guaranteed to hold.271

This yields also the semantics of the guard itself.272

I Definition 3 (Semantics of Differential Guards). Let F be the set of solutions of object o in273

state σ. Then we define:274

mteFσ (diff e) = argmin
t≥0

(
JeKF,tσ = true

)
275

276

diff e is evaluated to true if no time advance is needed:277

Jdiff eKF,0σ = true ⇐⇒ mteFσ (diff e) = 0278
279

If e contains no continuous variable then the differential guard semantics and the evaluation of280

expressions in Def. 2 coincides with condition synchronization and expression evaluation in the281

standard ABS semantics [48].282

3.2.4 Transition System283

Fig. 10 gives the most important rules for the semantics of a single object, the omitted rules284

are given in [16]. Rules (1)–(3) define the semantics of process suspension. An await statement285

suspends the current process and gives other processes in the queue q a chance to run, even if286

its guard is evaluated to true. Suspension is modeled in rule (1) simply by introducing a suspend287

statement in front of the await.4 Rule (2) realizes a suspend statement by moving the current288

4 We follow the original ABS semantics, where suspension is handled with a separate suspend statement for
reasons of uniformity—in principle, rules (1)+(2) could be combined.

E. Kamburjan, S. Mitsch and R. Hähnle 11

(1)
(
o, ρ,ODE , F. , (τ, f, await g;s), q

)
→

(
o, ρ,ODE , F. , (τ, f, suspend;await g;s), q

)
(2)

(
o, ρ,ODE , F. , (τ, f, suspend;s), q

)
→

(
o, ρ,ODE , sol(ODE , ρ). ,⊥, q ◦ (τ, f, s)

)
(3)

(
o, ρ,ODE , F. ,⊥, q ◦ (τ, f, await g;s)) →

(
o, ρ,ODE , F. , (τ, f, s), q

)
if JgKρ◦τ = true

(4)
(
o, ρ,ODE , F. , (τ, f, v = e;s), q

)
→

(
o, ρ,ODE , F. , (τ [v 7→ JeKρ◦τ], f, s), q

)
if e contains no call or get

(5)
(
o, ρ,ODE , F. , (τ, f, return e;), q

)
→

(
o, ρ,ODE , sol(ODE , ρ). ,⊥, q

)
fut
(
f, JeKρ◦τ

)
(6)
(
o, ρ,ODE , F. , (τ, f, v = e1.get;s), q

)
fut
(
f, e2

)
→

(
o, ρ,ODE , F. , (τ, f, v = e2;s), q

)
if Je1Kρ◦τ = f

(7)
(
o, ρ,ODE , F. , (τ, f, v = e!m(e1, . . . en;s), q

)
→(

o, ρ,ODE , F. , (τ [v 7→ f̃], f, s), q
)

msg
(
JeKρ◦τ , (Je1Kρ◦τ , . . . , JenKρ◦τ), f̃

)
where f̃ is fresh

Figure 10 Selected Rules for HABS objects.

process to the object’s queue. As explained in Sect. 3.2.3, upon reactivation of a suspended289

process we must ensure its guard to be true, relative to the solution of ODE with initial values at290

suspension time. Therefore, rule (2) also recomputes the solutions F . Rule (3) can then re-activate291

a process beginning with an await statement, simply by checking whether its guard evaluates to292

true at current time (advancing time in timed configuration is explained below). An analogous293

rule (not shown in Fig. 10) activates a process with any other non-await statement. Rule (4)294

evaluates an assignment to a local variable. The rule for fields is analogous. Rule (5) realizes a295

termination (with solutions of the ODEs) and (6) a future read. Finally, (7) is a method call, the296

rule for transforming a message into a process is straightforward.297

For configurations, there are two rules, shown in Fig. 11. Rule (i) realizes a step of some object298

without advancing time, Only if (i) is not applicable, i.e. all ABS processes are blocked, rule (ii)299

can be applied. It computes the global maximal time elapse mte and advances the time in the300

clock and all objects. In particular, it decreases syntactically the timed guards.301

(i) clock(t) cn cn1 → clock(t) cn2 cn1 with cn → cn2

(ii) clock(t) cn → clock(t+ t̃) adv(cn, t̃) if (i) is not applicable and mte(cn) = t̃ 6=∞

Figure 11 Timed Semantics of HABS configurations.

Fig. 12 shows the auxiliary functions and includes the full definition of mte. Note that mte302

is not applied to the currently active process, because, when (1) is not applicable, it is currently303

blocking and, thus, cannot advance time. The characteristic feature of hybrid objects is that their304

physical state changes when time advances, even when no process is active. This is expressed in305

the semantics by a function adv(σ, t) which takes a state σ, a duration t, and advances σ by t306

time units. For non-hybrid Active Objects adv(σ, t) = σ. There, the function is needed only to307

modify the process pool of an object for scheduling, not its state, and is used exactly as in [16].308

The adv auxiliary function handles uniqueness w.r.t. the solutions of the ODE at the points in309

12 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

mte(cn1 cn2) = min(mte(cn1),mte(cn2)) mte(msg) = mte(fut) =∞
mte(o, ρ,ODE , F, prc, q) = Jmin(mte(q),∞)Kρ mte(τ, f, await g;s) = Jmte(g)Kτ

mte(τ, f, s) =∞ if s 6= await g;s̃ mte(duration(e1,e2)) = e1

mteFσ (diff e) = argmin
t≥0

(
JeKF,tσ = true

)
mte(e?) =∞

adv(cn1 cn2, t) = adv(cn1, t) adv(cn2, t)
adv(msg, F, t) = msg adv(fut, F, t) = fut

adv((o, ρ,ODE , F, prc, q), F, t) = (o, adv(ρ, t),ODE , F, adv(prc, F, t), adv(q, F, t))
adv(⊥, F, t) = ⊥

adv((τ, f, s), F, t) = (τ, f, s) if s 6= await duration(e1,e2);s̃

adv((τ, f, await duration(e1,e2);s), F, t) = (τ, f, await duration(e1+ t,e2+ t);s)

adv(σ, t)(f) =
{
σ(f) if f is not physical
v if ∀f ∈ F. v = f(t)(f)

Figure 12 Auxiliary functions. Lifting to lists is not shown.

time where the solutions are accessed: Note that the solutions are handled as a set F : at time t310

function adv checks that all solutions coincide at this point in time. If this is not the case, or if no311

solution can be found by the implementation, a runtime error is thrown. Also, all solutions are312

computed without restrictions on the time domain (e.g., for how long they exits) because it is313

not known for how long the dynamics are followed at this point. Alternatively, one could either314

impose restrictions on the ODE to enforce uniqueness or non-deterministically choose one of the315

solutions.316

We can now define traces of programs and objects.317

I Definition 4 (Traces). Given a program Prgm, we denote with clock(0) cn0 the initial state318

configuration [16]. A run of Prgm is a (possibly infinite) reduction sequence319

clock(0) cn0 → clock(t1) cn1 → · · ·320

The trace θo of an object o in a run is an assignment from the dense time domain R+ to states.321

We say that clock(ti) cni is the final configuration at ti in a run, if any other timed configuration322

clock(ti) c̃ni is before it. Fig. 13 gives a formal definition.323

θo(x) =



undefined if o is not created yet
ρ if clock(x) cn is the final configuration at x

and ρ is the state of o in cn
adv(ρ, F, x− y) if there is no configuration at clock(x)

and the last configuration was at clock(y)
with state ρ and solutions F

Figure 13 Extraction of a trace θo for an object o from a given run.

For any point in time x, the state of o is taken from the run, if a reduction step was made at324

x and o was already created. The third case in the definition is illustrated in Fig. 14: At time325

E. Kamburjan, S. Mitsch and R. Hähnle 13

time

adv

z

Figure 14 Illustration of the state at time x and two discrete states with clock(y) and clock(z).

points y and z, discrete steps are done, but none at x. The state θo(x) is extrapolated from the326

state θo(y) by following solutions from the last step at point y, if o is created.327

3.3 The Component Fragment328

We define a sublanguage of HABS called Component HABS (CHABS) to model component-style329

architectures with in- and out-ports, as well as dedicated controllers with a read-evaluate-write330

cycle. Syntactically, a class is a component if it can be derived from the syntax in Fig. 8 with the331

rule for Met replaced by the following:332

Met ::= MS [OPort | IPort | Ctrl]333

OPort ::= {return this.f;} IPort ::= {this.f = v; return Unit;}334

Ctrl ::= {sa; si; sc; so; this.m();}335

sa ::= await duration(e,e) | await diff e336

si ::= this.f = e.m() | si;si337

sc ::= while (e) {sc} | if (e) {sc} [else {sc}]? | sc;sc | T? e = e | e!m(e)338

so ::= e!m(this.f) | so;so339
340

Additionally, we demand that the only numerical data types used are Int, Real. Out-ports return341

the value of a field and in-ports copy a method parameter into a field. A controller method Ctrl342

has a timed or differential guard sa, followed by reads si from the out-port methods of other343

objects (recall that this.f = e.m() is a shortcut for an asynchronous call followed by a read, not344

a synchronous call), computations sc, and writes so to the in-ports of other objects. In the345

component fragment, we realize a component-based controller with a read-compute-write loop346

by restricting the run method of Fig. 8 to start a controller with an asynchronous call to an347

object’s own controller method Ctrl and each controller ends with a recursive call to itself. The348

TankMono and TankTick models are CHABS models, the central controller in TankMulti is349

not. A controller method with a differential guard is an event-triggered controller, a controller350

with a timed guard a time-triggered controller.351

We model instantaneous controllers in CHABS: once controller is scheduled (i.e., after its guards352

evaluates to true) no time can pass because all calls in Ctrl are to port methods that cannot block353

the caller and neither suspensions nor future reads are allowed.354

3.4 Simulation355

The implementation of HABS extends the ABS compiler [81] to compute solutions for differential356

guards, time elapse, and state advance. To compile differential guards correctly, it needs to357

compute mteFσ (diff e) (Def. 3).358

14 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

The ODEs of a class cannot be changed at runtime and are, therefore, represented as a string359

in the class table. The simulator uses an external solver to solve initial value problems and360

minimize/maximize duration between events.361

Solutions To compute solutions F , the ODEs and the current state of the physical fields are passed362

to Maxima [61] as an initial value problem. The solution is an equation system or an error. In363

its default setting, the simulator neither supports non-unique solutions nor non-solvable ODEs.364

The simulator, however, has the infrastructure to use solvers other than Maxima. This allows365

us to handle non-linear ODEs: by prefixing the physical block with [1], the modeler can select366

the solver ic1 (instead of the default desolve), which can handle non-linear systems.367

Time elapse After solving the initial value problem, Maxima is invoked with a minimization368

problem: it minimizes the time t with the equation system representing F as the constraints369

(this corresponds to eager mode switching in a hybrid automaton). The result is then handled370

in the same way as a parameter to a timed guard by the runtime system. Once time has371

passed and the suspended process is reactivated, the physical fields are updated according to372

F . This uses the Maxima function fmin_cobyla.373

State advance To implement the advance function adv, if the state of the object changes any374

physical field, the procedure used to compute time elapse is repeated for every currently375

suspended differential guard to accumulate the result.376

The output files used to visualize a program execution are of the form t1, F1, t1, F2, t2, . . . , Fn, tn.377

Here ti are the points in time where the object schedules a process and Fi the function describing378

its physical behavior in the previous suspended state. Each time a differential guard is reactivated,379

not only its state is updated, but the solution Fi+1 and the reactivation time ti+1 are written to380

the output. Each object has its own output file.381

A Python script translates output files into a discrete dynamic graph in Maxima format which382

in turn calls gnuplot that is responsible for creating the graph. The graphs in this work are slightly383

beautified outputs.384

4 Modeling with HABS385

We give more examples of HABS models and discuss some design decisions in the language, as well386

as modeling patterns in HABS for common phenomena in hybrid system control.387

4.1 Non-Linear Dynamics388

HABS can handle non-linear ODEs and non-linear dynamics to the extent the backends support389

it. For an example, consider a resistor attached to an alternating current source that produces a390

sine-formed current. This is described by the class in Fig 15.391

We use the non-linear solver of Maxima (by annotating [1]). This solver requires the input to392

satisfy certain syntax constraints, which entail the slightly awkward specification r’ = 0*t. We393

must give an explicit ODE for each non-constant variable for KeYmaera X and as HABS requires394

an autonomous system, we add a clock variable time to express sine and cosine.395

The example has a run method that illustrates validation. We check whether our simple model396

is in fact a resistor and adheres to the law R = I/V : Even before visualization, we can use simple397

command line output to check I/V by sampling every 1 second. The output for an instance398

Resistor(5) is shown in Fig. 15, where Time(n) is the symbolic time at the point of time when399

now() is evaluated. In the example this corresponds to seconds. As a next step, we can use the400

visualization to observe longer trends in Fig. 16, again for a Resistor(5).401

E. Kamburjan, S. Mitsch and R. Hähnle 15

class Resistor(Real init) {
[1] physical {

/∗ format expected by Maxima ∗/
Real t = 0: t’ = 1;
Real r = init: r’ = 0*t;
Real i = 0: i’ = cos(t);
Real v = 0: v’ = r*cos(t);

}
Unit run() {
await duration(1,1);
println("step: " + toString(now()) +

" with " + toString(v/i));
if (timeValue(now()) < 60) this!run();

}
}

s tep : Time (1) with 5
step : Time (2) with 4286450913523623 /

↪→ 857290182704725
step : Time (3) with 1319812111494398 /

↪→ 263962422298881
step : Time (4) with 1313376056981147 /

↪→ 262675211396229
step : Time (5) with 295788950328081 /

↪→ 59157790065616
step : Time (6) with 723097187038613 /

↪→ 144619437407721
step : Time (7) with 758118670875062 /

↪→ 151623734175013
step : Time (8) with 5
step : Time (9) with 5
. . .

Figure 15 A resistor attached to an AC-circuit and its sine-formed current

current

voltage

-5

 0

 5

 0 10 20 30 40 50 60

Figure 16 Example simulation output of a Resistor(5)

Finally, we can formally verify the behavior with our translation approach to KeYmaera X by402

removing the run method and, thus, transforming it into a CHABS component.403

4.2 Delays and Imprecision404

Communication is imperfect in realistic models. We demonstrate how to model two such imper-405

fections, delays and imprecision, in HABS. We use a simple platooning example, where a follower406

car wants to follow a lead car at a certain distance. Follower cars are modeled in the CHABS class407

FollowerCar in Fig. 17. For simplicity, the minimal (minDist) and maximal distance (maxDist) to408

the lead car are independent of the speed and the controller sampling frequency, which means the409

follower car will not provably stay in the desired distance interval. The time consuming statement410

await duration can be used to model two kinds of delays:411

1. Complex computations that take some time to finish.412

2. Latency: By adding a time consuming statement as the last statement of a method before the413

return, one can model delays in a network.414

16 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

class FollowerCar
(Real inita, Real start,
Real tick, Real minDist,
Real maxDist, ICar leadCar)
implements ICar {

Real next = start + minDist;
physical {

Real a = inita : a’ = 0;
Real v = 0 : v’ = a;
Real x = start : x’ = v;

}
Unit run() {
this!ctrlObserve();

}

Unit ctrlObserve() {
await duration(tick, tick);
next = leadCar.getPosition();
if(next - x <= minDist) a = a/2;
if(next - x >= maxDist) a = a*2;
this.ctrlObserve();

}

Real getPosition() {
return x;

}
}

Figure 17 Simple platooning example for a follower car following safely behind a lead car

For example, we extend getPosition() in FollowerCar to model sensing latency as follows:415

Real getPosition() {
Real oldVal = x;
await duration(1/10, 1/10);
return oldVal;

}

416

Like ABS, HABS has access to a (uniformly distributed) random number generator. There are417

functions to generate other statistical distributions. This allows to model imprecision/uncertainty.418

The following method adapts getPosition() to model sensor uncertainty:419

Real getPosition() {
Real imp = (random(11) + 95)/100; // number between 0.95 and 1.05
return this.level * imp;

}

420

4.3 Variability Modeling421

One of the main advantages of using a mature programming language as a host for hybrid behavior422

is that we can use its structuring elements and concepts: HABS inherits the module system with423

import/export clauses5, as well as the delta-oriented [73], feature-oriented [14] product line [8, 74]424

(DFPL) mechanisms of ABS [25] to model variability.425

DFPLs define not a single model, but a set of models which are variants of each other. From a426

given core model, so-called code deltas define variants based on syntactic operations: removal,427

modification and addition of classes, methods and fields. A variant is obtained from the core428

model by applying modifications specified by the deltas to it.429

To determine the relevant deltas, each delta has a set of features that activate its application.430

A feature of a variant corresponds roughly to one implemented feature of the modified model. A431

set of features is called a product. After selecting a product, the corresponding deltas are computed432

and applied, resulting in an HABS model without variability.433

5 Omitted from the language syntax in Sec. 3 for brevity.

E. Kamburjan, S. Mitsch and R. Hähnle 17

delta Delay;
modifies class Cars.FollowerCar {
modifies Real getPosition() {

Real old = original();
await duration(1/10,1/10);
return old;

}
}
delta Imprecision;
modifies class Cars.FollowerCar {
modifies Real getPosition() {
return original()*(random(11)+95)/100;

}
}

delta CruiseControl;
modifies class Cars.FollowerCar {
adds Real ccTick = this.tick*2;
adds Unit cruise() {
await duration(ccTick, ccTick);
if ((v >= 5 || v <= 0) && a != 0) {

a = 0;
}
this.cruise();

}
modifies Unit run() {
original();
this!cruise();

}
}

productline PL1;
features FDelay, FImprecision, FCruiseControl;
delta CruiseControl when FCruiseControl;
delta Delay when FDelay;
delta Imprecision after Delay when FImprecision;

Figure 18 Product line based on Fig. 17 for variability in position readings and cruise control

We refrain from introducing the whole variability layer of ABS and refer to [25] for a detailed434

and formal introduction. Instead, we use the platooning example in Fig. 17 to demonstrate435

variability modeling in practice. The changes for imprecision and delay, as well as adding a cruise436

control system can be modeled as a product line. This allows to select the appropriate car product437

for a concrete system, as summarized in Fig. 18. The product line consists of three deltas (Delay,438

Imprecision and CruiseControl), three features (FDelay, FImprecision and FCruiseControl) and439

a knowledge base that defines which features select which delta (delta D when F) and in which440

order deltas are applied if they modify the same method (delta D after D2).441

The delta Delay modifies class Cars.FollowerCar6 and its method getPosition(). The modified442

method first calls the existing variant of the method via original and then waits before returning443

the value. Delta Imprecision is similar. Both deltas modify the same method. There are numerous444

desirable properties, and to make the product line outcome deterministic, we must fix the order in445

which methods are applied that modify the same method. Here, we demand that Imprecision is446

applied after Delay. Delta CruiseControl adds a field and method implementing a simple cruise447

control system. Deltas may also remove methods and fields (not shown here). In our example we448

represent each delta as a feature, and so any product that refers to a feature invokes its assigned449

delta. The deltas are applied syntactically before type checking. As a result, a standard HABS450

program is created. For example the product {FDelay} results in the code below.451

class FollowerCar (...) implements ICar {
... // as above
Real getPosition_core() { return x; }
Real getPosition() { return this.getPosition_core()*(random(11) + 95)/100; }

}

452

6 Cars is the module.

18 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

5 Formal Verification of HABS Models453

As a prerequisite for formal verification of HABS, we briefly review differential dynamic logic454

(dL) [68, 69] as implemented in the hybrid systems theorem prover KeYmaera X [36]. We then455

discuss translation from HABS to dL, and sketch formal verification in dL with sequent proofs.456

5.1 Background: Differential Dynamic Logic457

Differential dynamic logic expresses the combined discrete and continuous dynamics of hybrid458

systems in a sequential imperative programming language called hybrid programs. Its syntax and459

informal semantics are in Table 1.460

Table 1 Hybrid programs in dL

Program Informal semantics
?ϕ Test whether formula ϕ is true, abort if false
x := θ Assign value of term θ to variable x
x := ∗ Assign any (real) value to variable x
{x′ = θ & H} Evolve ODE system x′ = θ for any duration t≥0

with evolution domain constraint H true throughout
α;β Run α followed by β on resulting state(s)
α ∪ β Run either α or β non-deterministically
α∗ Repeat α n times, for any n ∈ N

Hybrid programs provide the usual discrete statements: assignment (x := θ), non-deterministic461

assignment (x := ∗), test (?ϕ), non-deterministic choice (α ∪ β), sequential composition (α;β),462

and non-deterministic repetition (α∗). A typical modeling pattern combines non-deterministic463

assignment and test (e.g., “x := ∗; ?H”) to choose any value subject to a dL constraint H. Standard464

control structures are expressible, for example: (i) if H then α else β ≡ (?H;α) ∪ (?¬H;β),465

(ii) if H then α ≡ (?H;α) ∪ (?¬H), (iii) while (H) α ≡ (?H;α)∗; ?¬H.466

For continuous dynamics, the notation {x′ = θ&H} represents an ODE system (derivative x′467

in time) of the form x′1 = θ1, . . . , x′n = θn. Any behavior described by the ODE stays inside the468

evolution domain H, i.e. the ODE is followed for a non-deterministic, non-negative period of time,469

but stops before H becomes false. For example, a basic model of the water level x in a tank draining470

with flow −f is given by the ODE {x′ = −f &x ≥ 0}, where the evolution domain constraint471

x ≥ 0 means the tank will not drain to negative water levels. With a careful modeling pattern,472

ODEs can be governed by H so that one can react to events, without restricting or influencing473

the continuous dynamics modeled in the ODE [72]: The pattern {x′ = θ&H} ∪ {x′ = θ& H̃}474

permits control intervention to achieve different behavior triggered by an event H. H̃ is the weak475

complement of H: they share exactly their boundary from which both behaviors are possible. For476

example, H ≡ x ≤ 0, H̃ ≡ x ≥ 0.477

The dL-formulas ϕ, ψ relevant for this paper are propositional logic operators ϕ ∧ ψ, ϕ ∨ ψ,478

ϕ→ ψ, ¬ϕ and comparison expressions θ ∼ η, where ∼ ∈{<, ≤, =, 6=, ≥, >} and θ, η are real-479

valued terms over {+, −, · , /}. In addition, there is the dL modal operator [α]ϕ. The dL-formula480

[α]ϕ is true iff ϕ holds in all states reachable by program α. The formal semantics of dL [68, 69] is a481

Kripke semantics in which the states of the Kripke model are the states of the hybrid system. The482

semantics of a hybrid program α is a relation JαK between its initial and final states. Specifically,483

ν |= [α]ϕ iff ω |= ϕ for all states (ν, ω) ∈ JαK, so all runs of α from ν are safe relative to ϕ.484

Proofs in dL are sequent calculus proofs on the basis of dL axioms. For example, validity of485

the dL formula x ≥ 0→ [x := x+ 1 ∪ x := 2; {x′ = 3}]x ≥ 1 over a simple program that either486

E. Kamburjan, S. Mitsch and R. Hähnle 19

increments the value of x or continuously evolves x with a constant slope x′ = 3 after setting the487

initial value of the differential equation with x := 2 is shown in the sequent proof below:488

⇤
QEx � 0 ` x + 1 � 1
[:=]x � 0 ` [x := x + 1]x � 1

⇤
dI x = 2 ` [{x0 = 3}]x � 1

[:=],hideLx � 0 ` [x := 2][{x0 = 3}]x � 1
[;] x � 0 ` [x := 2; {x0 = 3}]x � 1

[[],^R x � 0 ` [x := x + 1 [x := 2; {x0 = 3}]x � 1
!R ` x � 0 ! [x := x + 1 [x := 2; {x0 = 3}]x � 1

489

Sequent proofs proceed bottom-up but validity transfers top-down, i.e., from the subgoals490

above the horizontal bar, the axiom or proof rule annotated to the left of the bar implies the491

sequent below the horizontal bar. In each step, assumptions are listed to the left of the `, and the492

alternatives to prove to the right of it. The proof starts with step →R to make the left-hand side493

x ≥ 0 of the implication available as an assumption. Next, the non-deterministic choice step [∪]494

means that both choices must ensure the postcondition x ≥ 1, so with conjunction splitting ∧R we495

get two subgoals: a left subgoal for the increment program x := x+ 1 and a right subgoal for the496

differential equation program. On the increment program branch, we execute the assignment in497

step [:=] and the result follows by real arithmetic in step QE. On the differential equation branch,498

step [;] splits the sequential composition into nested box modalities, and then step [:=],hideL499

executes the assignment and weakens the now obsolete assumption x ≥ 0. The branch closes by500

differential induction dI (intuitively, the dI step expresses that x ≥ 1 stays true along the flow of501

the differential equation, see [67]). This concludes the example proof.502

5.2 Formal Verification of Components503

1 interface Tank {
2 /∗ requires −1/2 <= newD <= 1/2; ∗/
3 Unit inDrain(Real newD);
4 /∗ ensures 3 <= outLevel <= 10; ∗/
5 Real outLevel();
6 }
7
8 class CTank(Real inVal)
9 implements Tank {

10 /∗ requires newD > 0 −> level <= 9.5 ∗/

11 /∗ requires newD < 0 −> level >= 3.5 ∗/
12 /∗ timed_requires inDrain < 1 ∗/
13 Unit inDrain(Real newD) { ... }
14 ...
15 }
16
17 /∗ requires 0 < tick < 1 & inVal > 3.5∗/
18 class FlowCtrl(Tank t, Real tick,
19 Real inVal) {
20 /∗ invariant (drain > 0 −> level <= 9.5)
21 & (drain < 0 −> level >= 3.5) ∗/
22 ...
23 }

Figure 19 Annotations in the TankTick
model, repeated from Fig. 4

To establish system-wide properties, hybrid active objects504

must be shown to satisfy their class invariants, provided505

that the constraints expressed in the preconditions are506

met. We make this precise now. A class specification is507

a tuple (inv, pre,TReq,Req,Ens), where inv is the class508

invariant (annotated /∗ invariant ... ∗/, see Fig. 19, lines509

20–21), a dL formula over the fields and parameters of510

the class; pre is the precondition (annotated to class511

declarations with /∗ requires ... ∗/, see Fig. 19, line 17),512

a dL formula over the initial values of fields and class513

parameters. TReq is the set of timed input requirements514

for in-port methods (annotated with /∗ timed_requires515

... ∗/, see Fig. 19, line 12): dL formulas over a dedicated516

program variable with the method’s name. Req is the517

set of input requirements for in-port methods (annotated518

with /∗ requires ... ∗/, see Fig. 19, lines 2, 10–11): dL519

formulas over fields and method parameters. Ens is the520

set of output guarantees for out-port methods (annotated521

with /∗ ensures ... ∗/, see Fig. 19, line 4): dL formulas over a dedicated program variable with the522

method’s name.523

To verify a class C against a class specification, both are translated into dL-formula (1) that524

expresses safety.525

assumptionsC →
[
(codeC; plantC)∗

]
safetyC (1)526

20 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

The placeholders assumptionsC, codeC, plantC, and safetyC (defined formally in Sect. 5.3527

below) encode class C and its specification (inv, pre,TReq,Req,Ens) as follows: The formula528

assumptionsC is the conjunction of pre and conditions on variables that keep track of time. As529

usual in controller verification, the program repeats a control part codeC followed by the continuous530

behavior plantC. The condition safetyC must hold after an arbitrary number of iterations. It531

combines inv with input requirements of in-port methods of referred objects and guarantees of532

own out-port methods.533

Even though formula (1) safetyC is a postcondition that must hold only in the final states of534

the system, we stress that this means at every real time point during the continuous dynamics,535

because ODEs advance for a non-deterministic duration while discrete statements take no time.536

The modality, therefore, expresses that whenever codeC executes completely, the invariant holds.537

In particular, the invariant holds at the beginning of and throughout the evolution of the continuous538

dynamics in plantC. Thus, validity of formula (1) expresses safety of every correctly created539

object (with respect to its specification).540

The following translation of an HABS class and its specification defines formally how the541

placeholders are composed. The translation is fully automatic and verification is compositional:542

only classes whose code changed explicitly need re-verification, not the whole system.543

5.3 Translation from CHABS to dL544

We use two operations on sets of programs P . Operation
∑
P constructs a program that non-545

deterministically executes one of the elements. Operation
∏
P constructs all permutations of546

sequential element-wise execution. Let |P | = n:547 ∑
P =

∑
{p1, . . . , pn} = p1 ∪ p2 ∪ · · · ∪ pn548 ∏

P = {p1; . . . ; pn | ∀i, j ≤ n. pi, pj ∈ P ∧ (i 6= j → pi 6= pj)}549
550

We translate classes C with the following design restrictions: (1) All controllers update their551

local caches of other objects before providing information to those objects (for example, read the552

current water level before instructing the tank to drain or fill); local caches, once updated, are not553

modified later. (2) In-port methods with a timed input requirement are only called from timed554

controllers (for example, a tank that expects to be filled every 5 s is governed by a controller555

running at a corresponding frequency). (3) Duration statements are exact (have two identical556

parameters). (4) Local variable names are unique. The first two constraints fix the interaction557

pattern between components, the last two simplify the presentation. For classes following these558

restrictions, the translation has four phases, each discussed in detail in subsequent paragraphs:559

(i) provision of program variables, (ii) generation of assumptions and safety condition, (iii) control560

code generation, (iv) provision of ODEs and constraints.561

5.3.1 Program Variables562

For each field, parameter, and local variable in C we create a program variable with the same563

name. For each method m we create a time variable tm, for each in-port method m a tick variable564

tickm, both type Real; tickm models the unknown time when an in-port method is called next.565

Time variables are local time for each method and determine when a time-triggered controller or566

an in-port is executed the next time. We denote the set of all tick variables with Tick and the set567

of all time variables with Time.568

E. Kamburjan, S. Mitsch and R. Hähnle 21

trans(f) ≡ f , where f is a dL variable representing field f

trans(v) ≡ v , where v is a dL variable representing variable v

trans(e1 op e2) ≡ trans(e1) op trans(e2)

 expressions e

trans(if(e){s}[else {s}]) ≡ if (trans(e)) then trans(s)[else trans(s)]
trans(while(e){s}) ≡ while(trans(e))trans(s) trans(s1;s2) = trans(s1);trans(s2)

trans([T] v = e) ≡ trans(v) := trans(e) trans(f = e) ≡ trans(f) := trans(e)
trans(e!m()) ≡ ?true trans(f = e.m()) ≡ trans(f) := ∗;?ϕm

where ϕm is the postcondition of m, with the method name replaced by trans(f)


statements s

Figure 20 Translation of expressions e and statements s

5.3.2 Assumptions and Safety Condition569

The formula assumptionsC (2) is C’s precondition pre plus all initializations init plus conditions570

on the time and tick variables: in the beginning, each time variable starts at zero and the tick571

variables have an unknown positive value. Each tick variable tick has a method mtick that is572

responsible for its generation. We refer to the timed input requirement of this method with573

ψ(tick), where the method name mtick has been replaced with tick. The initial value of the tick574

variable is also described by the timed input requirement and describes when the method is issued575

for the first time at the latest.576

assumptionsC ≡ pre ∧
∧
ϕ∈init

ϕ ∧
∧

t∈Time
t
.= 0 ∧

∧
tick∈Tick

(
0 < tick ∧ ψ(tick)

)
(2)577

The formula safetyC (3) captures the guarantees of class C: we need to show that C (i) preserves578

its own invariant inv; (ii) provides guarantees Ens about own out-port methods (shows what579

others can rely on); (iii) respects timed preconditions TReqs; and, (iv) when writing to in-port580

methods of callees, respects their input requirements Reqs. If class C comes with a time-triggered581

controller with guard duration(e,e), technical constraint (1) above ensures that at the moment582

the controller calls an in-port of another object, it has a correct copy of the callee state. Reqs are583

input requirements of used in-port methods of other classes than C, where the method parameter584

is replaced by the field passed to it. Ens are guarantees of all out-port methods of C. Some special585

care needs to be taken for timed input requirements. With TReqs, we denote the set of timed586

input requirements (constructed over tick, as above) of all called in-ports where such a clause is587

given.588

safetyC ≡ inv ∧
∧

ϕ∈Reqs

ϕ ∧
∧

τ∈TReqs

τ ∧
∧

ψ∈Ens
ψ (3)589

The safety condition expresses that the controllers of class C respect the input requirements590

when writing to the in-port methods of other components and call in-port methods with a timed591

input requirement sufficiently open. The structure of controllers in CHABS per Sect. 3.3 enforces592

that these calls occur last in the controller bodies.593

5.3.3 Control Code594

The translation of ABS statements to hybrid programs is defined in Fig. 20. We discuss the595

non-obvious rules: Calls e!m() to in-port methods of other objects are mapped to ?true (i.e. skip),596

because there is no effect on the caller object. A read f=e.m() from an out-port method is mapped597

22 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

to trans(f) := ∗;?ϕm: a non-deterministic assignment, restricted with a subsequent test for the598

guarantee of the called out-port method.599

The translation of ports and control methods has the general form if (check) then {exec; cleanup}.600

This pattern is instantiated per method type as follows:601

Time-triggered controller m with method body await duration(e,e); s; this.m(): check makes602

sure the correct duration elapsed and cleanup resets time, so check ≡ tm
.= trans(e), exec ≡603

trans(s), cleanup ≡ tm := 0.604

Event-triggered controller m with body await diff e; s; this.m(): check tests the guard, so605

check ≡ trans(e), exec ≡ trans(s), cleanup ≡ ?true.606

In-port method m with body this.f = v, input requirement ϕ and timed input requirement ψ:607

check ensures the correct duration elapsed, so check ≡ tm
.= tickm; exec chooses a value consistent608

with ϕ, so exec ≡ f := ∗; ?ϕ; finally, cleanup does the same for a new duration consistent with609

ψ (method name replaced by tickm), so cleanup ≡ tickm := ∗; ?tickm > 0; ?ψ; tm := 0.610

Out-port methods and the run method are not translated. Out-port methods have no effect611

on object state and their guarantees (included in (1) in safetyC) must be shown to hold612

throughout plant execution. The run method initializes the system and ensures that every613

controller can run once before the first plant execution, which is guaranteed in (1) through614

sequential composition of codeC; plantC.615

Let M be the set of all translations of in-port methods and controllers, then:616

codeC ≡
(∑∏

M
)

;
(∑

M
)∗

(4)617

The controller codeC first executes all controllers in a non-deterministically chosen order618

(
∑∏

M), then allows each controller/in-port to repeat (
∑
M)∗. The latter replicates eager ABS619

behavior on satisfied guards: when an event-triggered controller is triggered and its guard still620

holds after its execution, then in ABS the controller is run again.621

Note that (
∑
M)∗ safely overapproximates all possible orders, including the behavior of the622

first part
∑∏

M . However, including
∑∏

M in codeC simplifies practical proofs, because in623

typical models that disable the check guards at the end of control and in-port method bodies (e.g.,624

a time-triggered controller that resets time in cleanup so that it becomes re-enabled only after625

some time passes), every method is executed at most once before time advances. The structure of626

the controller codeC mirrors this with the first part
∑∏

M to simplify practical proofs as follows:627

(i) the proof obligations of enabled control and in-port methods (i.e., whose check is true) are628

easier because the outer loop is dropped, and additionally the proof obligations of all the disabled629

control and in-port methods can be easily disposed of by contradiction with their check guards;630

(ii) finding a loop invariant for the second part (
∑
M)∗ is easy when no method is executed twice631

before time advances: in that case, the loop invariant for (
∑
M)∗ must simply imply that none of632

the check guards holds. Further note that
∑∏

M does not exclude runs, because the general633

form if (check) then {exec; cleanup} of control methods and ports in M ensures that there is634

progress through the implicit else ?true even if all controllers and in-ports are disabled.635

5.3.4 Plant636

The plant of a class C has the form637

plantC ≡
∑
{(ode, odet & c) | c ∈ C} , (5)638

where ode is the ODE from its physical block, odet describes the time variables, and the constraints639

c ∈ C partition the domain of the physical fields. The boundaries of the subdomains overlap640

E. Kamburjan, S. Mitsch and R. Hähnle 23

exactly where the differential guards hold.7 This models guards as events in dL, following the641

modeling pattern described in Sect. 5.1. To ensure that no differential guard is omitted, it is642

necessary that no two differential guards share a program variable. This is not a restriction, as643

two controllers can be merged with a disjunction: see the guard in Fig. 2.644

To define C let e1, . . . , em be the translations of differential guards in the class and ẽi the weak645

complement of ei. Let t1, . . . , tl be all time variables introduced for time-triggered controllers with646

eti the expression in the duration statement. Let pt1, . . . , ptk be all time variables introduced for647

in-port methods and tickpti the associated tick variable. We set odet ≡ {t′1 = 1, . . . , t′l = 1, pt′1 =648

1, . . . , pt′k = 1} and define:649

C ≡
(
{e1, ẽ1} × {e2, ẽ2} × · · · × {em, ẽm}

)
650

∪ {t1 ≤ eti}i≤l ∪ {t1 ≥ eti}i≤l ∪ {pti ≤ tickpti}i≤n ∪ {pti ≥ tickpti}i≤n651
652

5.3.5 On the Random Number Generator653

We do not translate the random(i) expression from HABS to dL, because its semantics is that it654

returns an integer below i. However, integer arithmetic is undecidable, which is the reason why dL655

opts to embed its modality into a decidable first-order logic over the reals [66]. A straightforward656

overapproximation with a translation to a variation of random that returns a real value is:657

trans
(
f = random(r)

)
≡ trans(f) := ∗; ?

(
0 ≤ trans(f) < trans(r)

)
658

5.4 Compositional Verification659

We can now state our main theorem: If we can prove safety of all classes, i.e., close all proof660

obligations, then the whole system is safe, i.e., every class indeed preserves its invariant. Verification661

is compositional: if we change the code or invariant of one class, only the proof obligation of this662

class has to be reproven. If we change a method precondition, additionally the proof obligations663

of all calling classes have to be reproven.664

I Theorem 5. Let P be a set of classes, with each C ∈ P associated with ϕC per formula (1). If665

all the ϕC are valid, then for every main block that creates objects satisfying preC all reachable666

states of all objects satisfy invC.667

Proof Sketch. Recall that the trace of an HAO is an assignment of time to stores (Def. 4). For668

the proof, each store is indexed by its time and the trace starts with 0 (i.e., the possible offset669

caused by the delayed object creation is removed):670

θo(t) = (ρt)t∈R+ = ρ0 · · ·671

We are going to use that there are only countably many discrete steps in a run and partition the672

trace into countably many subtraces. Then we show by induction on these discrete steps that the673

invariant is always preserved.674

Let D be the set of all time points with discrete steps of o in the run that generates θo. Note675

that 0 ∈ D and that θo(d) is the last store defined by the SOS semantics, if several such stores676

share the same time; further note that this is reflecting the reachability relation of dL.677

We define θdo as the subtrace of θo starting with d and ending at the next time point of a678

discrete step. Let next(d) be the next time point of a discrete step after d, if such a time point679

7 Expressions contain only >=, <= , so weak complement ensures a boundary overlap.

24 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

exists, and ∞ otherwise:680

dom
(
θdo
)

=
[
d..next(d)

]
with θdo(t) = θo(t)681

We observe that each state in the HABS semantics is also a state in the Kripke structure of682

the semantics if all class parameters are removed. We show that trans preserves reachability: if683

from a state ρ state ρ′ is reachable by an HABS statement s in the HABS semantics, then state ρ′ is684

reachable from state ρ by trans(s). This is justified as follows:685

1. The dL program omits no events, because each event is at a boundary of two evolution domain686

constraints on a variable and no two events share a variable (each controller has its own time687

variable).688

2. The evolution domain constraints cover all possible states, so no run is rejected for a domain689

being too small.690

3. Each test in dL formula ϕC that discards runs does so using a condition that is provably691

guaranteed by other objects. For example, the test that discards all runs of an in-port method692

for inputs not satisfying its input requirements is safe, because on the caller side this condition693

is part of the safety condition (3).694

4. The observation also relies on technical constraint (1) above and the recursive call being at695

the end of a controller. Together, this guarantees that at that moment the caller copy of the696

callee’s state is consistent with the callee’s actual state.697

Let D = (di)i∈N be an enumeration of the discrete time points and θ̂di
o the union of all subtraces698

of θo up to di:699

dom
(
θ̂di
o

)
=
⋃
j≤i

dom
(
θdj
o

)
with θ̂di

o (t) = θo(t)700

We show by induction on i that every state in θ̂di
o is safe, i.e., a model for the invariant invC.701

Induction Base: i = 0. It is explicitly checked that θd0
o is safe. By assumption, the object is702

created in a state θd0
o such that the precondition preC holds. From axiom I of dL [68] we know703

that the safety condition must be true in the beginning of the loop, thus validity of ϕC implies704

validity of preC → invC. Since all the formulas ϕC are proved in isolated component proofs,705

we conclude invC holds for all reachable states of all objects as by the correctness argument706

reachability is preserved.707

Induction Step. i > 0. This is analogous to the base case, but instead of an explicit check that di708

is safe, we use the induction hypothesis that every state in θ̂di−1
o is safe and that the statement709

for di is executed in a state at time t ∈ dom
(
θ̂
di−1
o

)
. J710

I Remark. The theorem states soundness of safety properties in dL proof obligations and does not711

prove semantic equivalence between the contained dL-program and the HABS class. This approach712

stands in the tradition of modular deductive verification of object-oriented software, in particular,713

it follows the structure of systems for distributed object-oriented programs [52]. The main reason714

to pursue this approach is that the form of proof obligations and the translation of statements715

cannot be disentangled: the translation of method calls includes the postcondition of the called716

methods: soundness of the translation relies on the fact that all other proof obligations can be717

established. This is already the case for discrete, sequential languages [41]. Note that this is not718

circular. As the proof of Theorem 5 shows, we can order all method executions in a run such that719

we have a well-founded induction on them. The first method execution in every object relies only720

E. Kamburjan, S. Mitsch and R. Hähnle 25

on the state precondition which is guarenteed at creation. These in turn are guaranteed in the main721

block, which has no assumptions. Another reason is that each dL proof obligation corresponds to722

the (symbolic) execution of one object in a class. To model all permissible evolutions of several723

method executions in a proof, therefore, it is necessary to encode the scheduler. This requires a724

form of proof obligation that assumes the object invariant (which contains scheduling constraints).725

This effect is well-known in deductive verification of distributed programs [31, 32, 52].726

5.5 Case Study727

We illustrate the HABS-to-KeYmaera X translation defined above with the TankTick system in728

Fig. 4. The example, the implementation of the translation and the simulation, as well as the729

mechanical proofs of the translation are available in the supplementary material.8 We start with730

the two-object water tank, whose behavior for an initial level of 5 l is plotted in Fig. 5.731

5.5.1 Class CTank732

The in-port method inDrain() of the CTank class gives rise to a time variable tinDrain and a tick733

variable tickinDrain. Following (2), assumptionsTank is:734

assumptionsTank ≡ 4 ≤ inVal ≤ 9
∧ tinDrain

.= 0 ∧ 0 < tickinDrain

∧ level
.= inVal ∧ drain

.= −1/2
(6)735

The safety condition says the tank level stays within its limits and that level adheres to its736

contract which happen to be identical. No in-port methods of other classes are used, hence:737

safetyTank ≡ 3 ≤ level ≤ 10 . (7)738

The CTank class has no controller method, so the inDrain method, which has a timed input739

requirement, per (4) results in codeTank below740

codeTank ≡ p; (p)∗ (8)741

where p ≡ trans(inDrain) below is translated from Fig. 4 using the translation of Fig. 20:742

p ≡ if (tinDrain
.= tickinDrain) then743

drain := ∗;744

?−1/2 ≤ drain ≤ 1/2 ∧ (drain < 0→ level ≥ 3.5)745

∧ (drain > 0→ level ≤ 9.5);746

tickinDrain := ∗; ?0 < tickinDrain < 1; tinDrain := 0747
748

The plant plantTank, following shape (5), is based on the physical block and the new clock749

variable (there are no differential guards), with the evolution domain constraint split along the750

new time variable tinDrain. ODEs of the form v′ = 0 are default and omitted.751

plantTank ≡ plant≤Tank ∪ plant≥Tank

plant≤Tank ≡ {level′ = drain, t′inDrain = 1 & tinDrain ≤ tickinDrain}

plant≥Tank ≡ {level′ = drain, t′inDrain = 1 & tinDrain ≥ tickinDrain}

(9)752

8 https://doi.org/10.5281/zenodo.5973904

https://doi.org/10.5281/zenodo.5973904

26 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

I Lemma 6. Class Tank is safe, i.e., formula ϕTank—obtained per (1) referring to tank assumptions753

assumptionsTank (6), postcondition safetyTank (7), code codeTank (8), and plant plantTank (9)—is754

valid.755

ϕTank ≡ assumptionsTank →
[
(codeTank; plantTank)∗

]
safetyTank756

757

Proof. See KeYmaera X proofs in the supplementary material. The proof sketch here serves as758

an illustration of how sequent proofs in KeYmaera X systematically use the invariant annotations759

in HABS. In the proof, we show the inductive loop invariant inv≤Tank, which expresses that the level760

always stays within limits and that the next input will be supplied before exceeding the timed input761

requirement as follows: 3 ≤ level ≤ 10 ∧ −1/2 ≤ drain ≤ 1/2 ∧ 3 ≤ level + drain(tickinDrain −762

tinDrain) ≤ 10 ∧ tickinDrain ≤ tinDrain.763

The proof starts in step →R to make the left-hand side assumptionsTank of the implication764

available as assumptions. Next, [∗] uses the loop invariant inv≤Tank for induction: the base case765

in the left-most subgoal and the use case in the right-most subgoal follow by real arithmetic766

automation; the induction step in the middle subgoal continues with [;] to split the sequential767

composition into nested box modalities.768

∗
autoinv<Tank ` [plant≤Tank]inv

≤
Tank

∗
contradictioninv<Tank ` [plant≥Tank]inv

≤
Tank

[∪],∧R inv<Tank ` [plant≤Tank ∪ plant≥Tank]inv
≤
Tank

expand inv<Tank ` [plantTank]inv
≤
Tank

∗
autoinv≤Tank ` [p]inv<Tank

∗
autoinv<Tank ` [p∗]inv<Tank

[;],MR inv≤Tank ` [p ; (p∗)]inv<Tank
expand inv≤Tank ` [codeTank]inv

<
Tank

. . .

inv<Tank ` [plantTank]inv
≤
Tank

MR inv≤Tank ` [codeTank][plantTank]inv
≤
Tank

[;] inv≤Tank ` [codeTank ; plantTank]inv
≤
Tank

∗
autoassumptionsTank ` inv≤Tank

. . .

inv≤Tank ` [codeTank ; plantTank]inv
≤
Tank

∗
autoinv≤Tank ` safetyTank

[∗] assumptionsTank ` [(codeTank ; plantTank)
∗
]safetyTank→R ` assumptionsTank → [(codeTank ; plantTank)

∗
]safetyTank769

The main insight now is that codeTank reacts at the latest when tickinDrain = tinDrain and770

will reset the timer using tickinDrain := 0, so that the timing requirement tickinDrain ≤ tinDrain771

can be strengthened to a strict inequality tickinDrain < tinDrain in the inductive loop invariant.772

The resulting intermediate condition inv<Tank is used in step MR to split into two subgoals: in the773

left subgoal of MR, we show that codeTank guarantees the intermediate condition inv<Tank. In the774

right subgoal of MR we show that plantTank preserves the loop invariant from that intermediate775

condition: the plant listens for the event tickinDrain = tinDrain with a choice between two776

differential equations, whose evolution domain constraints exactly overlap at the event. On777

evolution domain tickinDrain ≤ tinDrain in plant≤Tank, the differential equation preserves the loop778

invariant, whereas on evolution domain tickinDrain ≥ tinDrain in plant≥Tank the contradiction779

shows that the controller reacts such that the plant can never enter this unsafe behavior. J780

5.5.2 Time-Triggered Controller FlowCtrl781

Assumptions assumptionsFlowCtrl of FlowCtrl constructed per (2) and plant plantFlowCtrl con-782

structed per (5) are straightforward. The latter is created for the sake of observing time events,783

E. Kamburjan, S. Mitsch and R. Hähnle 27

even though no physical block is present:784

assumptionsFlowCtrl ≡ 0 < tick < 1 (10)785

plantFlowCtrl ≡ {t′ctrlFlow = 1 & tctrlFlow ≥ tick} (11)786

∪ {t′ctrlFlow = 1 & tctrlFlow ≤ tick}787
788

The safety condition safetyFlowCtrl constructed per (3) is the timed input requirement of the789

called inDrain method and the class invariant (subsumed by the input requirement of inDrain):790

safetyFlowCtrl ≡ −1/2 ≤ drain ≤ 1/2 ∧ tick < 1
∧ (drain < 0→ level ≥ 3.5)
∧ (drain > 0→ level ≤ 9.5)

(12)791

Finally, the code codeFlowCtrl is translated as792

codeFlowCtrl ≡ q; (q)∗ (13)793

with794

q ≡ if (tctrlFlow
.= tick) then795

level := ∗; ?3 ≤ level ≤ 10;796

if (level ≤ 3.5) then {drain := 1/2};797

if (level ≥ 9.5) then {drain :=−1/2};798

tctrlFlow := 0799
800

I Lemma 7. Class FlowCtrl is safe, i.e., formula ϕFlowCtrl—obtained per (1) referring to801

assumptions assumptionsFlowCtrl (10), postcondition safetyFlowCtrl (12), code codeFlowCtrl (13),802

and plant plantFlowCtrl (11)—is valid.803

ϕFlowCtrl ≡ assumptionsFlowCtrl →
[
(codeFlowCtrl; plantFlowCtrl)∗

]
safetyFlowCtrl804

805

Proof. See KeYmaera X-proofs in the supplementary material. J806

5.5.3 Event-Triggered Controller CSingleTank807

Translation of class CSingleTank from Fig. 2 illustrates the handling of event-triggered controllers.808

level
drain

3 10

Figure 21 Avoiding Zeno-
behavior in TankMono.

The plant and code interact. The plant separates the evolution809

domain into two parts, with the guard of the event-triggered810

controller (the white areas in Fig. 21) defining their boundary. The811

gray areas are larger than the safe region defined by 3 <= level <=812

10. This is necessary to avoid Zeno behavior in the eager execution813

semantics of HABS: If we used simply the weak complement of the814

safe region level <= 3 | level >= 10 as a guard and happen to815

be in a program state at the boundary (the lower of the states816

indicated with a star in Fig. 21), then the controller changes the state as shown by the arrow.817

But if the next state is again on the boundary, which is the case when the safe region is too small,818

then the guard is triggered, the controller loops back to the first state, etc., without physical time819

being able to advance. The guard in Fig. 2 ensures that after the controller has run, the state is820

28 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

not on the boundary anymore. This behavior is exhibited by our implementation, see Fig. 3. The821

code codeCSingleTank has the form r; (r)∗ with r being:822

r ≡ if (level≤3 ∧ drain≤0) ∨ (level≥10 ∧ drain≥0) then
if (level ≤ 3) then drain := 1/2 else drain :=−1/2

823

The plant of CSingleTank with sufficiently large regions is as follows:824

plantCSingleTank ≡825

{level′ = drain & (level ≤ 3 ∧ drain ≤ 0) ∨ (level ≥ 10 ∧ drain ≥ 0)}826

∪{level′ = drain & (level ≥ 3 ∨ drain ≥ 0) ∧ (level ≤ 10 ∨ drain ≤ 0)}827
828

5.6 On Translation into dL829

HABS programs can be tested and validated, but the programmer needs to avoid writing programs830

that are 1. inherently difficult to interpret and 2. have a high degree of non-determinism. Both831

are good programming and software engineering practices, of course, and the fact that HABS is a832

programming language enables one to apply standard techniques for discrete programs.833

A back-translation from dL to HABS would provide meaningful validation only for deterministic834

dL models. While being possible even in the general case, two traits of dL programs prohibit easy835

interpretation and simulation:836

Highly Non-Deterministic Structure Additionally to non-deterministic assignment, branching837

and repetition are both non-deterministic: the—rather non-intuitive—representation of (s)∗ in838

HABS is a loop that non-deterministically chooses to break out.839

1 while(True) {
2 Int i = random(2);
3 if (i == 1) break;
4 s;
5 }

840

This loop may never terminate, while the semantics of dL loops defines an arbitrary but841

countable number of repetitions. A similar pattern has to be employed for branching.842

Tests The test ?ϕ discards a run based on a dL-guard. Translation would require 1. to evaluate843

dL formulas, as opposed to Boolean expressions, and 2. a mechanism to abort the program.844

This can be emulated by exceptions, but it obfuscates the semantics.845

6 Related & Future Work, Conclusion846

6.1 Related Work847

Previous work on hybrid programming concentrated on purely sequential languages: HybCore [39]848

is a while-language with hybrid behavior and a simulator [40], but lacks formal verification849

techniques. Its extensional semantics is not able to express the timed properties needed for our850

distributed controller. Whiledt [77] is also a while-language and uses infinitesimals instead of ODEs851

to model continuous dynamics. It has a simple verification system based on Hoare triples [42], but852

is not executable.853

Hybrid Rebeca (HR) [46] proposes to embed hybrid automata directly into the actor language854

Rebeca. In contrast to HABS, no simulation is available and verification is not object-modular: the855

whole model is translated to a single monolithic hybrid automaton. Because of this, a number856

E. Kamburjan, S. Mitsch and R. Hähnle 29

of boundedness constraints have to be imposed. The translation is also the semantics: HR has857

no semantics beyond this translation and is mainly a frontend for Hybrid Automata tools. The858

verification backend of HR does not support non-linear ODEs (our examples are linear, but HABS,859

KeYmaera X, and Maxima, support non-linear ODEs; HABS models with non-linear ODEs are860

found in the online supplement).861

Recent efforts [58, 64] split the verification task in dL into manageable pieces by modularizing862

deductive hybrid systems verification with component-based modeling and verification techniques,863

but impose strict structural requirements on components and communication. The Sphinx864

modeling tool [62] for dL represents non-distributed hybrid programs with UML class and activity865

diagrams, but for verification purposes it translates these model artifacts into a single monolothic866

hybrid program.867

The Architecture Analysis and Design Language (AADL), a language to model hardware and868

software components in embedded systems, has a hybrid extension [2], which uses the HHL [80]869

theorem prover as its verification backend [1]. HHL is based on Hoare triples over hybrid CSP870

programs and duration calculus formulas [57]. Hybrid AADL offers structuring elements for871

components and their connections on the architecture level. The semantics of hybrid AADL is872

given as a translation of the synchronous fragment of AADL into hybrid CSP, while we extend873

the semantics of the actor-based programming language ABS to combine reasoning about the874

asynchronous behavior of communicating components in ABS with reasoning about the internal875

combined discrete and continuous component behavior in differential dynamic logic. As a side876

effect, the extended semantics enables proving the correctness of the translation to differential877

dynamic logic, as well as translating HABS to other formal languages.878

A similar approach based on Stateflow/Simulink is implemented in the MARS toolkit [22]. The879

MARS approach is orthogonal to HABS: MARS connects a verification toolkit around a simulation880

language (which is a daunting task given the missing formal semantics of Stateflow/Simulink),881

while HABS is designed specifically to enable verification and simulation through its languages882

features. This is reflected in the soundness proof, which is based on a bidirectional translation.883

Another approach based on CSP and the duration calculus combines these formalisms with884

Object-Z [45]. This enables model-checking for real-time systems (clocks with resets), while885

we support hybrid systems theorem proving with (non-linear) differential equations. A further886

integration of Object-Z and (Timed) CSP was investigated by Mahony & Dong [60].887

Hybrid Event-B [12, 13] extends Event-B refinement reasoning with continuous behavior888

between the usual discrete Event-B events. A more lightweight approach [76, 21] models hybrid889

systems in an abstract way as action systems without differential equations directly in Event-B,890

and complements analysis in Event-B with simulation in Matlab. Similarly, Dupont et al. [34]891

use Event-B for a correct-by-construction approach to hybrid systems. They embed the ODEs892

used for continuous modeling by declaring them as a special theory within Event-B instead of893

extending the core language itself.894

Integrated tools such as Ptolemy [71], Stateflow/Simulink except the aforementioned MARS895

toolkit, and Modelica, all emphasize simulation, reachability analysis (e.g., Charon [6, 7], Ariadne896

[15]), or testing (e.g., [30]). As supporting techniques, they provide modeling notation for timing897

aspects, signals, and data flow between heterogeneous models. Formal verification of hybrid898

systems with reachability analysis and model checking tools (SpaceEx [35], CORA [4], Flow* [23])899

support modularity [33] based on hybrid I/O automata [59], assume-guarantee reasoning [17, 43],900

and hybridization [24]. However, they work best for finite-horizon analysis and finite regions901

(because over-approximations stay tight only for bounded time and from small starting regions).902

Similar restrictions apply to dReal/dReach [37, 55].903

Dynamic I/O automata [9] for modeling dynamic systems introduce a notion of externally904

30 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

visible behavior, the ability to create and destroy automata and change their signature dynamically;905

those features are all naturally available in our object-oriented approach and do not need special906

extension like automata-based modeling tools. Our work contrasts with all mentioned simulation907

and verification approaches by providing a uniform modeling language, validation by simulation,908

modular infinite-horizon and infinite-region theorem proving through translation from HABS to dL.909

Translation among hybrid system languages so far centers around hybrid automata as a910

unifying concept [11, 79]. Others focus on the discrete fragment [38]. Our translation from HABS911

to dL translates complete hybrid system models written in a programming language, including912

annotations (preconditions, invariants, etc.). It is sound relative to the formal semantics of HABS913

and dL.914

Hybrid systems validation through simulation is addressed with translation to Stateflow/Simulink915

[10]; with a combination of discrete-event and numerical methods [19]; and with co-simulation916

between control software and dedicated physics simulators [26, 78, 82]. Here, we focus on safety917

verification, the distributed aspect of HABS models, and take a pragmatic first step for simulating918

continuous models.919

In summary, HABS is designed for modular deductive verification (unlike simulation-centric920

tools), infinite-horizon analysis on infinite regions (unlike reachability analysis and model checking921

tools), without sacrificing high-level programming language features (unlike hybrid systems922

modularization techniques and assume-guarantee reasoning).923

6.2 Future Work924

The present work lifts the research on formal semantics of programming languages for hybrid925

systems from verification-centric minimalistic languages to distributed object-oriented languages.926

Carrying over techniques, ideas, and analyses from programming language research to hybrid927

systems programming, presents an intriguing research direction. Our ongoing work on larger928

case studies with HABS, in particular in connection with co-simulation [54], is expected to reveal929

additional challenges.930

We plan to combine the verification of CHABS presented here with the more modular approach931

based on post-regions [51], which does not support timed input requirements yet. Future research932

avenues include investigating how the static analyses for ABS, in particular the deadlock analysis for933

boolean guards [50], can be extended for HABS, extending approximate simulation of non-solvable934

differential equations, experimenting with various computer algebra systems, and supporting935

guards with non-urgent semantics.936

6.3 Conclusion937

Distributed hybrid systems are not only difficult to verify formally, it is equally hard to validate a938

formal model of them, especially with components using symbolic computations, such as servers.939

Both activities have conflicting demands, so we propose a translation-based approach: modeling is940

guided by patterns over hybrid programs and class specifications in HABS, a hybrid extension of941

the concurrent active-object language ABS. These are automatically decomposed and translated942

(Thm. 5) into sequential proof obligations of the verification-oriented differential dynamic logic dL943

and discharged by the hybrid theorem prover KeYmaera X.944

We illustrated the viability of our approach by a case study that features many complications:945

concurrent behavior, possible non-termination, correctness depending on timing constants, multi-946

dimensional domain, time lag in sensing, etc.947

E. Kamburjan, S. Mitsch and R. Hähnle 31

Acknowledgments948

This work is partially supported by the FormbaR project, part of AG Signalling/DB RailLab in949

the Innovation Alliance of Deutsche Bahn AG and TU Darmstadt. This material is based upon950

work supported by AFOSR grant FA9550-16-1-0288.951

References
1 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Nai-

jun Zhan, and Liang Zou. Adding formal mean-
ings to AADL with hybrid annex. In Ivan Lanese
and Eric Madelaine, editors, Formal Aspects of
Component Software - 11th International Sympo-
sium, FACS 2014, Bertinoro, Italy, September 10-
12, 2014, Revised Selected Papers, volume 8997 of
Lecture Notes in Computer Science, pages 228–247.
Springer, 2014.

2 Ehsan Ahmad, Brian R. Larson, Stephen C. Bar-
rett, Naijun Zhan, and Yunwei Dong. Hybrid an-
nex: an AADL extension for continuous behav-
ior and cyber-physical interaction modeling. In
Michael Feldman and S. Tucker Taft, editors, Pro-
ceedings of the 2014 ACM SIGAda annual confer-
ence on High integrity language technology, HILT
2014, Portland, Oregon, USA, October 18-21,
2014, pages 29–38. ACM, 2014.

3 Elvira Albert, Frank S. de Boer, Reiner Hähnle,
Einar Broch Johnsen, Rudolf Schlatte, Sil-
via Lizeth Tapia Tarifa, and Peter Y. H. Wong.
Formal modeling and analysis of resource manage-
ment for cloud architectures: an industrial case
study using real-time ABS. Service Oriented Com-
puting and Applications, 8(4):323–339, 2014.

4 M. Althoff. An introduction to CORA 2015. In
Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, 2015.

5 Rajeev Alur, Costas Courcoubetis, Thomas A.
Henzinger, and Pei Hsin Ho. Hybrid automata:
An algorithmic approach to the specification and
verification of hybrid systems. In Hybrid Systems,
volume 736 of LNCS, pages 209–229, Berlin, Hei-
delberg, 1993. Springer.

6 Rajeev Alur, Thao Dang, Joel M. Esposito,
Rafael B. Fierro, Yerang Hur, Franjo Ivancic, Vijay
Kumar, Insup Lee, Pradyumna Mishra, George J.
Pappas, and Oleg Sokolsky. Hierarchical hybrid
modeling of embedded systems. In Thomas A. Hen-
zinger and Christoph M. Kirsch, editors, Embed-
ded Software, First International Workshop, EM-
SOFT 2001, Tahoe City, CA, USA, October, 8-10,
2001, Proceedings, volume 2211 of Lecture Notes in
Computer Science, pages 14–31. Springer, 2001.

7 Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Ku-
mar, and Insup Lee. Modular specification of hy-
brid systems in CHARON. In Nancy A. Lynch and
Bruce H. Krogh, editors, Hybrid Systems: Compu-
tation and Control, Third International Workshop,
HSCC 2000, Pittsburgh, PA, USA, March 23-25,
2000, Proceedings, volume 1790 of Lecture Notes
in Computer Science, pages 6–19. Springer, 2000.

8 Sven Apel, Don S. Batory, Christian Kästner, and
Gunter Saake. Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer,
2013.

9 Paul C. Attie and Nancy A. Lynch. Dynamic in-
put/output automata: A formal and compositional
model for dynamic systems. Inf. Comput., 249:28–
75, 2016.

10 Stanley Bak, Omar Ali Beg, Sergiy Bogomolov,
Taylor T. Johnson, Luan Viet Nguyen, and Chris-
tian Schilling. Hybrid automata: from verification
to implementation. STTT, 21(1):87–104, 2019.

11 Stanley Bak, Sergiy Bogomolov, and Taylor T.
Johnson. HYST: a source transformation and
translation tool for hybrid automaton models. In
Antoine Girard and Sriram Sankaranarayanan, ed-
itors, HSCC’15, pages 128–133. ACM, 2015.

12 Richard Banach, Michael J. Butler, Shengchao Qin,
Nitika Verma, and Huibiao Zhu. Core hybrid
Event-B I: single hybrid Event-B machines. Sci.
Comput. Program., 105:92–123, 2015.

13 Richard Banach, Michael J. Butler, Shengchao Qin,
and Huibiao Zhu. Core hybrid Event-B II: multiple
cooperating hybrid Event-B machines. Sci. Com-
put. Program., 139:1–35, 2017.

14 Don S. Batory, Jacob Neal Sarvela, and Axel
Rauschmayer. Scaling step-wise refinement. IEEE
Trans. Software Eng., 30(6):355–371, 2004.

15 Luca Benvenuti, Davide Bresolin, Pieter Collins,
Alberto Ferrari, Luca Geretti, and Tiziano Villa.
Assume–guarantee verification of nonlinear hybrid
systems with Ariadne. International Journal
of Robust and Nonlinear Control, 24(4):699–724,
2014.

16 Joakim Bjørk, Frank S. de Boer, Einar Broch
Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia
Tarifa. User-defined schedulers for real-time con-
current objects. Innovations in Systems and Soft-
ware Engineering, 9(1):29–43, 2013.

17 Sergiy Bogomolov, Goran Frehse, Marius Gre-
itschus, Radu Grosu, Corina S. Pasareanu, An-
dreas Podelski, and Thomas Strump. Assume-
guarantee abstraction refinement meets hybrid sys-
tems. In Eran Yahav, editor, Hardware and Soft-
ware: Verification and Testing - 10th Interna-
tional Haifa Verification Conference, HVC 2014,
Haifa, Israel, November 18-20, 2014. Proceedings,
volume 8855 of Lecture Notes in Computer Science,
pages 116–131. Springer, 2014.

18 Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch,
Magnus O. Myreen, and André Platzer. VeriPhy:
Verified controller executables from verified cyber-
physical system models. In Dan Grossman, editor,
PLDI, pages 617–630. ACM, 2018.

19 Christopher X. Brooks, Edward A. Lee, David
Lorenzetti, Thierry S. Nouidui, and Michael Wet-
ter. CyPhySim: a cyber-physical systems sim-
ulator. In Antoine Girard and Sriram Sankara-
narayanan, editors, HSCC’15, pages 301–302.
ACM, 2015.

32 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

20 Lilian Burdy, Yoonsik Cheon, David R. Cok,
Michael D. Ernst, Joseph R. Kiniry, Gary T. Leav-
ens, K. Rustan M. Leino, and Erik Poll. An
overview of JML tools and applications. Interna-
tional Journal on Software Tools for Technology
Transfer, 7(3):212–232, 2005.

21 Michael J. Butler, Jean-Raymond Abrial, and
Richard Banach. Modelling and refining hybrid sys-
tems in Event-B and Rodin. In Luigia Petre and
Emil Sekerinski, editors, From Action Systems to
Distributed Systems - The Refinement Approach,
pages 29–42. Chapman and Hall/CRC, 2016.

22 Mingshuai Chen, Xiao Han, Tao Tang, Shuling
Wang, Mengfei Yang, Naijun Zhan, Hengjun Zhao,
and Liang Zou. MARS: A toolchain for mod-
elling, analysis and verification of hybrid systems.
In Michael G. Hinchey, Jonathan P. Bowen, and
Ernst-Rüdiger Olderog, editors, Provably Correct
Systems, NASA Monographs in Systems and Soft-
ware Engineering, pages 39–58. Springer, 2017.

23 Xin Chen, Erika Ábrahám, and Sriram Sankara-
narayanan. Flow*: An analyzer for non-linear
hybrid systems. In Natasha Sharygina and Hel-
mut Veith, editors, Computer Aided Verification -
25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings,
volume 8044 of Lecture Notes in Computer Science,
pages 258–263. Springer, 2013.

24 Xin Chen and Sriram Sankaranarayanan. De-
composed reachability analysis for nonlinear sys-
tems. In 2016 IEEE Real-Time Systems Sympo-
sium, RTSS 2016, Porto, Portugal, November 29
- December 2, 2016, pages 13–24. IEEE Computer
Society, 2016.

25 Dave Clarke, Radu Muschevici, José Proença, Ina
Schaefer, and Rudolf Schlatte. Variability mod-
elling in the ABS language. In FMCO, volume
6957 of Lecture Notes in Computer Science, pages
204–224. Springer, 2010.

26 Fabio Cremona, Marten Lohstroh, David Broman,
Edward A. Lee, Michael Masin, and Stavros Tri-
pakis. Hybrid co-simulation: it’s about time.
Software and Systems Modeling, 18(3):1655–1679,
2019.

27 P.J.L. Cuijpers and M.A. Reniers. Hybrid process
algebra. J. of Logic and Algebraic Programming,
62(2):191–245, 2005.

28 Frank S. de Boer, Dave Clarke, and Einar Broch
Johnsen. A complete guide to the future. In ESOP,
volume 4421 of Lecture Notes in Computer Science,
pages 316–330. Springer, 2007.

29 Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle,
Ludovic Henrio, Justine Rochas, Crystal Chang
Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan
Khamespanah, Kiko Fernandez-Reyes, and Al-
bert Mingkun Yang. A survey of active object
languages. ACM Computíng Surveys, 50(5):1–39,
2017.

30 Ankush Desai, Amar Phanishayee, Shaz Qadeer,
and Sanjit A. Seshia. Compositional programming
and testing of dynamic distributed systems. Proc.
ACM Program. Lang., 2(OOPSLA):159:1–159:30,
2018.

31 Crystal Chang Din, Reiner Hähnle, Einar Broch
Johnsen, Ka I Pun, and Silvia Lizeth Tapia Tar-
ifa. Locally abstract, globally concrete seman-

tics of concurrent programming languages. In
Renate A. Schmidt and Cláudia Nalon, editors,
Automated Reasoning with Analytic Tableaux and
Related Methods - 26th International Conference,
TABLEAUX 2017, Brasília, Brazil, September 25-
28, 2017, Proceedings, volume 10501 of Lecture
Notes in Computer Science, pages 22–43. Springer,
2017.

32 Crystal Chang Din and Olaf Owe. Compositional
reasoning about active objects with shared futures.
Formal Asp. Comput., 27(3):551–572, 2015.

33 Alexandre Donzé and Goran Frehse. Modular, hi-
erarchical models of control systems in SpaceEx. In
European Control Conference, ECC 2013, Zurich,
Switzerland, July 17-19, 2013, pages 4244–4251.
IEEE, 2013.

34 Guillaume Dupont, Yamine Aït Ameur, Neeraj Ku-
mar Singh, and Marc Pantel. Event-B hybridation:
A proof and refinement-based framework for mod-
elling hybrid systems. ACM Trans. Embed. Com-
put. Syst., 20(4):35:1–35:37, 2021.

35 Goran Frehse, Colas Le Guernic, Alexandre Donzé,
Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. SpaceEx: Scalable verification of
hybrid systems. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verification
- 23rd International Conference, CAV 2011, Snow-
bird, UT, USA, July 14-20, 2011. Proceedings, vol-
ume 6806 of Lecture Notes in Computer Science,
pages 379–395. Springer, 2011.

36 Nathan Fulton, Stefan Mitsch, Jan-David Quesel,
Marcus Völp, and André Platzer. KeYmaera X:
an axiomatic tactical theorem prover for hybrid
systems. In Amy P. Felty and Aart Middeldorp,
editors, CADE’25, volume 9195 of LNCS, pages
527–538. Springer, 2015.

37 Sicun Gao, Soonho Kong, and Edmund M. Clarke.
dReal: An SMT solver for nonlinear theories over
the reals. In Maria Paola Bonacina, editor, Auto-
mated Deduction - CADE-24 - 24th International
Conference on Automated Deduction, Lake Placid,
NY, USA, June 9-14, 2013. Proceedings, volume
7898 of Lecture Notes in Computer Science, pages
208–214. Springer, 2013.

38 Luis Garcia, Stefan Mitsch, and André Platzer. Hy-
PLC: hybrid programmable logic controller pro-
gram translation for verification. In ICCPS’19,
pages 47–56, 2019.

39 Sergey Goncharov and Renato Neves. An adequate
while-language for hybrid computation. CoRR,
abs/1902.07684, 2019.

40 Sergey Goncharov, Renato Neves, and José
Proença. Implementing hybrid semantics: From
functional to imperative. In Violet Ka I Pun,
Volker Stolz, and Adenilso Simão, editors, Theo-
retical Aspects of Computing - ICTAC 2020 - 17th
International Colloquium, Macau, China, Novem-
ber 30 - December 4, 2020, Proceedings, volume
12545 of Lecture Notes in Computer Science, pages
262–282. Springer, 2020.

41 Daniel Grahl, Richard Bubel, Wojciech Mostowski,
Peter H. Schmitt, Mattias Ulbrich, and Benjamin
Weiß. Modular specification and verification. In
Wolfgang Ahrendt, Bernhard Beckert, Richard

E. Kamburjan, S. Mitsch and R. Hähnle 33

Bubel, Reiner Hähnle, Peter H. Schmitt, and Mat-
tias Ulbrich, editors, Deductive Software Verifica-
tion - The KeY Book - From Theory to Practice,
volume 10001 of Lecture Notes in Computer Sci-
ence, pages 289–351. Springer, 2016.

42 Ichiro Hasuo and Kohei Suenaga. Exercises in
nonstandard static analysis of hybrid systems. In
P. Madhusudan and Sanjit A. Seshia, editors, Com-
puter Aided Verification - 24th International Con-
ference, CAV 2012, Berkeley, CA, USA, July 7-13,
2012 Proceedings, volume 7358 of Lecture Notes in
Computer Science, pages 462–478. Springer, 2012.

43 Thomas A. Henzinger, Marius Minea, and
Vinayak S. Prabhu. Assume-guarantee rea-
soning for hierarchical hybrid systems. In
Maria Domenica Di Benedetto and Alberto L.
Sangiovanni-Vincentelli, editors, Hybrid Systems:
Computation and Control, 4th International Work-
shop, HSCC 2001, Rome, Italy, March 28-30,
2001, Proceedings, volume 2034 of Lecture Notes in
Computer Science, pages 275–290. Springer, 2001.

44 Carl Hewitt, Peter Bishop, and Richard Steiger. A
universal modular ACTOR formalism for artificial
intelligence. In IJCAI’73, pages 235–245, 1973.

45 Jochen Hoenicke and Ernst-Rüdiger Olderog. Com-
bining specification techniques for processes, data
and time. In Michael Butler, Luigia Petre, and
Kaisa Sere, editors, Integrated Formal Methods,
pages 245–266, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

46 Iman Jahandideh, Fatemeh Ghassemi, and Marjan
Sirjani. Hybrid Rebeca: modeling and analyzing
of cyber-physical systems. CoRR, abs/1901.02597,
2019.

47 Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni
Kouskoulas, Aurora Schmidt, Ryan Gardner, Ste-
fan Mitsch, and André Platzer. A formally ver-
ified hybrid system for safe advisories in the
next-generation airborne collision avoidance sys-
tem. STTT, 19(6):717–741, 2017.

48 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer,
Rudolf Schlatte, and Martin Steffen. ABS: A core
language for abstract behavioral specification. In
Bernhard K. Aichernig, Frank S. de Boer, and Mar-
cello M. Bonsangue, editors, FMCO’10, volume
6957 of LNCS, pages 142–164. Springer, 2010.

49 Einar Broch Johnsen, Ka I Pun, and Silvia Lizeth
Tapia Tarifa. A formal model of cloud-deployed
software and its application to workflow process-
ing. In Dinko Begusic, Nikola Rozic, Josko Radic,
and Matko Saric, editors, SoftCOM’17, pages 1–6.
IEEE, 2017.

50 Eduard Kamburjan. Detecting deadlocks in for-
mal system models with condition synchronization.
ECEASST, 76, 2018.

51 Eduard Kamburjan. From post-conditions to post-
region invariants: Deductive verification of hybrid
objects. In HSCC. ACM, 2021.

52 Eduard Kamburjan, Crystal Chang Din, Reiner
Hähnle, and Einar Broch Johnsen. Behavioral con-
tracts for cooperative scheduling. In 20 Years of
KeY, volume 12345 of Lecture Notes in Computer
Science, pages 85–121. Springer, 2020.

53 Eduard Kamburjan, Reiner Hähnle, and Sebastian
Schön. Formal modeling and analysis of railway op-

erations with Active Objects. Science of Computer
Programming, 166:167–193, November 2018.

54 Eduard Kamburjan, Rudolf Schlatte, Einar Broch
Johnsen, and S. Lizeth Tapia Tarifa. Designing
distributed control with hybrid active objects. In
ISoLA, volume 12479 of LNCS. Springer, 2020.

55 Soonho Kong, Sicun Gao, Wei Chen, and Ed-
mund M. Clarke. dReach: δ-reachability analy-
sis for hybrid systems. In Christel Baier and Ce-
sare Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 21st Inter-
national Conference, TACAS 2015, Held as Part
of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, volume 9035 of
Lecture Notes in Computer Science, pages 200–205.
Springer, 2015.

56 Jia-Chun Lin, Ingrid Chieh Yu, Einar Broch
Johnsen, and Ming-Chang Lee. ABS-YARN: A for-
mal framework for modeling hadoop YARN clus-
ters. In Perdita Stevens and Andrzej Wasowski,
editors, FASE’16, volume 9633 of LNCS, pages 49–
65. Springer, 2016.

57 Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan,
Hengjun Zhao, Chaochen Zhou, and Liang Zou.
A calculus for hybrid CSP. In Kazunori Ueda,
editor, Programming Languages and Systems -
8th Asian Symposium, APLAS 2010, Shanghai,
China, November 28 - December 1, 2010. Proceed-
ings, volume 6461 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2010.

58 Simon Lunel, Stefan Mitsch, Benoît Boyer, and
Jean-Pierre Talpin. Parallel composition and mod-
ular verification of computer controlled systems in
differential dynamic logic. In Maurice H. ter Beek,
Annabelle McIver, and José N. Oliveira, editors,
Formal Methods, The Next 30 Years, Third World
Congress, FM, Porto, Portugal, volume 11800 of
LNCS, pages 354–370. Springer, 2019.

59 Nancy A. Lynch, Roberto Segala, and Frits W.
Vaandrager. Hybrid I/O automata. Inf. Comput.,
185(1):105–157, 2003.

60 Brendan P. Mahony and Jin Song Dong. Deep
semantic links of TCSP and Object-Z: TCOZ ap-
proach. Formal Aspects Comput., 13(2):142–160,
2002.

61 Maxima Manual, 5.43.0 edition, 2019. maxima.
sourceforge.net.

62 Stefan Mitsch, Grant Olney Passmore, and An-
dré Platzer. Collaborative verification-driven en-
gineering of hybrid systems. Math. Comput. Sci.,
8(1):71–97, 2014.

63 Stefan Mitsch and André Platzer. ModelPlex: Ver-
ified runtime validation of verified cyber-physical
system models. Form. Methods Syst. Des.,
49(1):33–74, 2016.

64 Andreas Müller, Stefan Mitsch, Werner Rets-
chitzegger, Wieland Schwinger, and André Platzer.
Tactical contract composition for hybrid system
component verification. STTT, 20(6):615–643,
2018. Special issue for selected papers from
FASE’17.

65 André Platzer. Differential-algebraic dynamic logic
for differential-algebraic programs. J. of Logic and
Computation, 20(1):309–352, 2010.

maxima.sourceforge.net
maxima.sourceforge.net

34 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

66 André Platzer. The complete proof theory of hy-
brid systems. In LICS, pages 541–550. IEEE, 2012.

67 André Platzer. The structure of differential invari-
ants and differential cut elimination. Logical Meth-
ods in Computer Science, 8(4):1–38, 2012.

68 André Platzer. A complete uniform substitution
calculus for differential dynamic logic. J. Auto-
mated Reasoning, 59(2):219–265, 2017.

69 André Platzer. Logical Foundations of Cyber-
Physical Systems. Springer, 2018.

70 André Platzer and Yong Kiam Tan. Differen-
tial equation invariance axiomatization. J. ACM,
67(1):6:1–6:66, 2020.

71 Claudius Ptolemaeus, editor. System Design,
Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014.

72 Jan-David Quesel, Stefan Mitsch, Sarah Loos,
Nikos Aréchiga, and André Platzer. How to model
and prove hybrid systems with KeYmaera: A tu-
torial on safety. STTT, 18(1):67–91, 2016.

73 Ina Schaefer, Lorenzo Bettini, Viviana Bono, Fer-
ruccio Damiani, and Nico Tanzarella. Delta-
oriented programming of software product lines. In
SPLC, volume 6287 of Lecture Notes in Computer
Science, pages 77–91. Springer, 2010.

74 Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo
Bettini, David Benavides, Goetz Botterweck, Ani-
mesh Pathak, Salvador Trujillo, and Karina Villela.
Software diversity: state of the art and perspec-
tives. STTT, 14(5):477–495, 2012.

75 Rudolf Schlatte, Einar Broch Johnsen, Jacopo
Mauro, Silvia Lizeth Tapia Tarifa, and In-
grid Chieh Yu. Release the beasts: When formal
methods meet real world data. In It’s All About
Coordination, volume 10865 of Lecture Notes in
Computer Science, pages 107–121. Springer, 2018.

76 Wen Su, Jean-Raymond Abrial, and Huibiao Zhu.
Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program., 94:164–
202, 2014.

77 Kohei Suenaga and Ichiro Hasuo. Programming
with infinitesimals: A while-language for hybrid
system modeling. In ICALP (2), volume 6756 of
Lecture Notes in Computer Science, pages 392–403.
Springer, 2011.

78 Casper Thule, Kenneth Lausdahl, Cláudio Gomes,
Gerd Meisl, and Peter Gorm Larsen. Maestro: The
INTO-CPS co-simulation framework. Simulation
Modelling Practice and Theory, 92:45–61, 2019.

79 D. A. van Beek, Michel A. Reniers, Ramon R. H.
Schiffelers, and J. E. Rooda. Foundations of a com-
positional interchange format for hybrid systems.
In Alberto Bemporad, Antonio Bicchi, and Gior-
gio C. Buttazzo, editors, HSCC’07, volume 4416
of LNCS, pages 587–600. Springer, 2007.

80 Shuling Wang, Naijun Zhan, and Liang Zou. An
improved HHL prover: An interactive theorem
prover for hybrid systems. In Michael Butler, Syl-
vain Conchon, and Fatiha Zaïdi, editors, Formal
Methods and Software Engineering, pages 382–399,
Cham, 2015. Springer International Publishing.

81 Peter Y. H. Wong, Elvira Albert, Radu Muschevici,
José Proença, Jan Schäfer, and Rudolf Schlatte.
The ABS tool suite: modelling, executing and
analysing distributed adaptable object-oriented
systems. STTT, 14(5):567–588, 2012.

82 Zhenkai Zhang, Emeka Eyisi, Xenofon D. Kout-
soukos, Joseph Porter, Gabor Karsai, and Janos
Sztipanovits. A co-simulation framework for de-
sign of time-triggered automotive cyber physical
systems. Simulation Modelling Practice and The-
ory, 43:16–33, 2014.

	Introduction
	Distributed Hybrid Systems by Example
	Base System: TankMono
	Discrete Controller: TankTick
	Distributed Tank Control: TankMulti
	Futures

	Hybrid Active Objects
	Syntax
	Semantics of HABS
	States
	Evaluation of Expressions
	Evaluation of Guards
	Transition System

	The Component Fragment
	Simulation

	Modeling with HABS
	Non-Linear Dynamics
	Delays and Imprecision
	Variability Modeling

	Formal Verification of HABS Models
	Background: Differential Dynamic Logic
	Formal Verification of Components
	Translation from CHABS to dL
	Program Variables
	Assumptions and Safety Condition
	Control Code
	Plant
	On the Random Number Generator

	Compositional Verification
	Case Study
	Class CTank
	Time-Triggered Controller FlowCtrl
	Event-Triggered Controller CSingleTank

	On Translation into dL

	Related & Future Work, Conclusion
	Related Work
	Future Work
	Conclusion

