
The Burden of Modularity

Introduction to ISoLA 2020 Track on
Modularity and (De-)composition in Verification

Dilian Gurov1, Reiner Hähnle2, and Eduard Kamburjan2

1 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@kth.se

2 Technische Universität Darmstadt, Darmstadt, Germany
{reiner.haehnle,eduard.kamburjan}@tu-darmstadt.de

Abstract. Modularity and compositionality in verification frameworks
occur within different contexts: the model that is the verification target,
the specification of the stipulated properties, and the employed verifi-
cation principle. We give a representative overview of mechanisms to
achieve modularity and compositionality along the three mentioned con-
texts and analyze how mechanisms in different contexts are related. In
many verification frameworks one of the contexts carries the main bur-
den. It is important to clarify these relations to understand the potential
and limits of the different modularity mechanisms.

1 Introduction

Modularity and compositionality are core principles in all engineering fields and
play a major role in verification approaches in Computer Science as well. While
the two notions are sometimes used interchangeably, they relate to two slightly
differing principles:

Compositionality is a way to break up a problem or system into subproblems
or subsystems.

Modularity describes that a subsystem is a module: it has a clear interface
and can be exchanged within the overall system with another module that
has the same interface.

Henece, modularity is a desirable property of compositional systems, which is
concerned with the design of interfaces between subsystems.

Modularity and compositionality in verification frameworks occur within dif-
ferent contexts. One can clearly distinguish three different contexts: the model
that is the verification target, the specification of the stipulated properties, and
the employed verification principle. We give a representative overview of mech-
anisms to achieve modularity and compositionality along the three mentioned
contexts and analyze how mechanisms in different contexts are related. In many
verification frameworks one of the contexts carries the main burden. It is im-
portant to clarify these relations to understand the potential and limits of the
various modularity mechanisms.



2 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

System model: The language in which the verification target is formalized.
This could be a mainstream programming language such as Java or C, a
modeling language such as ABS [78] or ProMeLa [71], or a more abstract
formalism such as the Actor model [68] or automata [6, 56, 75]. In any case,
we assume that we have as a minimal requirement an executable language
with a formal syntax and a precisely stated (though not necessarily formal-
ized) runtime semantics.

System specification: The language in which system properties are expressed.
In the simplest case, this means just assertions of Boolean expressions or even
a finite set of fixed properties. But in most cases a specification is based on
a more expressive logic, such as temporal or first-order logic. Even more
expressive safety properties are possible with contract-based languages such
as JML [91] or ACSL [15]. Finally, logical frameworks such as Coq [21] or
Isabelle [102] permit not only to specify almost any property, but also the
syntax and semantics of the system model.

Verification principle: Less obvious than the first two, this concers the ver-
ification methodology used to (dis-)prove properties of the system model
expressed in the specification language. For example, state exploration to-
gether with abstraction refinement [62, 43] is a popular approach in model
checking. Axiomatic approaches based on a calculus for a program logic are
common in deductive verification [65]. Symbolic execution [29, 38, 86] is often
the underlying principle in either [3, 24]. On the other hand, interactive the-
orem proving based on structural induction is the main verification principle
employed in logical frameworks [21, 102] and inductive theorem proving of
functional programs [36, 121].

In each context, mechanisms for modularity are expressed at differing levels of
granularity. Before we discuss and analyze some representative modularity mech-
anisms, we can already state a few observations at a high level of abstraction:

1. The choice of modularity mechanism in different contexts is not independent.
For example, a specification language with contracts does not make sense
in combination with a system model that knows no procedures, symbolic
execution cannot be used to prove properties of abstract programs.

2. Often one of the contexts is dominant over the others or can be considered
as the starting point of the overall approach. In this case, choosing the mod-
ularity mechanism in the “lead” context determines the one in the others.

3. The burden of modularity may be unfairly allocated among different con-
texts: one can restrict an execution model to the extent that modular spec-
ification and verification become straightforward, such as the strong encap-
sulation of Din and Owe [54]. Or one can shift the burden to the power of
the underlying verification approach, as the CPAchecker system [23] does.
This may or may not be aligned with the dominant context.



The Burden of Modularity 3

2 Modularity and Composition Mechanisms:
A Representative Collection

We follow the classification into the three contexts discussed above. Observe that
artifacts belonging to different contexts are not necessarily separately formalized
entities. For example, in interactive proof assistants the (abstract) syntax of the
model, the specification language, and the verification approach are uniformly
represented in higher-order formalisms, such type theory [21] and higher-order
logic [102]; in dynamic logic [67], programs and their specifications both appear
inside formulas, etc. Nevertheless, the context distinction is conceptually present
and it is useful to make.

2.1 Model

Perhaps the central and most important modularity mechanism in programming
is the method3 abstraction. It is a pillar of modularity, because—in principle—
one does not need to know the implementation details of a method in order to
use it. Rather, it is sufficient to know under which assumptions it is supposed
to work and what the intended effects (side effects and returned result) are.

Methods can be too fine-grained or too coarse-grained to modularize a pro-
gram’s behavior. This is especially true in concurrent systems. For example, a
system model may provide full data encapsulation via objects [112] or behavioral
encapsulation via atomic (non-interruptable) code segments [48]. Then all meth-
ods of an object cooperate to (re-)establish the object invariant at return from
each call. The actor model is a point in case [4, 34, 54]. Vice versa, in languages
such as C, where preemption and direct manipulation of the heap is permitted,
one can neither abstract away from the implementation of a method, nor from
its execution context.

Packages and modules in the sense of Java, C, etc., are important for com-
positionality at the level of the model, but they are limited to provide syntactic
mechanisms for managing the namespace and help with disambuiguation. For
verification purposes this is not enough, because it is essential to (de-)compose
behavior.

Some abstract modeling languages have been designed with parallel compo-
sition operators that enjoy algebraic properties that make reasoning about cor-
rectness easy. Such process calculi include CCS [96], CSP [70], or the π-calculus
[97, 98]. The downside is that their concurrency models are not realistic enough
to permit efficient implementation. A different class of abstract models with “in-
nate” modularity are pure functional programs. By construction, pure functions
can be specified and verified independently of each other. Where modularity
comes into play is when induction arguments in the proof of complex functions
need to be decomposed to become automatically provable. This has led to the

3 There are plethora of synonyms for the same concept in different contexts: function,
procedure, routine, etc. In this paper we use the term method without committing
to a specific execution model.



4 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

development of such techniques as rippling [37] or generalization [119] that help
with lemma discovery [77].

Some of the abstract concurrency models use the encapsulation inherent
to distributed systems to provide modularity. Choreographies [7, 31, 105] im-
plement a global view for message passing between services, e.g., in business
protocols [39]. A choreography is used as the endpoint projection to generate
code for single services. This code is guaranteed by construction to realize the
order of messages in the choreography. Similarly, orchestration [105] describes a
central entity that controls messages between services. It is crucial that the enti-
ties are encapsulated and have no other way of communicating. Both notions are
deeply connected and choreographies can be used to derive an orchestrator [94].
Choreographies may either commit to one interaction style or mix different in-
teraction styles (e.g., synchronous and asychronous communication) [10]. The
aforementioned actor model is another concurrency model that uses encapsu-
lated distribution to provide modularity.

In software product line engineering (SPLE) modularity is expressed along
the composition of features as requested by a product specification [107]. Specif-
ically, in delta-oriented programming [109] the implementation of features is as-
sociated with code deltas specifying the implementation of a feature relative to
a given core. A general overview of feature-oriented implementation techniques
is [8].

In system engineering and hybrid systems continuous state changes, in ad-
dition to calls and discrete state changes, are modeled. One compositional tech-
nique to do so are components [61]. Components strictly distinguish between the
internal behavior model and the interface model that connects different compo-
nents via their ports. The interface model can be synchronous or asynchronous
and different instances of behavior models are supported. In the area of hybrid
systems, (hybrid) I/O automata [93] also offer a basic composition mechanism
as a low-level device, albeit only via modeling synchronization on transitions.

2.2 Specification

In the simplest case, a specification consists merely of a generic property, for
example, “absence of deadlocks”, “(normal) termination”, etc. Model-specific
properties are mostly expressed in suitable logics. In a basic setup, logical as-
sertions are placed at certain locations in the model, where they must hold in
any run. When an assertion appears at the syntactic end of a method it func-
tions as a postcondition. Dual to assertions, one can instrument a model with
assumptions. These are properties that can be assumed to hold in the execu-
tion state where they occur. An assumption placed at the syntactic beginning
of a program works as a precondition. Hoare logic [69] is based on assumption-
program-assertion triples.

Program logics specify not merely a single computation state, but express
properties of whole runs and thus can relate multiple execution states. They
include temporal logic [12] and dynamic logic [67]. Generic properties, assertions,
assumptions, and program logics do not provide any support for modularity in



The Burden of Modularity 5

themselves, but assumptions and assertions can be used as elements of modular
specification formalisms.

A simple form of modularity are invariants. They can take the form of object
or loop invariants, but in either case the idea is the same: assume that a certain
property (the “invariant” I) holds initially. If—under this assumption—the ex-
ecution of a given model M asserts the invariant upon termination in each run,
then I is an invariant for M . A simple induction yields that I is also an invariant
for an arbitrary number of subsequent executions of M . Now imagine that M is
a loop body and I is asserted at the start of the loop. Or M is any method of
an object and all constructors assert I. Then I holds whenever the loop or a call
to one of the object’s methods terminates, respectively. This allows to replace
the behavior of a loop or of an object by its invariant during verification and it
constitutes a base line of modularity.

Most contemporary deductive verification frameworks (for example, [3, 26, 76,
87, 118]) use a specification language based on the notion of a method contract.
First introduced by Meyer [95] as design-by-contract in the context of runtime
verification, a method contract comprises the assumptions under which a method
is supposed to work correctly, together with an assertion of its intended effects
(side effects and returned result). Thus, contracts can be composed from the
building blocks “assertion” and “assumption” over a logical language (usually,
typed first-order logic). The requirements that need to hold for a method contract
to enter into force are its precondition. The stipulated final computation state
(including the returned result) after a method terminates is its postcondition.
The memory locations a method can read are called its footprint, the memory
locations it can write to are called its frame.

Method contracts are a central device to achieve a degree of modularity in
specification, because they can characterize the effect of a method call without
actually having to analyze the called method. This is essential to make verifi-
cation of large programs feasible: clearly a program with hundreds of method
declarations cannot be analyzed by inlining method calls. Enforcing modular-
ity here also enables local re-verification: changes in one method require one to
re-verify the changed method, not the whole system. In the case of recursively
defined methods, contracts even enable verification in the first place. In some
cases, in particular, in dynamic analyses, the notion of contract is only implicit,
for example [64] speak of structural properties and [60] of summaries.

While it is obvious that method contracts must describe the behavior of the
called method (the caller ’s perspective), it is less obvious that one must pay as
well attention to the call context (the callee’s perspective). The problem arises,
whenever the frame or footprint of a method include the heap. Since the callee
cannot know in which heap state it is called, the pre- and postcondition have to
be expressed so that they are valid in arbitrary states. This means, for example,
that the effects of a method on an unknown heap that may intersect with its
frame and footprint have to be described correctly. A number of techniques to
achieve this have been developed, including dynamic frames [85, 111], ownership
types [42, 51], boxing [92, 106], and separation logic [103].



6 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

The situation worsens in the case of concurrent programs, because of task
interleaving. This led to mechansims such as fractional permissions [30], con-
current separation logic [32], and combinations thereof [28], for low-level concur-
rency, and to context-aware contracts [83] for concurrency with atomic segments.
Assumption-guarantee reasoning is not necessarily bound to method contracts,
pairs of pre- and postconditions can also be used to specify processes [99].

It has to be stressed that while various framing theories make it possi-
ble to achieve a certain degree of modularity when specifying complex, heap-
manipulating software [5, 49] this does not mean that the approach is practical
yet: often specifications become considerably longer than the specified model
and are harder to understand [16].

From a feature-oriented SPLE perspective it makes sense to compose con-
tracts. Specification deltas [66] reuse contract elements in analogy to code deltas,
but this works smoothly only when behavioral subtyping is assumed. That this
is generally not the case is shown in [116], which also contains an overview of
feature-oriented contract composition techniques.

Contracts specify the behavior of a method at its endpoints. In particular
to specify concurrent models, it may be necessary to expose some of the in-
termediate behavior. Therefore, it is a natural idea to generalize contracts to
symbolic traces [53, 81, 115]. It remains to be seen, however, whether this leads
to improved modularity.

Component contracts were studied to specify the interface level of compo-
nents [20]. These contracts are also based on assumption-guarantee reasoning,
and specify what a component must guarantee to the environment and what
it can rely on from the environment. Component contracts differ from method
contracts, as they specify the continuously changing ports of a component at
interface level. Component contracts abstract not only from the concrete be-
havior of a component, but also from the language of its implementation. This
allows contracts to inherit the compositional properties of components through
contract operators [19], but limits the specifications to boolean assertions over
ports. Interface automata [47] are a formalism similar to the aforementioned
I/O automata that specify the temporal behavior of automata and have a com-
position mechanism compatible with open systems: They specify the expected
behavior of the environment of an I/O automaton.

One version of program development by step-wise refinement works by speci-
fying a series of ever more precise abstract machines [1, 2, 110, 27] that are finally
translated into executable code. Such a development can be seen as a series of
modular specifications.

2.3 Verification

Modularity can occur in several places in the verification context, either by de-
composition following another context, e.g., following the structure of contracts
or methods, or decompose a problem that is neither specified modularly nor
executed modularly.



The Burden of Modularity 7

With axiomatic decomposition we denote a verification approach that allows
to decompose a verification task into subtasks by way of a decomposition axiom.
The frame rule of separation logic [103] that allows to localize heap reason-
ing is a well-known example. Another example can be found in early work on
modular verification of simple concurrent programs (without heaps and method
calls) in the form of assumption-guarantee reasoning [80] and its predecessor, the
Owicki-Gries composition axiom [104]4. Similarly, composition of proofs based
on the communication between processes has been axiomatized for synchro-
nization based formalisms, such as ADA [9, 59]. These principles are implicitly
present in many contemporary approaches as well and have been frequently gen-
eralized (for example, [57, 90]). Being based on axiomatic decomposition, they
lend themselves well to deductive verification. In fact, contract-based specifi-
cation can be seen as a specification language well aligned with assumption-
guarantee reasoning.

Not in each case is the underlying logical framework expressive enough to jus-
tify a decomposition step. For example, [54, 84] prove a meta theorem justifying
the problem decomposition. This is more a matter of taste or perhaps the desired
degree of mechanization, because it is often possible to justify decomposition in
a suitably expressive logic [81, 101]. The limitation of axiomatic decomposition
is often that the decomposition theorem holds only under certain constraints,
which becomes an issue with respect to scalability to complex target languages.

A different decomposition technique is projection. Session Types [72, 73] are a
behavioral type discipline [7, 74] using global types to describe protocols. Global
types are projected onto a role—this generates a local type for each protocol end-
point. It is similar to projection of choreographies on the modeling level [40] (cf.
Sect. 2.1): indeed, global types are used as specifications of choreographies [39].
The target language, where type checking happens, are the local types. Projec-
tion is designed in a way that enforces further encapsulation in the concurrency
model to ensure modularity: the main verification step is a fully automatic ar-
gument that composes adherence to the local types to adherence of the whole
system to the global types. Not every global type can be projected and projec-
tion depends very much on the concurrency model of the target language. In
particular, the notion of an endpoint may correspond to a fixed entity in the
concurrency model (for example, for actors [82]), but does not need not to do so
(for example, for the π-calculus [73]).

Correctness-by-construction [52, 63, 11, 89, 113] is the step-wise development
of (simple, usually imperative) programs in a series of refinement steps. Each step
is justified in a suitable program logic, so that this can be seen as a modular
verification strategy.

Abstraction is a general principle to approximate the behavior of a model and
its datastructures during execution. This approach was pioneered by Cousot &
Cousot [45] as abstract interpretation of programs. It allows to abstract away

4 It is worth noting that the original Owicki-Gries composition axiom verifies all in-
volved processes without encapsulation, i.e., changing one process requires to reprove
the composition as well.



8 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

Table 1. Mechanisms to achieve modularity and compositionality in different contexts

Context Model Specification Verification

Baseline unstructured code assume, assert
intermediate assertion,
cut, interpolant,
abstraction

Mechanism

method, loop
contract, framing,
loop invariant

axiomatic decomposition,
abstract execution

object, actor,
atomic segment

invariant,
symbolic trace

meta composition

feature contract composition proof composition
(generic) session type projection
choreography (generic) projection
component component contract (generic)
process calculus (generic) axiomatic decomposition
functional program abstract machine

refinement
imperative program assume, assert
pure functions assume, assert rippling, generalization
(verification-specific) (verification-specific) proof reuse

from intricate data structures or complex behavior, so that a specified property
is easier to prove. Of course, it can happen that the property does not hold
anymore for the abstract version. In this case, it is desirable to find the exact
degree of abstraction where it still holds. Abstraction refinement [43, 62] allows
to determine it in an automated manner. Abstraction is not a modularization
technique per se, but a base line verification principle.

This is in contrast to abstract execution [114], where a program with abstract
statements is symbolically executed, so that whatever can be proven about the
abstract program holds as well for any of its (legal) instances. It allows to decou-
ple programs from their execution contexts, because the latter can be specified
by abstract symbols.

It is also possible to modularize verification problems at the level of proofs.
A well-known example is TLA+ [41], where proofs are arranged hierarchically.5

Similarly, proofs for hybrid systems can be composed if the underlying structure
has a component-like structure [100]. Proof reuse can also be seen as modu-
larization, for example, lazy symbolic execution [35, 55], proof repositories [33],
or proof adaptation [18, 108, 120]. In the context of family-based verification ap-
proaches in SPLE, a number of proof composition techniques have been explored
[14, 50, 117]. Several of these techniques do not work directly on proofs, which
tends to be brittle, but on more abstract representations such as contracts or
proof scripts. Even so, these techniques are necessarily tied to a specific verifi-
cation approach.

5 It is also possible to view refinement-based approaches from this angle.



The Burden of Modularity 9

3 Alignment of Context and the Burden of Modularity

In Table 1 we summarize some of the modularity mechanisms discussed above.
In addition, we attempt to relate them across different contexts. Obviously, this
correspondence is neither precise nor exhaustive, but should be seen as a basis
for more in-depth investigations or for discussion. In each row we highlight the
context that carries the burden of modularity in boldface. Under carrying the
burden we mean the burden to provide the modularity that is used by the other
contexts.

One can instantiate the table to a wide range of established verification ap-
proaches. Just as an example, deductive verification [65] is typically built around
the notions of contract and framing of structured pieces of code (blocks, methods,
loop bodies).

4 Track Contributions

We briefly discuss the contributions of the ISoLA 2020 track on “Modularity
and (De-)composition in Verification” in the light of the classification above and
mention where in an approach the burden of modularity lies.

4.1 Modularity in the Context of the Model

Coto et al. [44] (On Component Testing Message-Passing Applications) address
the problem of generating tests for the components of systems in which the com-
ponents (or participants) communicate via asynchronous message passing (but
where the message buffers do not preserve the order of the messages). The correct
coordination of the components is specified by means of global choreographies.
Following the (top-down) correctness-by-construction principle, the component
test suites are obtained by projecting the choreography suitably along the (in-
terfaces of the) components. The generated tests are guaranteed to be suitable,
in the sense that every valid implementation of the given component necessarily
passes them. The authors discuss a number of aspects of the considered problem,
such as test oracles, efficiency of test generation, and coverage criteria.

4.2 Modularity in the Context of the Specification

Barbanera et al. [13] (Composing Communicating Systems, Synchronously) in-
vestigate the preservation of generic behavioural properties, and in particular
deadlock freedom, under the synchronous composition of systems of commu-
nicating finite state machines. A composability condition, two structural con-
straints, and two types of composition are defined, for which it is proved that
composing composable systems satisfying the structural constraints preserves
deadlock freedom. The authors argue that the same reasoning can be applied to
other generic behavioural properties such as lock freedom and liveness.



10 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

Beckert et al. [17] (Modular Verification of JML Contracts Using Bounded
Model Checking) aim to connect the worlds of contract-based deductive verifica-
tion (DV) with the one of bounded software model checking (BMC). The burden
is in translating JML-annotated Java into plain Java with asserts and assumes.
The latter then can serve as input to the bounded model checker JBMC. Obvi-
ously, the translation must be parameterized with a (loop and recursion) bound.
Technically, the problem of replacing quantifiers by non-deterministic assign-
ments is a central issue. The translation creates the opportunity to run JBMC
on JML-annotated programs. In addition to better efficiency and higher automa-
tion, this opens up interesting new scenarios for collaboration of DV and MC the
authors point out. It is worth to point out that the suggested tool combination
perfectly aligns with the case for integration of verification approaches brought
forward in [65].

Further, in the domain of Software Product Line Engineering (SPLE), Dami-
ani et al. [46] (On Slicing Software Product Line Signatures) present an abstrac-
tion and decomposition technique based on slicing. A slice of SPL Signature
(SPLS) for some feature set F is a product line that contains neither imple-
mentation details of its classes nor products that depend on features outside F .
The paper defines such slices and discusses the challenges for an algorithm that
computes the slice manually and efficiently. As the main driver of this approach
is the specified feature set F , the burden of modularity lies with the specification
and the check that the slice is given correctly.

Johnsen et al. [79] (Assumption-Commitment Types for Resource Manage-
ment in Virtually Timed Ambients) introduce a type system for resource man-
agement in the context of nested virtualization. The type system is based on
effect/coeffect pairs that specify how much resources a process may consume
from its context and how much it must offer to its child process. This allows to
type check a process in isolation by specifying a resource interface. Nonetheless,
the burden of modularity is only partially with the specification: as the effect/-
coeffect pairs are derived for the inner processes automatically, it lies also with
the verification. However, this is enabled by the structure of the specification.

4.3 Modularity in the Context of Verification

Filliâtre and Paskevich [58] (Abstraction and Genericity in Why3 ) argue that
any approach invented for modularity in programming can also be adapted to
program verification. The purpose of their contribution is to show how they
achieve this in WhyML, the language of the program verification tool Why3.
WhyML uses a single concept of module, a collection of abstract and concrete
declarations, and a basic operation of cloning which instantiates a module with
respect to a given partial substitution, while verifying its soundness. This mech-
anism brings into WhyML both abstraction and genericity, which the authors
illustrate on a small verified Bloom filter implementation.

Then, Beyer and Wehrheim [25] (Verification Artifacts in Cooperative Ver-
ification: Survey and Unifying Component Framework) give a classification of
combinations of verification approaches. The focus is on black-box integration



The Burden of Modularity 11

through the exchange of artifacts between multiple tools. The paper discusses
the exchange format and different roles that tools can play in a cooperative verifi-
cation framework. The approach described here places the burden of modularity
firmly on the verification.

Beyer and Kanav [22] (An Interface Theory for Program Verification) take a
verification-centric view: the set of all behaviors of a program P is viewed as a
behavioral interface IP . Verification is then recast as a theory of approximation
of behavioral interfaces. As pointed out above, different viewpoints on verifica-
tion are relevant, because they suggest different decomposition strategies of the
verification process. Ideally, this leads to the identification and optimization of
core reasoning tasks or to new cooperation strategies. The present paper suggests
to use over- and underapproximations of the target program as a uniform mech-
anism to exchange information between different tools in the form of behavioral
interfaces. This leads naturally to a decomposition strategy inspired by gradual
specification refinement. A number of known verification approaches are char-
acterized from this angle. The paper provides a uniform view of existing work
that invites to think about new ways by which verification tools may cooperate.

Finally, Knüppel et al. [88] (Scaling Correctness-by-Construction, CbC) sug-
gest an architectural framework for contract-based, CbC-style program devel-
opment. While both the target language as well as the current implementation
are at the proof-of-concept level, it is a promising start. The CbC approach
was until recently characterized by an almost complete lack of tools. The paper
describes steps towards scaling mechanized CbC development to more complex
programs and to establish a repository of reusable off-the-shelf components. To
this end, the authors present a formal framework and open-source tool named
ArchiCorC. There, a developer models software components in UML-style with
required and provided interfaces. Interface methods are associated to specifica-
tion contracts and mapped to verified CbC implementations. A code generator
backend then emits executable Java source code.

5 Conclusion

In this paper we gave an overview of modularity in verification and attempted
a classification. Hopefully, this can serve as a starting point for the structural
use of modularity principles in verification: First, we hope that the classification
helps the research community to transfer ideas between subfields by guiding dis-
cussions and reengineering approaches. Abstraction from the technical details of
modularity allows the underlying ideas to be carried over to fields where the orig-
inal system is not directly applicable. Second, we believe that the classification
has the potential to motivate systematic search for new modularity mechanisms.
Lastly, a classification may shed light on the structure of existing systems and
so may guide their eventual reengineering for an increase of modularity.

Acknowledgements We thank Marieke Huisman and Wolfgang Ahrendt for
their very constructive and valuable feedback on a draft.



12 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

References

1. J.-R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, Aug. 1996.

2. J.-R. Abrial. Modeling in Event-B — System and Software Engineering. Cam-
bridge University Press, 2010.

3. W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ulbrich, edi-
tors. Deductive Software Verification - The KeY Book - From Theory to Practice,
volume 10001 of LNCS. Springer, 2016.

4. W. Ahrendt and M. Dylla. A verification system for distributed objects with
asynchronous method calls. In K. K. Breitman and A. Cavalcanti, editors, For-
mal Methods and Software Engineering, 11th Intl. Conf. on Formal Engineering
Methods, ICFEM, Rio de Janeiro, Brazil, volume 5885 of LNCS, pages 387–406.
Springer, 2009.

5. E. Alkassar, M. A. Hillebrand, W. J. Paul, and E. Petrova. Automated verification
of a small hypervisor. In G. T. Leavens, P. W. O’Hearn, and S. K. Rajamani,
editors, Verified Software: Theories, Tools, Experiments, Third Intl. Conference,
VSTTE, Edinburgh, UK, volume 6217 of LNCS, pages 40–54. Springer, 2010.

6. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Comp. Sci.,
126(2):183–235, 1994.

7. D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. Deniélou, S. J.
Gay, N. Gesbert, E. Giachino, R. Hu, E. B. Johnsen, F. Martins, V. Mascardi,
F. Montesi, R. Neykova, N. Ng, L. Padovani, V. T. Vasconcelos, and N. Yoshida.
Behavioral types in programming languages. Foundations and Trends in Pro-
gramming Languages, 3(2–3):95–230, 2016.

8. S. Apel, D. S. Batory, C. Kästner, and G. Saake. Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer, 2013.

9. K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communicating
sequential processes. ACM Trans. Program. Lang. Syst., 2(3):359–385, 1980.

10. F. Arbab, L. Cruz-Filipe, S. Jongmans, and F. Montesi. Connectors meet chore-
ographies. CoRR, abs/1804.08976, 2018.

11. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25(6):593–624, 1988.

12. B. Banieqbal, H. Barringer, and A. Pnueli, editors. Temporal Logic in Specifica-
tion. Springer, 1987.

13. F. Barbanera, I. Lanese, and E. Tuosto. Composing communicating systems,
synchronously. In T. Margaria and B. Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation, 9th Intl. Symp., ISoLA 2020,
Rhodes, Greece, LNCS. Springer, Oct. 2020. In this proceedings.

14. D. S. Batory and E. Börger. Modularizing theorems for software product lines:
The Jbook case study. J. of Universal Computer Science, 14(12):2059–2082, 2008.

15. P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Pre-
vosto. ACSL: ANSI/ISO C Specification Language. CEA LIST and INRIA, 1.4
edition, 2010.

16. C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Lessons learned from micro-
kernel verification – specification is the new bottleneck. In F. Cassez, R. Huuck,
G. Klein, and B. Schlich, editors, Proc. 7th Conference on Systems Software Ver-
ification, volume 102 of EPTCS, pages 18–32, 2012.

17. B. Beckert, M. Kirsten, J. Klamroth, and M. Ulbrich. Modular verification of
JML contracts using bounded model checking. In T. Margaria and B. Steffen,



The Burden of Modularity 13

editors, Leveraging Applications of Formal Methods, Verification and Validation,
9th Intl. Symp., ISoLA 2020, Rhodes, Greece, LNCS. Springer, Oct. 2020. In this
proceedings.

18. B. Beckert and V. Klebanov. Proof reuse for deductive program verification. In
2nd Intl. Conf. on Software Engineering and Formal Methods (SEFM), Beijing,
China, pages 77–86. IEEE Computer Society, 2004.

19. A. Benveniste, B. Caillaud, H. Elmqvist, K. Ghorbal, M. Otter, and M. Pouzet.
Multi-mode DAE models - challenges, theory and implementation. In B. Steffen
and G. J. Woeginger, editors, Computing and Software Science - State of the Art
and Perspectives, volume 10000 of LNCS, pages 283–310. Springer, 2019.

20. A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofro-
nis. Multiple viewpoint contract-based specification and design. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W. P. de Roever, editors, Formal Methods for
Components and Objects, 6th Intl. Symp., FMCO, Amsterdam, The Netherlands,
Revised Lectures, volume 5382 of LNCS, pages 200–225. Springer, 2007.

21. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development—Coq’Art: The Calculus of Inductive Constructions. Texts in The-
oretical Computer Science. An EATCS Series. Springer, 2004.

22. D. Beyer and S. Kanav. An interface theory for program verification (position
paper). In T. Margaria and B. Steffen, editors, Leveraging Applications of For-
mal Methods, Verification and Validation, 9th Intl. Symp., ISoLA 2020, Rhodes,
Greece, LNCS. Springer, Oct. 2020. In this proceedings.

23. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Veri-
fication, 23rd Intl. Conf., CAV, Snowbird, UT, USA, volume 6806 of LNCS, pages
184–190. Springer, 2011.

24. D. Beyer and T. Lemberger. Symbolic execution with CEGAR. In T. Margaria
and B. Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation, 7th International Symposium (ISoLA), Part I, Corfu, Greece,
volume 9952 of LNCS, pages 195–211. Springer, Oct. 2016.

25. D. Beyer and H. Wehrheim. Verification artifacts in cooperative verification: Sur-
vey and unifying component framework. In T. Margaria and B. Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation, 9th Intl.
Symp., ISoLA 2020, Rhodes, Greece, LNCS. Springer, Oct. 2020. In this proceed-
ings.

26. S. Blom, S. Darabi, M. Huisman, and W. Oortwijn. The vercors tool set: Verifica-
tion of parallel and concurrent software. In IFM, volume 10510 of Lecture Notes
in Computer Science, pages 102–110. Springer, 2017.

27. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

28. R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission account-
ing in separation logic. In J. Palsberg and M. Abadi, editors, Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages
259–270. ACM, 2005.

29. R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT—A formal system for test-
ing and debugging programs by symbolic execution. ACM SIGPLAN Notices,
10(6):234–245, June 1975.

30. J. Boyland. Fractional permissions. In D. Clarke, J. Noble, and T. Wrigstad, edi-
tors, Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
volume 7850 of LNCS, pages 270–288. Springer, 2013.



14 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

31. M. Bravetti and G. Zavattaro. Towards a unifying theory for choreography con-
formance and contract compliance. In M. Lumpe and W. Vanderperren, editors,
Software Composition, 6th Int.l Symp., SC, Braga, Portugal, Revised Selected
Papers, volume 4829 of LNCS, pages 34–50. Springer, 2007.

32. S. Brookes and P. W. O’Hearn. Concurrent separation logic. SIGLOG News,
3(3):47–65, 2016.

33. R. Bubel, F. Damiani, R. Hähnle, E. B. Johnsen, O. Owe, I. Schaefer, and I. C.
Yu. Proof repositories for compositional verification of evolving software systems.
In Foundations for Mastering Change (FoMaC) I, volume 9960 of LNCS, pages
130–156. Springer, 2016.

34. R. Bubel, C. C. Din, R. Hähnle, and K. Nakata. A dynamic logic with traces and
coinduction. In H. D. Nivelle, editor, Intl. Conf. on Automated Reasoning with
Analytic Tableaux and Related Methods, Wroclaw, Poland, volume 9323 of LNCS,
pages 303–318. Springer, 2015.

35. R. Bubel, R. Hähnle, and M. Pelevina. Fully abstract operation contracts. In
T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation, 6th International Symposium, ISoLA 2014, Corfu,
Greece, volume 8803 of LNCS, pages 120–134. Springer, Oct. 2014.

36. A. Bundy. The automation of proof by mathematical induction. In J. A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, pages
845–911. Elsevier and MIT Press, 2001.

37. A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-Level Guidance for
Mathematical Reasoning, volume 56 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, June 2005.

38. R. M. Burstall. Program proving as hand simulation with a little induction. In
Information Processing ’74, pages 308–312. Elsevier/North-Holland, 1974.

39. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78,
2012.

40. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-
party sessions. In R. Bruni and J. Dingel, editors, Formal Techniques for Dis-
tributed Systems: Joint 13th IFIP WG 6.1 Intl. Conf., FMOODS, and 31st IFIP
WG 6.1 Intl. Conf., FORTE, Reykjavik, Iceland, volume 6722 of LNCS, pages
1–28. Springer, 2011.

41. K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. A TLA+ proof system. In
P. Rudnicki, G. Sutcliffe, B. Konev, R. A. Schmidt, and S. Schulz, editors, Proc.
LPAR Workshops, Knowledge Exchange: Automated Provers and Proof Assis-
tants, and the 7th International Workshop on the Implementation of Logics, Doha,
Qatar, volume 418 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

42. D. Clarke, J. Östlund, I. Sergey, and T. Wrigstad. Ownership types: A survey.
In D. Clarke, J. Noble, and T. Wrigstad, editors, Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, volume 7850 of LNCS, pages 15–
58. Springer, 2013.

43. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In E. A. Emerson and A. P. Sistla, editors, Computer
Aided Verification, 12th International Conference, Chicago/IL, USA, volume 1855
of Lecture Notes in Computer Science, pages 154–169. Springer, 2000.

44. A. Coto, R. Guanciale, and E. Tuosto. On component testing message-passing
applications. In T. Margaria and B. Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation, 9th Intl. Symp., ISoLA 2020,
Rhodes, Greece, LNCS. Springer, Oct. 2020. In this proceedings.



The Burden of Modularity 15

45. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Fourth ACM Symposium on Principles of Programming Language, Los Angeles,
pages 238–252. ACM Press, New York, Jan. 1977.

46. F. Damiani, M. Lienhardt, and L. Paolini. On slicing software product line sig-
natures. In T. Margaria and B. Steffen, editors, Leveraging Applications of For-
mal Methods, Verification and Validation, 9th Intl. Symp., ISoLA 2020, Rhodes,
Greece, LNCS. Springer, Oct. 2020. In this proceedings.

47. L. de Alfaro and T. A. Henzinger. Interface automata. In A. M. Tjoa and
V. Gruhn, editors, Proceedings of the 8th European Software Engineering Con-
ference held jointly with 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering 2001, Vienna, Austria, September 10-14, 2001,
pages 109–120. ACM, 2001.

48. F. de Boer, C. C. Din, K. Fernandez-Reyes, R. Hähnle, L. Henrio, E. B. Johnsen,
E. Khamespanah, J. Rochas, V. Serbanescu, M. Sirjani, and A. M. Yang. A
survey of active object languages. ACM Computing Surveys, 50(5):76:1–76:39,
Oct. 2017. Article 76.

49. S. De Gouw, F. S. De Boer, R. Bubel, R. Hähnle, J. Rot, and D. Steinhöfel. Ver-
ifying OpenJDK’s sort method for generic collections. J. Automated Reasoning,
62(6), 2019.

50. B. Delaware, W. R. Cook, and D. S. Batory. Product lines of theorems. In
C. V. Lopes and K. Fisher, editors, Proc. 26th Annual ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA,
Portland, OR, USA, pages 595–608. ACM, 2011.

51. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology, 4(8):5–32, 2005.

52. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
53. C. C. Din, R. Hähnle, E. B. Johnsen, K. I. Pun, and S. L. Tapia Tarifa. Locally

abstract, globally concrete semantics of concurrent programming languages. In
TABLEAUX, volume 10501 of LNCS, pages 22–43. Springer, 2017.

54. C. C. Din and O. Owe. Compositional reasoning about active objects with shared
futures. Formal Aspects of Computing, 27(3):551–572, 2015.

55. J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Incremental reasoning with
lazy behavioral subtyping for multiple inheritance. Science of Computer Pro-
gramming, 76(10):915–941, 2011.

56. E. A. Emerson. Automata, tableaux and temporal logics (extended abstract). In
Proceedings Conference on Logics of Programs, Brooklyn, LNCS 193, pages 79–87.
Springer, 1985.

57. X. Feng. Local rely-guarantee reasoning. In Z. Shao and B. C. Pierce, editors,
Proc. 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL, Savannah, GA, USA, pages 315–327. ACM, 2009.

58. J.-C. Filliâtre and A. Paskevich. Abstraction and genericity in Why3. In T. Mar-
garia and B. Steffen, editors, Leveraging Applications of Formal Methods, Ver-
ification and Validation, 9th Intl. Symp., ISoLA 2020, Rhodes, Greece, LNCS.
Springer, Oct. 2020. In this proceedings.

59. R. Gerth and W. P. de Roever. A proof system for concurrent ADA programs.
Sci. Comput. Program., 4(2):159–204, 1984.

60. P. Godefroid and D. Luchaup. Automatic partial loop summarization in dynamic
test generation. In M. B. Dwyer and F. Tip, editors, Proc. 20th Intl. Symp.
on Software Testing and Analysis, ISSTA, Toronto, Canada, pages 23–33. ACM,
2011.



16 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

61. G. Gößler and J. Sifakis. Composition for component-based modeling. Science of
Computer Programming, 55(1–3):161–183, 2005.

62. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In
O. Grumberg, editor, Proc. 9th INternational Conference on Computer Aided
Verification (CAV’97), volume 1254 of Lecture Notes in Computer Science, pages
72–83. Springer-Verlag, June 1997.

63. D. Gries. The Science of Programming. Texts and Monographs in Computer
Science. Springer, 1981.

64. D. Gurov and M. Huisman. Reducing behavioural to structural properties of
programs with procedures. Theoretical Computer Science, 480:69–103, 2013.

65. R. Hähnle and M. Huisman. Deductive verification: from pen-and-paper proofs to
industrial tools. In B. Steffen and G. Woeginger, editors, Computing and Software
Science: State of the Art and Perspectives, volume 10000 of LNCS, pages 345–373.
Springer, 2019.

66. R. Hähnle and I. Schaefer. A Liskov principle for delta-oriented programming. In
T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change — 5th Interna-
tional Symposium, ISoLA 2012, Heraklion, Crete, Greece, volume 7609 of LNCS,
pages 32–46. Springer, Oct. 2012.

67. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing.
MIT Press, Oct. 2000.

68. C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR formalism
for artificial intelligence. In Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI’73, pages 235–245. Morgan Kaufmann Publishers
Inc., 1973.

69. C. A. R. Hoare. An axiomatic basis for computer programming. Comm. of the
ACM, 12(10):576–580, 583, Oct. 1969.

70. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–
677, 1978.

71. G. J. Holzmann. The SPIN Model Checker. Pearson Education, 2003.
72. K. Honda. Types for dyadic interaction. In E. Best, editor, CONCUR, 4th Intl.

Conf. on Concurrency Theory, Hildesheim, Germany, volume 715 of LNCS, pages
509–523. Springer, 1993.

73. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
J. of the ACM, 63(1):9:1–9:67, 2016.

74. H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavattaro.
Foundations of session types and behavioural contracts. ACM Computing Surveys,
49(1):3:1–3:36, Apr. 2016.

75. M. Isberner, F. Howar, and B. Steffen. Learning register automata: from languages
to program structures. Machine Learning, 96(1–2):65–98, 2014.

76. B. Jacobs and F. Piessens. The VeriFast program verifier. Technical Report
CW-520, Department of Computer Science, Katholieke Universiteit Leuven, Aug.
2008.

77. M. Johansson, L. Dixon, and A. Bundy. Dynamic rippling, middle-out reasoning
and lemma discovery. In S. Siegler and N. Wasser, editors, Verification, Induction,
Termination Analysis: Festschrift for Christoph Walther on the Occasion of His
60th Birthday, volume 6463 of LNCS, pages 102–116. Springer, 2010.

78. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In B. K. Aichernig, F. de Boer, and



The Burden of Modularity 17

M. M. Bonsangue, editors, Proc. 9th International Symposium on Formal Methods
for Components and Objects (FMCO 2010), volume 6957 of Lecture Notes in
Computer Science, pages 142–164. Springer-Verlag, 2011.

79. E. B. Johnsen, M. Steffen, and J. B. Stumpf. Assumption-commitment types for
resource management in virtually timed ambients. In T. Margaria and B. Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation,
9th Intl. Symp., ISoLA 2020, Rhodes, Greece, LNCS. Springer, Oct. 2020. In this
proceedings.

80. C. B. Jones. Specification and design of (parallel) programs. In R. E. A. Ma-
son, editor, Information Processing 83, Proceedings of the IFIP 9th World Com-
puter Congress, Paris, France, September 19-23, 1983, pages 321–332. North-
Holland/IFIP, 1983.

81. E. Kamburjan. Behavioral program logic. In TABLEAUX, volume 11714 of
LNCS, pages 391–408. Springer, 2019.

82. E. Kamburjan and T. Chen. Stateful behavioral types for active objects. In C. A.
Furia and K. Winter, editors, Integrated Formal Methods: 14th Intl. Conf., IFM,
Maynooth, Ireland, volume 11023 of LNCS, pages 214–235. Springer, 2018.

83. E. Kamburjan, C. C. Din, R. Hähnle, and E. B. Johnsen. Behavioral contracts
for cooperative scheduling. In W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle,
and M. Ulbrich, editors, Deductive Verification: The State of the Future, volume
12345 of LNCS. Springer, 2020.

84. E. Kamburjan, R. Hähnle, and S. Schön. Formal modeling and analysis of railway
operations with Active Objects. Science of Computer Programming, 166:167–193,
Nov. 2018.

85. I. T. Kassios. The dynamic frames theory. Formal Aspects of Computing,
23(3):267–288, 2011.

86. J. C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, July 1976.

87. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-
C: a software analysis perspective. Formal Aspects of Computing, 27(3):573–609,
2015.

88. A. Knüppel, T. Runge, and I. Schaefer. Scaling correctness-by-construction. In
T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation, 9th Intl. Symp., ISoLA 2020, Rhodes, Greece, LNCS.
Springer, Oct. 2020. In this proceedings.

89. D. G. Kourie and B. W. Watson. The Correctness-by-Construction Approach to
Programming. Springer, 2012.

90. O. Lahav and V. Vafeiadis. Owicki-Gries reasoning for weak memory models.
In M. M. Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors,
Automata, Languages, and Programming: 42nd Intl. Coll., ICALP, Kyoto, Japan,
volume 9135 of LNCS, pages 311–323. Springer, 2015.

91. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, D. M. Zimmerman, and W. Dietl. JML Reference Manual, May 2013.
Draft revision 2344.

92. K. R. M. Leino, P. Müller, and A. Wallenburg. Flexible immutability with
frozen objects. In N. Shankar and J. Woodcock, editors, Verified Software: The-
ories, Tools, Experiments, Second International Conference (VSTTE), Toronto,
Canada, volume 5295 of LNCS, pages 192–208. Springer, 2008.

93. N. A. Lynch, R. Segala, F. W. Vaandrager, and H. B. Weinberg. Hybrid I/O
automata. In R. Alur, T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems



18 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan

III: Verification and Control, DIMACS/SYCON Workshop on Verification and
Control of Hybrid Systems, Rutgers University, New Brunswick, NJ, USA, volume
1066 of LNCS, pages 496–510. Springer, 1995.

94. S. McIlvenna, M. Dumas, and M. T. Wynn. Synthesis of orchestrators from service
choreographies. In M. Kirchberg and S. Link, editors, Conceptual Modelling 2009,
Sixth Asia-Pacific Conference on Conceptual Modelling (APCCM), Wellington,
New Zealand, volume 96 of CRPIT, pages 129–138. Australian Computer Society,
2009.

95. B. Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51, Oct.
1992.

96. R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer,
1980.

97. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Informa-
tion and Computation, 100(1):1–40, 1992.

98. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II. Infor-
mation and Computation, 100(1):41–77, 1992.

99. J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans.
Software Eng., 7(4):417–426, 1981.

100. A. Müller, S. Mitsch, W. Retschitzegger, W. Schwinger, and A. Platzer. Tactical
contract composition for hybrid system component verification. Int. J. Softw.
Tools Technol. Transf., 20(6):615–643, 2018.

101. L. P. Nieto. The Rely-Guarantee Method in Isabelle/HOL. In P. Degano, editor,
Programming Languages and Systems, 12th European Symp. on Programming,
ESOP, Warsaw, Poland, volume 2618 of LNCS, pages 348–362. Springer, 2003.

102. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

103. P. W. O’Hearn. Separation logic. Commun. ACM, 62(2):86–95, 2019.
104. S. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic

approach. Commun. ACM, 19(5):279–285, 1976.
105. C. Peltz. Web services orchestration and choreography. IEEE Computer,

36(10):46–52, 2003.
106. A. Poetzsch-Heffter and J. Schäfer. Modular specification of encapsulated object-

oriented components. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P.
de Roever, editors, Proc. 4th Intl. Symp. Methods for Components and Objects,
(FMCO), Amsterdam, The Netherlands, Revised Lectures, volume 4111 of LNCS,
pages 313–341. Springer-Verlag, 2006.

107. K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, 2005.

108. W. Reif and K. Stenzel. Reuse of proofs in software verification. In R. K.
Shyamasundar, editor, Foundations of Software Technology and Theoretical Com-
puter Science, 13th Conf., Bombay, India, volume 761 of LNCS, pages 284–293.
Springer, 1993.

109. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented
programming of software product lines. In J. Bosch and J. Lee, editors, Software
Product Lines: Going Beyond: 14th Intl. Conf., SPLC, Jeju Island, South Korea,
volume 6287 of LNCS, pages 77–91. Springer, 2010.

110. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The
WAM case study. Journal of Universal Computer Science, 3(4):377–412, 1997.

111. P. H. Schmitt, M. Ulbrich, and B. Weiß. Dynamic frames in java dynamic logic.
In B. Beckert and C. Marché, editors, Formal Verification of Object-Oriented



The Burden of Modularity 19

Software, Intl. Conf. FoVeOOS, Paris, France, Revised Selected Papers, volume
6528 of Lecture Notes in Computer Science, pages 138–152. Springer, 2011.

112. M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer. Modeling and verification
of reactive systems using Rebeca. Fundamenta Informatica, 63(4):385–410, 2004.

113. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

114. D. Steinhöfel and R. Hähnle. Abstract execution. In A. McIver and M. ter
Beek, editors, Formal Methods: The Next 30 Years, volume 11800 of LNCS, pages
319–336. Springer, 2019.

115. D. Steinhöfel and R. Hähnle. The trace modality. In A. Baltag and L. S. Barbosa,
editors, 2nd Intl. Workshop on Dynamic Logic: New Trends and Applications,
volume 12005 of LNCS, pages 124–140, Cham, Jan. 2020. Springer.

116. T. Thüm, A. Knüppel, S. Krüger, S. Bolle, and I. Schaefer. Feature-oriented
contract composition. Journal of Systems and Software, 152:83–107, 2019.

117. T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof composition for deduc-
tive verification of software product lines. In Fourth IEEE Intl. Conf. on Software
Testing, Verification and Validation, ICST, Berlin, Germany, Workshop Proc.,
pages 270–277. IEEE Computer Society, 2011.

118. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova. AutoProof: auto-active
functional verification of object-oriented programs. In C. Baier and C. Tinelli,
editors, Tools and Algorithms for the Construction and Analysis of Systems - 21st
International Conference, TACAS, London, UK, volume 9035 of LNCS, pages
566–580. Springer, 2015.

119. P. Urso and E. Kounalis. Sound generalizations in mathematical induction. The-
oretical Computer Science, 323(1-3):443–471, 2004.

120. C. Walther and T. Kolbe. Proving theorems by reuse. Artificial Intelligence,
116(1–2):17–66, 2000.

121. C. Walther and S. Schweitzer. About VeriFun. In F. Baader, editor, Auto-
mated Deduction, 19th International Conference on Automated Deduction, Miami
Beach, USA, volume 2741 of LNCS, pages 322–327. Springer, 2003.


