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Abstract. It is notoriously hard to correctly implement a multiparty
protocol which involves asynchronous/concurrent interactions and con-
straints on states of multiple participants. To assist developers in im-
plementing such protocols, we propose a novel speci�cation language to
specify interactions within multiple object-oriented actors and the side-
e�ects on heap memory of those actors. A behavioral-type-based analysis
is presented for type checking. Our speci�cation language formalizes a
protocol as a global type, which describes the procedure of asynchronous
method calls, the usage of futures, and the heap side-e�ects with a �rst-
order logic. To characterize runs of instances of types, we give a model-
theoretic semantics for types and translate them into logical constraints
over traces. We prove protocol adherence: If a program is well-typed
w.r.t. a protocol, then every trace of the program adheres to the proto-
col, i.e., every trace is a model for the formula of the protocol's type.

1 Introduction

The combination of actors [25] with futures [4] in object-oriented languages (e.g.,
Scala [34] and ABS [28]), sometimes called Active Objects [12], is an active re-
search area for system models and is frequently used in practice [37]. Processes
of Active Objects communicate internally within an object via the object's heap
memory. External communication works via asynchronous method calls with
futures: constructs for synchronizing executions invoked by those calls. Encap-
sulated heap memory and explicit synchronization points make it easy to locally
reason about Active Objects, but hard to specify and verify global protocols.

The main obstacle is to bridge the gap between local perspectives of single
objects and global perspectives of the whole system. As Din and Owe [15] pointed
out, it is non-trivial to precisely specify the communication within an object's
heap memory from a global perspective [16]. Multiparty session types (short as
MPST) [27], one important member of behavioral types [3, 19], are established
theories for typing globally stateless concurrent interactions (i.e., method calls)
among multiple participants (i.e., objects) to ensure communication safety. Cur-
rent works in MPST [6, 38] have attempted to specify state in communication by
using global values and assuming channels as the only communication concept.
Global values are not su�cient to specify the non-trivial interplay of processes
when taking the heap memory inside of an object into account. Furthermore,
channels are not able to fully represent the usage of futures, because futures, un-
like channels, could expose some inner state of their object. Namely, it exposes
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that the computing process has terminated and the object was inactive before
and after.

We integrate the stateful analysis and speci�cation of traces of Din et al. [15]
into MPST, where local veri�cation of the endpoints compositionally guarantees
the global speci�cation of the whole system. Functional properties are speci�ed
as a part of the communication pattern. We ensure that from the perspective of
each actor, its trace is not distinguishable from the global speci�cation and that
the whole system is deadlock free.

We specify passed data and modi�cations of heap memory with �rst-order
logic (FOL) formulas and transform behavioral types into logical constraints on
traces. Moreover, from the model-theoretic perspective, we de�ne protocol adher-
ence as the property that every generated trace of a well-typed(`) program is a
model(|=) for the translation of the type. The running example below illustrates
the challenges for protocols in Active Objects.

Consider a GUI U, a computation server S, and`Program Protocol
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an interface server I such that U, without knowing S,
wants to compute some data by sending it to I via
a method call. After executing this call, U prepares
for the next action by setting �eld intern to value

expect and terminating its process to stay responsive. I delegates U's task to S

and remains responsive to other requests without waiting for S's computation by
invoking another method on U with future x, which will carry the computation
result, back to U. The code and �gure below implement this scenario:

1 object U{
2 TState intern = init;
3 Int resume(Fut〈Int〉 x){
4 if( this.intern!=expect } return −1;
5 Int r = x.get; return r; }
6 Unit start(Int j){
7 Fut〈Unit〉 f = I!cmp(j);
8 this.intern = expect; }}

9 object I{
10 Unit cmp(Int dat){
11 Fut〈Int〉 f = S!cmp(dat);
12 Fut〈Int〉 f' = U!resume(f);}}
13

14 object S{ Int cmp(Int i){ ... }}
15

16 main { U!start(20); }

In the code, ! denotes a non-blocking call, I!cmp U I S

(get)

cmp

cmp

resume

calls method cmp of I, U!start calls U.start, U!resume
calls method resume for continuation, and S!cmp starts
the actual computation at S. The challenge for formal
speci�cations is to express that (1) I is transparent to
U and S such that I must pass the same data to S that
it received from U, and I does not read the return value from S; and (2) U changes
its heap to expect and reads the correct future.
Contributions. We propose (1) a speci�cation language for actors' behaviors,
that integrates FOL to specify heap memory, (2) model-theoretic semantics for
protocol adherence, and (3) a static type system integrating a FOL validity
calculus, which guarantees protocol adherence and deadlock freedom.
Roadmap. Section 2 provides an overview of our approach. Section 3 introduces
a core language for Active Objects, Async, and its dynamic logic, Section 4 gives
the types and operations on them and Section 5 gives the type system. Section 6
extends the concept to repetition. Section 8 concludes and discusses related work.
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2 Scope, Challenges and an Overview of the Work�ow

We aim to specify and verify session-based systems. A session-based system is a
system which has a �xed, �nite set of participating objects. Each object has an
assigned role within the protocol of a session. Our analysis is fully static and is
aimed at system validation: Ensuring that an existing system follows a certain
speci�cation.

We consider object-oriented actors, which use method calls, futures, and heap
memory for communication. Every method call is asynchronous and starts a new
process at the callee object. At each such call, the active caller obtains a fresh
future identity, on which one may synchronize on the termination of the started
process. An object may only switch its active process to another process if the
currently active process terminates. The usage of futures provides programmers
with the control of when synchronize � however, combining futures with object-
oriented actors leads to the following complications:

Protocols with State In an object-oriented setting, one must take the heap
memory into account when reasoning about concurrent computations. For
one, the heap memory in�uences the behavior of objects. For another, changes
of the heap memory (among coordinated actors) are not only a by-e�ect of
communication but often the aim of a protocol. Actors enforce strong encap-
sulation and restrict communication between object to asynchronous method
calls and future reads � coordinated memory changes must be part of the
speci�cation.

Unexposed State In the Active Object concurrency model, each process has
exactly one future. Thus reading from a future is synchronizing with an
unknown process and depends on the state of the process's object. To avoid
deadlocks, futures cannot be analyzed in isolation � reading from a future
must take the unexposed state of the object into account.

Mixed Communication Paradigms Processes inside an object communicate
through the heap memory. This kind of communication is hard to describe
with data types, as it requires �ne-grained speci�cation of computation and
has no explicit caller or callee. Thus, it is di�cult to isolate the parts of the
program which realize the communication protocol. Furthermore, method
calls are asynchronous, while future reads are synchronous.

Two-Fold Endpoints In the Active Object model, the callee endpoints of
methods calls are objects, but the caller endpoints and the endpoints for fu-
ture synchronization are processes. The interplay of multiple objects, which
contain multiple processes, must be captured in the analysis by a two-fold
notion of endpoints such that objects and processes are both endpoints.

In the following, we use the example from Section 1 to show how our approach
works and addresses these issues.

Example 1: Specifying global types. Our speci�cation language for side-e�ects
is a FOL for specifying local memory instead of global values since (1) global
values are not natural in an Active Object setting, and (2) a logic over memory
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locations (variables and �elds) allows us to use a well-established theory of �rst
order dynamic logic [22] to capture the semantics of methods. We formalize the
scenario in Section 1 by the following global type in our speci�cation language:

G =main−→U :start〈U.state .
= expect〉 . U−→ I :cmp〈>,>〉 .

I
f−→S :cmp〈i .

= dat, result > 0〉 . I−→U :resume〈x .
= f,>〉 . U↑x . End

We formally de�ne the above syntax in Section 4 and only give the intuition
here: > denotes true. U −→ I : cmp denotes a message cmp from U to I, i.e., the
call to a method cmp. Formula U.state

.
= expect is the postcondition for the

process started by this call at the callee object. If two formulas are provided,
the �rst is the precondition describing the state of the caller and the second is
the postcondition describing the state of the callee and the return value, which
is denoted by keyword result. The annotation f denotes the memory location
where the future of the denoted call is stored. Formula i

.
= dat states that dat,

the parameter of S.cmp, carries the same value as received by I.cmp on parameter
i, while formula x

.
= f requires that parameter x of the call at method resume

carries the future of the previous call to cmp. Finally, U ↑ x describes a read
of U on the future stored in the location x. Note that we specify locations in
formulas and avoid a situation where an endpoint must guarantee an obligation
containing values that it cannot access. Other approaches (e.g., Bocchi et al. [6])
allow this situation and thus require additional analyses of history-sensitivity
and temporal-satis�ability.

For the analysis, we adopt an approach similar to MPST: We project a global
type on endpoints de�ned inside it, to automatically derive local speci�cations
for all objects and methods. Additionally, formulas, which are used to specify
conditions on the heap memory, are projected on the logical substructure of the
callee, because the callee cannot access the caller's �elds.

Two-phase Analysis. The analysis requires that the protocol is encoded as a
global type, which de�nes the order of method calls and future reads between
objects, annotated with FO speci�cations of heap memory and passed data. Our
analysis has two phases. In Phase 1, the global type is used to generate local
types for all endpoints. In Phase 2, the endpoints are type checked against their
local types and a causality graph is generated for checking for deadlocks. The
work�ow of Phase 1 is based on MPST's approach, but is adjusted to the Active
Object concurrency model:

Phase 1. The work�ow of Phase 1 is shown in Fig. 1.

� Step 1 : The global type is projected onto the participating objects and gen-
erates object types. Such a type speci�es the obligation of an object for
running methods in a certain order, and for guaranteeing the FOL speci-
�cations of the object's state. During projection, the FO-speci�cations are
projected onto the substructure of the object in question.

� Step 2 : FO-speci�cations are propagated within an object type: as the order
of method executions is speci�ed by the speci�cation, the postcondition of
a method can be assumed as a precondition for the next method.
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G

G � X′

G � X

prp∗(G � X′)

prp∗(G � X)

prp∗(G � X′) � m′2

prp∗(G � X′) � m′1

prp∗(G � X) � m2

prp∗(G � X) � m1

︸ ︷︷ ︸
Step 1: Generating

local types for objects

︸ ︷︷ ︸
Step 2: Propagating
guarantees in objects

︸ ︷︷ ︸
Step 3: Generating

local types for methods

Fig. 1. Work�ow for Phase 1: G is a global type and � denotes projection on object X
resp. method m. Function prp∗ is the function propagating guarantees.

� Step 3 : An object type is projected on its methods, producing method types.

A global type encodes the following obligations (short as Obl. ) for the imple-
mentation: (Obl. a) for each object, the observable events (calls and reads) are
ordered as speci�ed in the global type, (Obl. b) for each method, the observable
events are ordered as speci�ed in the local type derived from the global type and
(Obl. c) the whole system does not deadlock, and adhere to the FO-speci�cations.

In the following, we demonstrate the work�ow of Phase 1 for the global type
in Example 2. We do not formally introduce the syntax at this point.

Step 1: Object Types. Projecting G from Example 2 on object U results in
?start〈>〉.I!cmp〈>〉.Put state .

= expect.?resume〈∃f. x .
= f〉.Read x.Put result > 0

Type ?start〈>〉 denotes a starting point for runtime execution. Type I!cmp〈>〉
denotes an invocation of method cmp. Type Put ϕ speci�es the termination of
the currently active process in a state where ϕ holds. Position and postcondition
of Put state

.
= expect are automatically derived. The position is just before the

next method start and the postcondition is taken from the call in the global type.
The analysis ensures that no method executes in-between. The precondition of
resume is weakened, since �eld f is not visible to U and callee U cannot use all
information from caller I. Weakening ensures that all locations in ϕ are visible
to U. Type Read x speci�es a synchronization on the future stored in x.

Step 2: Propagation. In the next step we propagate the postcondition of the
last process to the precondition of the next process. No process is speci�ed
as active between start and resume, so the heap is not modi�ed � thus, the
postcondition of start still holds when resume starts. Adding state

.
= expect to

the precondition of resume strengthens the assumption for the type checking of
resume. The propagation of conditions results in:

prp∗(G� U) =?start〈>〉 . I!cmp〈>〉 . Put state = expect .
?resume〈∃f. x .

= f ∧ state
.
= expect〉 . Read x . Put result > 0

Step 3: Method Types. We generate a method type to specify a method in isola-
tion. Projecting the object type in Step 2 on method resume generates:
prp∗(G� U)�resume =?resume〈∃f. x .

= f ∧ state
.
= expect〉.Read x.Put result > 0

Method types share the syntax with object types. Projection from object types
splits the object type at positions where one method ends and another one starts.
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Phase 2. After generating method types, Phase 2 of the analysis checks the
implementation of methods against their method types, and checks the formulas
for validity. The type checking of method types guarantees the correct local
order of events (Obl. b). State speci�cations are checked by integrating a validity
calculus [15] into the type system. To guarantee (Obl. a and c), we require the
following analyses:

Causality Graph. We generate a causality graph to ensure deadlock freedom
(Obl. c): A deadlock free causality graph for Active Objects is cycle-free [17, 24].
A causality graph is also used to ensure that methods of one object are executed
in the order speci�ed in the global type that the object obeys to (Obl. a).

U ? ! ↓ ? ↑ ↓

I ? ! ! ↓

S ? ↓

The nodes are the local types from the projected object types. A solid edge
connecting two nodes models that the statement for the �rst type directly causes
the statement for the second type; for example, there are edges from a call to
the corresponding receiving type. The graph is partially generated from G, and
partially generated from the code: The edge connecting the gray nodes is added
by a Points-To analysis, which maps a location of a future to the methods
resolving this future. The termination of a method causes the start of the next
(as the object cannot switch the active process otherwise), but does not select
the next method itself. A dotted edge models such indirect causality: Indirect
causality edges are considered when checking cycle-freedom check for deadlock
freedom, but not for checking the method order.

Model-theoretic Semantics. One of our contributions is the de�nition and veri�-
cation of protocol adherence from a model-theoretic point of view: The property
that a program follows a speci�ed scenario (the protocol) if every generated
trace is a model for the translation of the global type. We thus de�ne protocol
adherence through a logical characterization of global types and translate types
into constraints over traces, which are sequences of con�gurations generated by
the program.

G

L

Validity Calculus

Type System

Points-To

Composition Guarantees

State Speci�cation

Local Action Order

Deadlock Freedom

P
ro
je
ct
io
n Formulas

Future locations

guarantees through well-formedness

guarantees

guarantees

guarantees

Protocol Adherence

Fig. 2. Work�ow for Phase 2 in our analysis.
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This declarative approach for de�ning protocol adherence allows us to connect
the FO properties embedded in the type to the execution of methods by using a
dynamic logic: For a statement s the dynamic logic formula ϕ⇒ [s]ψ expresses
that the �rst-order formula ψ holds after executing s, if ϕ holds in the beginning.
From the perspective of the trace logic, FOL describes a single con�guration in
the trace, while the modality [s] relates the con�guration before executing s with
the con�guration after executing s. We use modalities during type checking.

3 Async, a Core Actor-Based Language using Futures

We introduce Async, a simple Active Object language based on ABS [28]. Due
to space limitations, we only present the basic constructs of Async below. For
branching constructs we refer to Section 7; repetition is introduced in Sec. 6. An
Async-program consists of a main statement and a set of actors, which are objects
that have �elds and method but do not share state. Inside an object, processes do
not interleave and the currently active process must terminate before another one
is scheduled. Therefore, single methods can be considered sequential for analysis.
We assume standard operations, literals and types for booleans, integers, lists
and Object.

De�nition 1 (Async-Syntax). Let e denote expressions, T denote data types, x
denote variable and �eld names, X denote object names, and Fut<T> denote future
types. · represents possibly empty lists and [·] represents optional elements.

Prgm ::= O main{X!m(e)} O ::= object X {M T x = e} M ::= T m(T x){s; return e}
s ::=

[
[Fut<T>] x =

]
X!m(e) | [T] x = e |

[
T
]
x = e.get | skip | s; s

Objects communicate only by asynchronous method calls using futures. Upon
a method call, a fresh future is generated on callee side and is passed to the
caller. The callee writes the return value into the future upon termination of the
corresponding process; anyone with the access to the future can read, but not
write, into it. We only consider static sessions, in which all objects are created
before the start of the system. Async is a standard imperative language with two
additional statements: (1) x = X!m(e) calls method m with parameters e on object
X. The generated future is stored in x. The caller continues execution, while the
callee is computing the call on m or scheduling m for later execution if another
process is currently active. (2) e.get reads a value from the future stored in e.
If the process computing this future has not terminated, the reading process
blocks.

To de�ne a small-step reduction relation over events for the semantics of
Async, we �rst de�ne an event as a process action with visible communication:

De�nition 2 (Events). Let f, f ′ range over futures. An event, denoted by ev,
is de�ned by the following grammar:

ev ::=iEv(X,X′, f, m, e) | iREv(X, f, m) | fEv(X, f, m, e) | fREv(X, f, e) | noEv

An invocation iEv(X,X′, f, m, e) models that X calls X′.m using f and passes e as
parameters. An invocation reaction iREv(X, f, m) models that X starts executing
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m to resolve f . A resolving fEv(X, f, m, e) models that X resolves f , which contains
e at the moment, by �nishing the execution of m. A fetch fREv(X, f, e) models
that X reads value e from f . Finally, noEv models no visible communication.

A con�guration is composed of processes and objects. A process has a unique
future f , a store σ which maps variables to literals, and the name X of its object.
An object has a unique name X, an active future f , and a store ρ which maps
�elds to literals.

De�nition 3 (Runtime Syntax of Processes and Objects). The following
grammar de�nes runtime processes and objects as con�gurations C:

C ::= prc(X, f, m(s), σ) | prc(X, f, val(e), σ) | ob(X, f, ρ) | C C

A process either is executing a method m for a request carried by f at some
object X, represented by prc(X, f, m(s), σ), or has returned e, represented by
prc(X, f, val(e), σ). An object ob(X, f, ρ) has its name X, the future of the active
process f and the heap ρ. We write ob(X,⊥, ρ) to indicate that X is inactive.
Composition of con�gurations is commutative and associative, i.e., C C′ = C′ C
and C (C′ C′′) = (C C′) C′′. We denote the initial con�guration of a program
Prgm with I(Prgm). If all processes of a con�guration C have terminated, the
con�guration also terminates. The body of method m is denoted by M(m). We

write M̂(m, e) for the initial local store of a task executing m with parameters e.
We use traces, sequences of pairs of events and con�gurations, to capture the

behavior of a program. We only consider terminating runs and de�ne big-step
semantics Prgm ⇓ tr for �nite traces:

De�nition 4 (Run and Big-Step Semantics). A run from C1 to Cn is a
sequence of con�gurations C1, . . . ,Cn with events ev1, . . . , evn−1 such that:

C1 →ev1 C2 →ev2 . . .→evn−1
Cn

The trace tr of a run is a sequence (ev1,C1), . . . , (evm,Cm) where for every
1 ≤ j < m ≤ n there is a C such that Cj→evj C is in the run and evj 6= noEv.
An Async program Prgm generates tr, written Prgm ⇓ tr, if there is a run from
its initial con�guration to a terminated con�guration such that tr is the trace of
this run.

Fig. 3 de�nes the reduction relation →ev for the semantics. JeKσ,ρ denotes
the evaluation of an expression e under stores σ and ρ. Rule (call) executes a
method call on the object stores in e by generating a fresh future f ′ and an
invocation event. The new process is not set as active upon creation by (call).
By rule (start), the object X must be inactive, when the process is started. An
invocation reaction event is generated. Rule (sync) synchronizes on a future f ′

stored in e, by checking whether the con�guration contains prc(X′, f ′, val(e′), σ′),
i.e. f ′ is resolved, and reads the return value e′. Rule (end) terminates a process.
In all other rules, the ev parameter is noEv.

Dynamic Logic. A dynamic logic combines FO-formulas over the heap with
symbolic executions [1, 32] of statements. A symbolic execution uses symbolic
values to describe a possible set of actual values. It does not reason about one
execution of the statement, but describes a set of executions.
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(call)
C does not contain f ′ JeKσ,ρ = X′ C = ob(X, f, ρ) C′ ev = iEv(X,X′, f, m, Je′Kσ,ρ)

prc(X, f, m(e!m′(e′); s), σ) C→ev prc(X, f, m(s), σ) prc(X′, f ′, m′(M(m′)), M̂(m, Je′Kσ,ρ)) C

(start)
ev = iREv(X, f, m)

prc(X, f, m(s), σ) ob(X,⊥, ρ) C→ev prc(X, f, m(s), σ) ob(X, f, ρ) C

(sync)
C = prc(X′, f ′, val(e′), σ′) C′ JeKσ,ρ = f ′ ev = fREv(X, f ′, e′)

prc(X, f, m(x = e.get; s), σ) ob(X, f, ρ) C→ev prc(X, f, m(x = e′; s), σ) ob(X, f, ρ) C

(end)
ev = fEv(X, f, m, e)

prc(X, f, m(return e), σ) ob(X, f, ρ) C→ev prc(X, f, val(JeKσ,ρ), σ) ob(X,⊥, ρ) C

Fig. 3. The selected semantics rules. Full rules are provided in [30].

Example 2. Formula ∃Int a.
(
a > 0∧ i > a

)
→ [j = i*2;]j > 0 describes that if

there is a number a bigger than 0 and smaller than the value stored in i, then
after executing j = i*2;, variable j contains a positive value.

Based on ABSDL [14], we present Async Dynamic Logic (short as ADL), which
extends �rst-order logic over program variables and heap memory with modal-
ities that model the e�ect of statements. In this logic, method parameters are
special variables and a modality is a formula [s]ϕ which holds in a con�guration,
say C, if ϕ holds in every con�guration reached from C after executing s. We focus
on the semantics of modality-free formulas, which have con�gurations as models;
the semantics of modalities is a transition relation between con�gurations.

De�nition 5 (Formulas ϕ). We de�ne the set of formulas ϕ and terms t by
the following grammar, where p ranges over predicate symbols, f ranges over
function symbols, x ranges over logical variables, and v ranges over logical and
program variables. The set of formulas is denoted by ADL.

ϕ ::= tt | ¬ϕ | ϕ ∨ ϕ | p(t . . . t) | t ≥ t | t
.
= t | ∃T x;ϕ | [s]ϕ t ::= v | f(t . . . t)

Local program variables (i.e., v) are modeled as special function symbols. To
model heap accesses, following Schmitt et al. [36], we use two function symbols
store and select with (at least) the axiom select(store(heap, f, o, value), f, o) =
value where heap is a special local program variable modeling the heap explicitly.
A special function symbol result is interpreted as the return value of a method,
and a logical variable is free if it is not bound by any quanti�er.

De�nition 6. A formula ϕ is valid if it evaluates to true in every con�guration.

Formulas are global or X-formulas. Global formulas refer to the heap of multiple
objects, while X-formulas refer only to X. The latter contains only the function
symbols for elements from X and the special function symbol self modeling the
reference to X. For proving that an X-formula holds for a given state, if su�ces
to locally check the code of X. A validity calculus for ADL is presented in [15].

De�nition 7. Let ϕ be a formula. The weakened X-formula ϕ@X is obtained by
replacing all function symbols in ϕ which are not exclusive to X (i.e., refer to the
�elds of other objects) by free variables and existentially quantifying over them.
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Example 3. Let fl be a �eld, X an object and i the parameter of some method
in class X. Consider ϕ = X.fl > 0 ∧ i > X.fl. The formula ϕ is an X-formula, as
ϕ = ϕ@X. The weakening for some object X′ is ϕ@X′ = ∃Int a.a > 0 ∧ i > a.
ϕ@X′ does not reason about X.fl, but still has the information of i > 1.

4 Behavioral-Type-Based Stateful Speci�cation

We de�ne a speci�cation language for global types to specify the behavior of
the system. Following Sec. 3, we only represent the key constructs and leave
branching to Section 7 and repetition to Sec. 6.

De�nition 8 (Syntax of Global Types). Let ϕ,ψ range over modality-free
ADL formulas and Xi range over object names. [·] denotes optional elements.

G ::= main−→X :m〈ϕ〉.G G ::= X1
[x]−−→X2 :m〈ϕ,ψ〉.G | X↑e.G | End

The calling type X1
[x]−−→ X2 : m〈ϕ,ψ〉 speci�es a method call from X1 to m at

X2. If x is not omitted above the arrow, the future of this call must be stored
in location x. The ADL-formula ϕ speci�es (1) the call parameters passed to the
callee and (2) the memory of X1 at the moment of the call. Formula ψ is the
postcondition of the callee process and speci�es the state of X2 and the return
value once m terminates. The exact point of termination is derived during pro-
jection. The initial method call main−→X :m〈ψ〉 only speci�es the postcondition
of the process running X.m. Type X↑e speci�es a synchronization on the future,
to which the expression e evaluates. Every synchronization must be speci�ed.
End speci�es the end of communication.

G denotes a complete protocol with an initializing method call, while G
denotes partial types. Even without �elds in the formula, the implementation
is referenced in the speci�cation, as endpoints are object names. Object and
method types share the same syntax. Together we call them local types. The
grammar of local types is de�ned as follows:

De�nition 9 (Syntax of Local Types). Let ϕ range over modality-free ADL
formulas and Xi range over object names. [·] denotes optional elements.

L ::=?m〈ϕ〉.L L ::=?m〈ϕ〉.L | X![x]m〈ϕ〉.L | Put ϕ.L | Read e.L | skip.L | End

The type ?m〈ϕ〉 denotes the start of a process computing m in a state where
formula ϕ holds. Formula ϕ is the precondition of m and describes the local state
and method parameters of m. Type Put ϕ denotes the termination in a state
where ϕ holds. Formula ϕ is a postcondition and describes the return value
and the local store. Contrary to global types, a postcondition of a process is
not annotated at the call, but at the point of termination because the point
of termination is now explicit. Type X![x]m〈ϕ〉 corresponds to the caller side of

X1
[x]−−→ X2 : m〈ϕ,ψ〉. Type Read e models a read from e and skip denotes no

communication. As for global types, End models the end of communication. In
our examples, we omit End for brevity's sake. We use L for complete local types
and L for partial local types.

Projection has three steps: (1) projection of global types on objects, (2)
condition propagation, and (3) projection of object types on methods.
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Projection on Objects. The projection on objects ensures that every object can
access all locations occurring in its speci�cation and adds Put ϕ at the correct
position. This requires an additional parameter in the projection to keep track
of which process is speci�ed to be active and what its postcondition is.

To track the postcondition of the last active method of an object, we use a
partial function ac : O ⇀ ADL to map objects to formulas. If no method was
active on X yet, ac is unde�ned, written ac(X) = ⊥. The projection of G on an
object X is denoted by G �ac X. The selected projection rules for methods calls
and termination are given in Fig. 4. We write ac⊥ for the function de�ned by

∀X. ac(X) = ⊥. For updates, we write ac[X 7→ ψ](X′) =

{
ψ if X = X′

ac(X′) otherwise
.

(1)X1
x−→X2 :m〈ϕ,ψ〉.G �ac X1 = X2!xm〈ϕ〉.(G �ac[X2 7→ψ] X1) if ac(X1) 6= ⊥ ∧ ϕ = ϕ@X1

(2)X1
x−→X2 :m〈ϕ,ψ〉.G �ac X2 =

{
?m〈ϕ@X2〉.(G �ac[X2 7→ψ] X1) if ac(X2) = ⊥
Put ac(X2).?m〈ϕ@X2〉.(G �ac[X2 7→ψ] X1) if ac(X2) 6= ⊥

(3)X1
x−→X2 :m〈ϕ,ψ〉.G �ac X = skip.(G �ac[X2 7→ψ] X) if X2 6= X 6= X1

(4)main−→X2 :m〈ϕ〉.G �ac⊥X1 =

{
?m〈ϕ@X2〉.(G �ac[X2 7→ψ] X1) if X2 = X1

skip.(G �ac[X2 7→ψ] X1) if X2 6= X1

(5)End�ac X =

{
Put ac(X).End if ac(X) 6= ⊥
End if ac(X) = ⊥

Fig. 4. The selected rules for projection on objects.

When projecting on caller X1, a sending local type is generated by (1) if X1 has
an active process (ac(X1) 6= ⊥) and the precondition can be proven by the caller
(ϕ = ϕ@X1). If the callee has an active process (i.e., the last active postcondition
exists: ac(X2) 6= ⊥), then the termination type for the active process is added
by (2) before the receiving type. If the callee is speci�ed as being inactive (i.e.,
no process was running before and no postcondition is tracked ac(X2) = ⊥),
then only the receiving type is added by (2). When projecting on any other
object, skip is added by (3). In any case, ac is updated and maps the callee to a
new postcondition. Rules (4) and (5) are straightforward. As usual, projection is
unde�ned if no rule matches, and we omit ac⊥ and write just G� X.

Propagation. In our concurrency model the heap does not change if no process is
active. All guarantees from the last active process still hold for the next process.
By propagation, formulas are added from the postcondition of one method to
the precondition of the next. Propagation moves formulas from where they must
hold to all points where they still are assumed to hold. Propagation replaces a
partial local type, if the partial type matches the given pattern.

De�nition 10 (Propagation). The propagation function prp is de�ned via
term rewriting (denoted  ) as follows. prp∗ denotes the �xpoint of rewriting.

(1) Put ϕ.?m〈ψ〉 Put ϕ.?m〈ψ ∧ ϕ@X〉 where X is the target object
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Projection on Methods. The projection on a method, denoted by L �m′ m, re-
sults in a set of method types. A method may have multiple method types,
as long as the method types are distinguishable, which means that they have
non-overlapping preconditions. Formally, two preconditions ϕ1 and ϕ2, are dis-
tinguishable if the formula ¬(ϕ1∧ϕ2) is valid. In the case of overlapping precon-
ditions, multiple preconditions can hold at the same time and it is not guaranteed
that the correct type will be realized.

The rules for projection on a method are straightforward and we refer to the
Section 2 for an example and to the appendix for full de�nitions.

De�nition 11 (Well-Formedness). A global type G is well-formed, if the pro-
jections on all methods are de�ned and all types of a method are distinguishable.

Semantics of Types as Constraints on Traces. To formalize the behavioral types
of the previous section, we transform them into �rst-order constraints over traces.

We de�ne C as a function transforming global types to constraints on traces.
Recall that we have de�ned C for con�gurations and ev for events. The primitive
C(i) references the ith con�guration and ev(i) references the ith event in a trace.
We use events and formulas as colors and thus include futures, method names,
literals and object names in the domain. Constraints refer to ADL formulas ϕ
with C(i) |= ϕ, meaning that in the ith con�guration, ϕ holds.

To restrict a constraint to a subtrace, we use relativization [23], a syntactic
restriction of constraint γ to a substructure described by another constraint χ.

De�nition 12. Let χ(x) be a constraint with a free variable x of data type T

and γ another constraint. The relativization of γ with χ(x), written γ[x ∈ T/χ],
replaces all subconstraints of the form ∃y ∈ T.γ′ in γ by ∃y ∈ T.χ(y) ∧ γ′.

The main rules for translating G into a constraint C(G) are de�ned as follows.

De�nition 13 (Semantics of Global Types). Predicate res(i) holds if ev(i)
is a resolving event and A(i,X) holds if X is active in C(i).

(1)C(main−→X2 :m〈ψ〉.G) = ∃j, k. ∃f. ∃e′. ev(j)
.
= iREv(X2, f, m) ∧ C(j) |=ϕ@X2∧

ev(k)
.
= fEv(X2, f, e

′) ∧ C(k) |=ψ ∧ ∀l.l 6=j ∧ l 6=k ⇒ res(l) ∧ C(G)

(2)C(X1
x−→X2 :m〈ϕ,ψ〉) = ∃i, j, k. ∃f. ∃e, e′.

ev(i)
.
= iEv(X1,X2, f, m, e) ∧ C(i) |=ϕ ∧ ev(j)

.
= iREv(X2, f, m) ∧ C(j) |=ϕ@X2∧

ev(k)
.
= fEv(X2, f, e

′) ∧ C(k) |=ψ ∧ C(i) |=(X1.x
.
=f) ∧ ∀l. l 6= i ∧ l 6=j ∧ l 6=k ⇒ res(l)

(3)C(G1.G2) =
∧
X

(
∃i ∈ N. C(G1)[j ∈ N/A(j,X)⇒ j < i] ∧ C(G2)[j ∈ N/A(j,X)⇒ j ≥ i]

)
The constraint (1) for the call type has three events modeling (1) a call, (2)

the start of the process and (3) the existence of the termination of the process.
Moreover, the projected formulas hold at the con�gurations for these events.
Every other event is a fEv. The exact position of termination (i.e., fEv events)
is not speci�ed in global types, so we do not constrain them. Reading from a
location is de�ned analogously. The translation of G1.G2 models that there is a
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position i such that, for every object X, the events described in C(G1) are in the
subtrace before i and those in C(G2) are in the subtrace after i.

The restriction is applied for every object, to ensure the following property:
If a trace is a model for the translation of a type G, then for each participating
object (1) all events of this objects have the same order as speci�ed in G and (2)
at the moment of the event, the corresponding FO formula holds. The translation
of, e.g., X1−→X2 : m2.X1−→X3 : m3 describes that X2.m2 is called before X2.m2, but
does not describe that the execution start in the same order. Thus, there are
multiple possible event order satisfying this constraint, but from every local point
of view the di�erences between these traces are not visible.

5 Analysis

Verifying deadlock freedom requires a Points-To analysis in addition to a type
system. Deadlock freedom is equivalent to cycle-freedom of causality graphs [17]
in Active Objects. The causality graph of a global type G is G(G) = (V,E).
Each node L ∈ V is a local type, and each edge (L1,L2) ∈ E models that L2

must happen after L1.

De�nition 14 (Causality Graph). Let G be a well-formed global type. The
nodes of its causality graph G(G) are all partial local types derived from pro-
jecting G on all endpoints. An edge (L1,L2) is added if either (1) L1 = L.L2

is a partial type for some L in some projection on some object or (2) L1 is the
sending type and L2 the receiving type from the projection of a single calling type.

Note that global types do not contain su�cient information to deduce all
causality, e.g., the causality of get statements cannot be deduced from a global
type because synchronizations on futures are speci�ed over locations. We use a
Points-To analysis for futures [17] instead. For generating a causality graph, we
�rst derive a partial causality graph from the global type, and then we apply
the Points-To analysis during type checking for the graph completion by deduc-
ing the missing edges. The Points-To analysis, de�ned below, determines which
methods are responsible to resolve the futures in a given expression.

De�nition 15 (Points-To). The Points-To analysis determines the set p2(e)
of methods, which may have resolved the future stored in an input expression e.
We can express this using constraints, to integrate it into the type system:

∀i ∈ N. C(i) .= prc(X′, f, val(e′), σ) prc(X, f ′, m′(x = e.get; s′′), σ′′) C ∧ JeKσ,ρ = f →
∃j ∈ N. j < i ∧ C(j)

.
= prc(X′, f, m(s), σ′) C′ ∧ m ∈ p2(e)

Whenever a e.get-statement is checked against a type Read e, edges are added
between the node of termination type of the methods which e can point to, and
the node of the current type Read e. Although Points-To is undecidable, well-
scaling tools which safely overapproximate are available [2].

De�nition 16 (Admissibility). A causality graph is admissible if (1) every
path is cycle-free and (2) for every object X, and for any pair of receiving types
of X, there exists a connecting path without an edge of the form (Put ϕ, ?m〈ψ〉).
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The graph on page 6 is admissible. With a non-admissible graph, methods
may deadlock (violating (1)) or be executed in the wrong order (violating (2)).

Type System and Analysis. The auxiliary ADL-formula post(X.m, ϕ) models that
the value in every future resolved by X.m satis�es ϕ, while formula Post(G)
represents the conjunction of all postconditions speci�ed in G. Figure 5 shows
selected typing rules invoking the validity calculus [15] and Points-To analysis.

Before introducing the typing rules, we de�ne Roles(G) as the set of objects
in G, G(G)+E as the set of edges of G(G) and E (i.e., E is added into G(G)),
term(m) as the set of ↓ nodes of method m, and node(s) as the set of nodes referring
to the types that have typed s. We de�ne three kinds of type judgments:

(I) The Type Judgment for Programs. ` Prgm : G checks Prgm against global
typeG. The well-formedness ofG (Def. 11) is ensured during type checking. Rule
(T-Main) checks that every endpoint in G is implemented in Prgm, the main block
makes the correct initializing call and checks each object against its object type.
The edges collected from the typing rules for objects are added to the partial
causality graph G(G) and the resulting graph is checked for admissibility.

(II) The Type Judgment for Objects. Φ ` O : L B E checks whether O is well-
typed by L under a given E with Φ. E is a set of causality edges and Φ is a set
of ADL formulas. Rule (T-Object) projects L on all methods, checks each method
mi by L� mi and collects all resulting edges.

(T-Main)

Oi = object Xi{. . . } Roles(G) = {X1, . . . ,Xn} G(G) +
⋃
i≤nEi admissible

∃j ≤ n. G = main−→Xj :m〈ϕ〉.G ∀i ≤ n. Post(G) ` Oi : prp
∗(G� Xi)B Ei

` O1 . . . On main{Xj !m()} : G

(T-Object)

∀i ≤ n. L�ac mi =?mi〈ϕi〉.Li
∀i ≤ n. Φ, ϕi, skip ` si : Li B Ei E =

⋃
i≤nEi

Φ ` object X{T1 m1(T x){s1} . . . Tn mn(T x){sn} T x = e} : LB E

(T-Return)
Φ⇒ [s; return e]ϕ

Φ, s ` return e : Put ϕB E (T-Call)

Φ, s; T x = X!m(e) ` s′ : LB E
Φ⇒ [s; T x = X!m(e)]ϕ

Φ, s ` T x = X!m(e); s′ : X!xm〈ϕ〉.LB E

(T-Get)

Φ, s; T x = e.get ` s′ : LB E′
E = E′ ∪ {(n, n′)|∃m ∈ p2(e). n ∈ term(m) ∧ n′ ∈ node(s; e.get)}

Φ, s ` T x = e.get; s′ : Read e.LB E

Fig. 5. The selected typing rules.

(III) The Type Judgment for Statements. Φ, s ` s : L B E checks whether s is
well-typed by L under a given E with Φ, s. The environment s are the statements
type-checked so far. Whenever an ADL formula is checked, a validity check is
performed and s is added in the modality to consider the side-e�ects on the
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heap memory so far. However, these are not recorded in E: The causality edges
only record which method a get statement synchronizes on. Rule (T-Return) checks
that after executing all the type-checked statements, the return statement results
in a state where ϕ holds. Rule (T-Call) also checks the formula ϕ which describes
the state when the call has to be executed. Rule (T-Get) additionally executes the
Points-To analysis and adds all the edges as described in the previous section.

Theorem 1 (Deadlock Freedom and Protocol Adherence). Let Prgm be
a program and G be a global type. If Prgm is well-typed against G then (1) Prgm
does not deadlock and (2) every generated trace from Prgm satis�es C(G):

` Prgm : G→
(
∀tr. Prgm⇓tr→ tr |= C(G)

)
6 Loops and Repetition

In this section we present the whole work�ow of the previous section for Async
extended with repetition. The language is extended with loops and the types
with repetition types (G)∗ϕ (resp. (L)∗ϕ). A repetition type resembles a Kleene-
star and models the �nite repetition of the type G (resp. L). The formula ϕ is a
loop invariant and has to be satis�ed whenever a loop iteration starts or ends.

De�nition 17 (Syntax with Repetition).

s ::= . . . | while(e){s} G ::= . . . | (G)∗ϕ.G L ::= . . . | (L)∗ϕ . L

By syntactic restrictions, the local type L of an object cannot have the form
(L)∗ϕ.L

′, which forbids it to start with a loop. The intuition behind this restric-
tion is that every loop has an invariant that an object must guarantee before
executing the next iteration. If an object is not active before the loop, it cannot
guarantee the invariant in the very beginning, thus repetition can start with the
second action at the earliest. Below give an example for using invariants.

Example 4. Consider a big data analysis webtool with a client-side GUI U and
a server-side computational server S. We model the following scenario:

U sends data to the computational server by calling
U S

ru
n

u
p

co
m
p

S.comp. To stay responsive, U ends its initial process. U
is called repeatedly on G.up by the server to update the
progress. Whenever U is updated, the server also gets in-
formation by reading from the future of the last call to
U.up. The sequence diagram to the right illustrates the
protocol. During updating, U must stay in a state ex-
pecting to receive updates from the server. It is therefore
important to specify that �eld U.expect is not Nil.

main−→U : run〈>〉 . U−→S :comp〈>,>〉 .
(
S
x−→U :up〈>,>〉 . S↑x

)∗
U.expect6=Nil

. end

The invariant U.expect 6= Nil speci�es the condition that �eld U.expect is a non-
empty list. This is propagated during projection, which results in the following
local type for U.up

?update〈self .expect 6= Nil〉.Put self .expect 6= Nil
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There is no repetition because being repeatedly called is only visible for the whole
object, not a single process. The type of S.cmp however contains a repetition:

?comp〈>〉.
(
U!xup〈>〉.Read x

)
∃l. l 6=Nil.Put >

The work�ow is the same as described above. We provide the projection,
translation, propagation and typing rules as extension of the previous systems.

De�nition 18 (Projection Rules for Loops).
The auxiliary predicate rcv(X,G) holds if X is speci�ed as being called in G.

(
(G)∗ϕ.G

′)�ac X =


Put ac(X).(L′′)∗ϕ@X.L

′ if L 6= skip∧ rcv(X,G)∧ac(X) 6=⊥∧cs(ϕ)
(L)∗ϕ@X.L

′ if L 6= skip∧¬rcv(X,G)∧ac(X) 6=⊥∧cs(ϕ)
L′ if L = skip∧cs(ϕ)

Where G.End�ac[X 7→⊥] X = L′′,G �ac X = L and G ′ �ac X = L′

The auxiliary formula cs(ϕ) speci�es that all weakenings of ϕ imply ϕ. This
is necessary to reject invariants that connect multiple heaps: e.g., this condition
would reject G.i

.
= S.i, as it cannot be guaranteed by G and S separately. This

condition, however, admits G.i
.
= 1 ∧ S.i = 1. The �rst rule projects global

types to object types. The �rst case is applied if the object participates in the
repetition of the inner type G by being repeatedly called. The last active process
must terminate �rst and the repeatedly called method must terminate within
the repetition. The termination inside the loop is ensured by projecting the inner
type with an appended End. The second case is applied if the object participates
in the repetition (L 6= skip) by any other repeated action then being called
(¬rcv(X,G)). Finally, the last case skips the repetition if the object does not
participate in it.

The second rule projects object types to methods. The rule distinguishes
whether the whole process is inside the repetition or not. If the process is com-
pletely inside, the repetition is removed, as it is not visible to the method.

In presence of repetition, invariants have to be propagated inside the re-
peated, the previous, and the next types. The following de�nition summarizes
gives the rules for repetition, additionally to rule (1) in Def. 10.

De�nition 19 (Rules for Propagation for Repetition).

(2) Put ϕ.(L)∗ψ  Put ϕ ∧ ψ.(L)∗ψ (3) (L)∗ψ.?m
′〈ϕ〉 (L)∗ψ.?m

′〈ϕ ∧ ψ〉
(4) (L)∗ϕ.(L)

∗
ψ  (L)∗ϕ∧ψ.(L)

∗
ψ (5) (?m′〈ϕ〉.L.Put ϕ′)∗ψ  (?m′〈ϕ ∧ ψ〉.L.Put ϕ′ ∧ ψ)∗ψ

Since loop invariants have to hold before the �rst repetition, rule (2) ensures
that the last process before a repetition satis�es the invariant when terminating.
Rule (3) adds an invariant to the next process, as the invariant also holds after
the last repetition. Rule (4) is another case of the �rst one, in case two repetitions
are succeeding each other. Finally, rule (5) adds the invariant to the processes
inside the repetition. This rule enables the use of the invariant in the �rst method
of the repetition and ensures that the last method reestablishes the invariant.

For the translation into constraints, �rst-order constraints are not expressive
enough. The Kleene star constraint resembles regular languages and we thus use
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monadic second order logic (MSO) to capture repetition. MSO extends �rst-
order logic with a quanti�er ∃Y ⊆ Z which quantities over subsets of Z and a ∈
primitive to express membership of those sets. The extension of relativization is
straightforward [23]. We now extend the semantics of types as constraints from
Def. 13 to repetition:

De�nition 20 (Semantics of Repetition). The semantics of repeated types
uses a set of boundary indices X, between which the inner translation must. Also,
the invariant has to hold at every boundary.

C
(
(G∗ϕ)

)
= ∃X ⊆ N. ∃i, j ∈ X.

(
∀k ∈ N. i < k ≤ j

)
∧ ∀i ∈ X. C(i) |= ϕ∧

∀i, j ∈ X.
((
∀k ∈ X. k ≥ j ∨ k ≤ i

)
⇒
(
C(G)

)
[n ∈ N/i < n ≤ j]

)
The typing rule for repetition resembles invariant rules from Hoare calculi [26]:

(T-While)

ϕ ∧ Post(G), skip ` s′ : L′ B E′′ Φ⇒ [s′′]ϕ ϕ ∧ Post(G)⇒ [s]ϕ
ϕ ∧ Post(G), skip ` s : LB E′ E = E′ ∪ E′′

Φ, s′′ ` while e {s}; s′ : (L)∗ϕ . L′ B E

The �rst premise continues the type checking of the program, in an environment
where only the information in the invariant (and the global information in Post,
as de�ned in Section 5) is available. The second and third premises check that
the invariant holds initially and is preserved by the loop body. The forth premise
checks the loop body and the last premise combines the derived causality edges.
The extension of the causality graph is described in [29].

Corollary 1. Theorem 1 holds for the system with repetition.

7 Branching

Active Object have multiple ways to communicate the choice how to continue
the protocol and how an object reacts on it:

� (1) The choice is communicated via method selection, i.e., each branch cor-
responds to a di�erent method call.

� (2) The choice is communicated via futures, i.e., other objects must react to
the choice of an object by reading its future.

� (3) The choice is communicated via the heap memory, i.e., processes must
behave according to some condition for the memory.

We aim to stick with standard imperative statements and must regard the
restriction that an if statement can only choose between two branches, while a
protocol may describe more than two. In our analysis of branching, choice is
communicated:

� (1) method calls and condition on the passed data for new process running
on other objects
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� (2) the condition on future for already running processes running on (possi-
bly) other objects.

� (3) via post-conditions to processes running later on the same object.

De�nition 21 (Syntax with Branching).

s ::= . . . | if(e)s else s � G ::= . . . | X
{
〈ϕi〉,

(
Xij〈ϕij〉

)
j∈J ;Gi

}
i∈I

L ::= . . . | ⊕ {Li}i∈I | &{X.m〈ϕi〉;Li}i∈I
The global type X

{
〈ϕi〉,

(
Xij〈ϕij〉

)
j∈J ;Gi

}
i∈I describes that X chooses a branch

Gi. The formulas ϕi are additional postconditions for the choosing process. Other
process can read the choice by reading this future. In Xij〈ϕij〉

)
j∈J , we describe

that the currently active process of Xij has the additional postcondition ϕij . The
local type ⊕{Li}i∈I is an active choice and &{X.m〈ϕi〉;Li}i∈I is a passive choice.
The branch must be taken by reading the future from X.m and evaluating ϕi.

De�nition 22 (Projection Rules for Branching). Given the ith branch
〈ϕi〉,

(
Xij〈ϕij〉

)
j∈J ;Gi, we denote the updated ac function with

aci = ac[X 7→ ac(X) ∧ ϕi@X][Xij 7→ ac(Xij) ∧ ϕij@Xij ]j∈J

The auxiliary predicate allAct states that all mentioned objects and occur in all
branches are active and dist states that a set of formulas does not overlap.

allAct = ac(X) 6= ⊥ ∧
∧

i∈I
j∈J

ac(Xij) 6= ⊥ ∧ ∀i, i′ ∈ I. ∀j. Xij = Xi′j

dist({ϕ1, . . . , ϕn}) = ∀i, j < n. i 6= j → (ϕi ∧ ϕj is unsatis�able)
Figure 6 shows the projection rules for branching.

The projection rule from global to object-local types has four cases: the �rst
two are straightforward for the choosing process and the currently active reacting
processes. The third case handles objects which behave the same in all branches
and the forth handles objects which are active in only one. The projection on the
passive choice moves the Read type from its position after the choice in front
of it: The global type has no explicit point where a process terminates, thus
the read must be after the choice which adds the postcondition to the choosing
process. However the get statement must be before the if statement, which relies
on the read value in the guard.

De�nition 23 (Translation into MSO for Branching). For the translation
into MSO constraints, we use the auxiliary predicate firstTerm(i,X) that states
that the ith position in the trace refers to the �rst resolving event from X and the
auxiliary predicate lastTerm(i,X.m) that states that the ith position in the trace
refers to the last resolving event of X.m.

firstTerm(i,X) =∀j.
(
∃f. ∃m. ∃e. ev(j)

.
= fEv(X, f, m, e)

)
→ i ≤ j

lastTerm(i,X.m) =∀j.
(
∃f. ∃e. ev(j)

.
= fEv(X, f, m, e)

)
→ i ≥ j
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(
X
{
〈ϕi〉,

(
Xij〈ϕij〉

)
j∈J ;Gi

}
i∈I

)
�ac X

′ =
⊕{Li}i∈I if X = X′ ∧ allAct ∧Gi �aci X

′ = Li
&{X.m〈ϕi@X′〉;Li} if Xij = X′ ∧ allAct ∧Gi �aci X

′ = Li
L if ac(X′) = ⊥ ∧ ∀i. Gi �aci X

′ = L
L if ac(X′) = ⊥ ∧ ∃i. Gi �aci X

′ = L
∧∀j 6= i. Gj �acj X′ = skip

⊕{Li}i∈I �m′ m ={⋃
i∈I Li �m′ m if m 6= m′{
⊕ {Li}i∈I

}
if m = m′ ∧ ∀i ∈ I. Li �m′ m = L′i

&{X.m〈ϕi〉;Li}i∈I �m′ m =
⋃
i∈I Li �m′ m if m 6= m′{
Read e.&{X.m〈ϕi〉;Li}i∈I

}
if m = m′ ∧ dist((ϕ′i)i∈I)∧
∀i ∈ I. Li �m′ m = L′i = Read e.L′′i

Fig. 6. Projection Rules for Branching

Additionally to the translation of the branches, it encodes that the choosing pro-
cess terminates before any process that relies on the communication of its choice
via the return value. The rules are as follows:

C
(

X
{
〈ϕi〉,

(
Xij〈ϕij〉

)
j∈J ;Gi

}
i∈I

)
=∨

i∈I

(
C(Gi) ∧ ∃k. firstTerm(k,X)∧

∧
j∈J

(
∃kj . firstTerm(kj ,Xij) ∧ k ≥ kj ∧ σ(h)[kj ] |= ϕij

))

C(⊕{Li}) =
∨
i

C(Li)

C(&{X.M〈ϕi〉;Li}) =
∨
i

(
∃j ∈ N. lastTerm(j, p.m) ∧ σ(j) |= ϕi ∧ C(Li)

)

In the following we present the rules for branching. The typing rules split
the branches into two disjoint sets and shows that the guard of the if state-
ment together with the added choice-conditions of the branch selects the correct
continuation of the type. Once the sets of branches are singletons, the choice
operators can be removed.

De�nition 24 (Typing Rules).

(T-O�er)

I = I1 ∪ I2 I1 ∩ I2 = ∅ E = E1 ∪ E2

∀i ∈ I1. Φ ∧ post(X.m, ϕi)⇒ e)
∀i ∈ I2. Φ ∧ post(X.m, ϕi)⇒ ¬e)

Φ; e;
∨
i∈I1 post(X.m, ϕi), s ` s′; s′′′ : &{X.m〈ϕi〉;Li}i∈I1 B E1

Φ;¬e;∨i∈I2 post(X.m, ϕi), s ` s′; s′′′ : &{X.m〈ϕi〉;Li}i∈I2 B E2

Φ, s ` if e then s
′ else s

′′ � ; s′′′ : &{X.m〈ϕi〉;Li}i∈I B E
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(T-O�er-Single)

Φ, s′ ` s : LB E
Φ, s′ ` s : &{X.m : ϕ;L}B E

(T-Select-Single)

Φ, s′ ` s : LB E
Φ, s′ ` s : ⊕{L}B E

(T-Select)

I = I1 ∪ I2 I1 ∩ I2 = ∅ E = E1 ∪ E2

Φ; e, s ` s′; s′′′ : ⊕{Li}i∈I1 B E1 Φ;¬e, s ` s′′; s′′′ : ⊕{Li}i∈I2 B E2

Φ, s ` if e then s
′ else s

′′ � ; s′′′ : ⊕{Li}i∈I B E
The extension of the causality graph is described in [29].
We use the following example to illustrate how we handle branching.

Example 5. Consider the scenario: Client X1 wants to access data on server X2

and sends its login data by calling method acc. Then X2 decides. If the login
data is invalid, X2 logs the denied access by calling logging server S and returns
−1 to X1; if the access succeeds, it returns the data, a value > 0, to X2. X1

reacts on the return value and returns a boolean indicating whether the access
was successful. This is formalized by the following type:

main−→X1 :start . X1
x−→X2 :acc.X2

{
〈result .

= −1〉 X1〈¬result〉; X1 ↑x.X2−→S : log.End
〈result > 0〉 X1〈result〉; X1 ↑x.End

}
The local type for X1.start is the following. Note that the Read type is now
before the branching.

?start.X2!xacc.Read x.&

{
X2.acc〈result

.
= −1〉 ; Put ¬result

X2.acc〈result > 0〉 ; Put result

}

8 Conclusion and Related Work

In this paper we generalize MPST for Active Objects to a two-phase analysis
that handles protocols where information is not only transmitted between ob-
jects via asynchronous method calls but also inside the object through the heap
memory of Active Objects. Additionally, we provide a model-theoretic semantics
for MPST, which allows us to give a declarative de�nition of protocol adherence
and integrate further static analyses. These analyses are used to reason about
method order and future synchronization within a type system.

8.1 Discussion

Decidability and Types for Validation. The judgment ` Prgm : G is undecidable
if the validity of the FO logic used for specifying side-e�ects is undecidable. A
developer can choose an FOL fragment with decidable validity to trade o� ex-
pressiveness against analyzability, e.g., if the developer chooses a more restricted
fragment, which may limit the expressiveness of the speci�cation, then the va-
lidity of the FO logic used for specifying side-e�ects may become decidable.

When using an undecidable FOL fragment, our approach can be used as a
validation tool to check whether the implemented (sub-)system will be behaving
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as expected. Our approach can be integrated into the development process sim-
ilarly as invariant-based approaches, and applies techniques proposed by MPST
to connect global and local views of concurrent programs, a notoriously di�cult
problem when using contracts and invariants [15].

Protocol Adherence. Current work on MPST de�nes protocol adherence as a
�delity theorem, which states that every sequence of interactions in a session
follows the scenario declared in MPST [27] as follows: An operational semantics
for types is de�ned and it is shown that the semantics of the language is a re-
�nement of the semantics of the types. Similarly, behavioral contracts [10] de�ne
protocol adherence by compliance, which compares the interaction of contracts.
These are operational approaches to speci�cation. We de�ne protocol adherence
from a declarative perspective by requiring a logical property to hold for all traces
of a well-typed program. A declarative speci�cation can be analyzed with tools
for logical speci�cation, and can enable easier integration of other static analysis
tools (e.g., to consider state), because they are only required to have a logical
characterization.

8.2 Related Work

This work extends our previous system for Active Objects [31], which could not
specify and verify state, required an additional veri�cation step for the scheduler
and explicit termination points within the global type.

Actors and Objects. Crafa and Padovani [11, 35] investigate behavioral types
for the object-oriented join calculus with typestate, a concurrency model simi-
lar to actors. Gay et al. [18] model channels as objects, integrating MPST with
classes; Dezani-Ciancaglini et al. [13] use MPST in the object-oriented language
MOOSE, where types describe communication through shared channels. We ensure
deadlock freedom similarly to Giachino et al. [20, 21], who ensure deadlock free-
dom by inferring behavioral contracts and applying a cycle detection algorithm;
however, they do not consider protocol adherence.

State and Contracts. Bocchi et al. [5�7] develop a MPST discipline with asser-
tions for endpoint state. The work considers neither objects nor heap memory.
The speci�cations use global values in global types and require complex checks
for history-sensitivity and temporal-sensitivity to ensure that an endpoint proves
its obligations. We evade this by specifying inherently class-local memory loca-
tions. They explicitly track values over several endpoints, while we implicitly do
so by equations over locations. In a stateless setting, Toninho and Yoshida use
dependent MPST [38] to reason about passed data.

Logics. Session types as formulas have been examined by Caires et al. [8] and
Carbone et al. [9] for intuitionistic and linear logics as types-as-proposition for
the π-calculus. Our work uses logic not for a proof-theoretic types-as-proposition
theorem, but to use a model-theoretic notion of protocol adherence and to inte-
grate static analysis and dynamic logic. Lange and Yoshida [33] also characterize
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session types as formulas, but their characterization characterizes the subtyping
relation, not the execution traces as in our work.
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A Full De�nitions

De�nition 25 (Weakening). Weakening is de�ned as

ϕ@X = ∃ T1 v1, . . . ,∃ Tn vn.︸ ︷︷ ︸
{v1,...,vn}=free(ϕ)

ϕ̂X

where the set of all free variables in ϕ is denoted with free(ϕ) and ·̂ X is de�ned as:

∃̂v. ϕX = ∃v. ϕ̂X p(t, .., tn)
∧

X = p(t̂X, .., t̂nX) ¬̂ϕX = ¬ϕ̂X ϕ̂ ∨ ψX = ϕ̂X ∨ ψ̂X

f̂X =

{
f if f is a function symbol of X
vf otherwise, where vf is a fresh logical variable with the type of f

Example 6 (Weakening). Let fl be a �eld, X an object and i the parameter of
some method in class X. Consider ϕ = X.fl > 0 ∧ i > X.fl. The formula ϕ is a
X-formula, as ϕ = ϕ@X. The weakening for some object X′ is ϕ@X′ = ∃Int a.a >
0∧ i > a. The following (valid) X′-formula describes that if ϕ@X′ holds in some
state, then after executing j = i*2; the program reaches a state, where the
variable j contains a positive value:

∃Int a.
(
a > 0 ∧ i > a⇒ [j = i*2;]j > 0

)

While X′ can not reason about the value of X.fl, the weakening allows to carry
over the information that the parameter is larger than 1.

De�nition 26 (Relativation). Let ϕ be a MSO constraint with a free variable
x of type T and ψ a MSO constraint. We denote the relativization of ψ with ϕ by
ψ[x ∈ Z/ϕ]. For all quanti�ers of type T in formula ψ, relativization adds ϕ(x)
as restrictions into ψ. The construction is de�ned with the following rules:

(∃y ∈ Z.ψ)[x ∈ Z/ϕ] =∃y ∈ Z.ϕ(y) ∧ ψ[x ∈ Z/ϕ]
(∃Y ⊆ Z.ψ)[x ∈ Z/ϕ] =∃Y ⊆ Z.

(
(∀y ∈ Y.ϕ(y)) ∧ ψ[x ∈ Z/ϕ]

)
(ϕ ∧ ψ)[x ∈ Z/ϕ] =ϕ[x ∈ Z/ϕ] ∧ ψ[x ∈ Z/ϕ]

(¬ϕ)[x ∈ Z/ϕ] =¬(ϕ[x ∈ Z/ϕ])
(p(t1, . . . , tn))[x ∈ Z/ϕ] =p(t1[x ∈ Z/ϕ], . . . , tn[x ∈ Z/ϕ])
(f(t1, . . . , tn))[x ∈ Z/ϕ] =f(t1[x ∈ Z/ϕ], . . . , tn[x ∈ Z/ϕ])

Example 7 (Relativation). Consider a graph (V,E, c) with one predicate c over
its nodes. I.e., at every node n, the predicate c(n) either holds or not. The
formula ψ = ∀n ∈ V. c(n) expresses that c holds everywhere: The following
formula expresses that x has an out-degree of at most 1:

ϕ(x) = ∀y, z ∈ V. E(x, y) ∧ E(x, z)⇒ z
.
= y

The following formula restricts ψ on the subgraph described by ϕ, i.e. it expresses
that at all nodes with an out-degree of at most 1, c holds:

ψ[x ∈ V \ ϕ] = ∀n ∈ V.
(
∀y, z ∈ V. E(n, y) ∧ E(n, z)⇒ z

.
= y
)
⇒ c(n)
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Auxiliary Predicates

res(i) = ∃A. ∃f. ∃M. ∃e ∈ D. ev(i) .= fREv(A, f, e)

Projection on Objects

main−→X2 :m〈ϕ〉.G �ac X1 =?m〈ϕ@X2〉.(G �ac[X2 7→ψ] X1) if ac = ac⊥ ∧ X2 = X1

main−→X2 :m〈ϕ〉.G �ac X1 = skip.(G �ac[X2 7→ψ] X1) if ac = ac⊥ ∧ X2 6= X1

X1
x−→X2 :m〈ϕ,ψ〉.G �ac X1 = X2!xm〈ϕ〉.(G �ac[X2 7→ψ] X1) if ac(X1) 6= ⊥ ∧ ϕ = ϕ@X1

X1
x−→X2 :m〈ϕ,ψ〉.G �ac X2 =

{
?m〈ϕ@X2〉.(G �ac[X2 7→ψ] X1) if ac(X2) = ⊥
Put ac(X2).?m〈ϕ@X2〉.(G �ac[X2 7→ψ] X1) if ac(X2) 6= ⊥

X1
x−→X2 :m〈ϕ,ψ〉.G �ac X = skip.(G �ac[X2 7→ψ] X) if X2 6= X 6= X1

(X1 ↑e.G ′)�ac X =

{
Read e.(G �ac[X2 7→ψ] X) if ac(X1) 6= ⊥ ∧ X1 = X
skip.(G �ac[X2 7→ψ] X) if X1 6= X

End�ac X =

{
Put ac(X).End if ac(X) 6= ⊥
End if ac(X) = ⊥

(
(G)∗ϕ.G

′)�ac X =
Put ac(X).(L′′)∗ϕ@X.L

′ if L 6= skip ∧ rcv(X,G) ∧ ac(X) 6= ⊥ ∧ cs(ϕ)
(L)∗ϕ@X.L

′ if L 6= skip ∧ ¬rcv(X,G) ∧ ac(X) 6= ⊥ ∧ cs(ϕ)
L′ if L = skip ∧ cs(ϕ)

Where G.End�ac[X 7→⊥] X = L′′,G �ac X = L and G ′ �ac X = L′

cs(ϕ) = (
∧

X∈objects(ϕ)

ϕ@X)→ ϕ

Projection on Methods

?m〈ϕ〉 �m′ m =

{
{(?m〈ϕ〉, m)} if m′ = ⊥
{(skip, m′)} otherwise

Put ϕ �m′ m =

{
{(Put ϕ,⊥)} if m = m′

{(skip,⊥)} otherwise

Read e �m′ m =

{
{(Read e, m′)} if m = m′

{(skip, m′)} otherwise

X1!vm
′′〈ϕ〉 �m′ m =

{
{(X1!vm

′′〈ϕ〉, m′)} if m = m′

{(skip, m′)} otherwise

skip �m′ m = {(skip, m′)} End �m′ m = {(skip, m′)}if m′ = ⊥

(L1.L2) �m′ m =
{(L′1.L′2, m′′′) | (L′1, m′′) ∈ L1 �m′ ∧m′′ 6= ⊥ ∧ (L′2, m

′′′) ∈ L2 �m′′}
∪ {(L′2, m′′′) | (L′1,⊥) ∈ L1 �m′ ∧(L′2, m′′′) ∈ L2 �⊥}

(L)∗ϕ �m′′ m′ =


{(

(L �m′′ m′)∗ϕ, m′′
)}

if m′′ = m′ ∧ L �m′′ m′ 6= {(skip, m′′′)}
L �(methodname′′ m′ if m′′ 6= m′ ∧ L �m′′ m′ 6= {(skip, m′′′)}
{(skip, m′′)} L �m′′ m′ = {(skip, m′′′)}
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Translation into Constraints

C(main−→X2 :m〈ψ〉.G) = ∃j, k. ∃f. ∃e′. ev(j) .= iREv(X2, f, m) ∧ C(j) |=ϕ@X2∧
ev(k)

.
= fEv(X2, f, e

′) ∧ C(k) |=ψ ∧ ∀l.l 6=j ∧ l 6=k ⇒ res(l) ∧ C(G)

C(X1
x−→X2 :m〈ϕ,ψ〉) = ∃i, j, k. ∃f. ∃e, e′.

ev(i)
.
= iEv(X1,X2, f, m, e) ∧ C(i) |= ϕ ∧ ev(j)

.
= iREv(X2, f, m) ∧ C(j) |= ϕ@X2∧

ev(k)
.
= fEv(X2, f, e

′) ∧ C(k) |= ψ ∧ C(i) |= X1.x
.
= f ∧ ∀l. l 6= i ∧ l 6= j ∧ l 6= k ⇒ res(l)

C(X1−→X2 :m〈ϕ,ψ〉) = ∃i, j, k. ∃f. ∃e, e′.
ev(i)

.
= iEv(X1,X2, f, m, e) ∧ C(i) |= ϕ ∧ ev(j)

.
= iREv(X2, f, m) ∧ C(j) |= ϕ@X2∧

ev(k)
.
= fEv(X2, f, e

′) ∧ C(k) |= ψ ∧ ∧∀l. l 6= i ∧ l 6= j ∧ l 6= k ⇒ res(l)

C(X↑e) = ∃i. ∃f. ∃e′. ∃X′. ev(i) .= fREv(X,X′, f, e′) ∧ C(i) |= e
.
= f ∧ ∀l. l 6= i⇒ res(l)

C(G1.G2) =
∧
X

(
∃i ∈ N. C(G1)[j ∈ N/A(j,X)⇒ j < i] ∧ C(G2)[j ∈ N/A(j,X)⇒ j ≥ i]

)
C
(
(G∗ϕ)

)
= ∃X ⊆ N. ∃i, j ∈ X.

(
∀k ∈ N. i < k ≤ j

)
∧ ∀i ∈ X. C(i) |= ϕ∧

∀i, j ∈ X.
((
∀k ∈ X. k ≥ j ∨ k ≤ i

)
⇒
(
C(G)

)
[n ∈ N/i < n ≤ j]

)
C(End) = true

The local translation for some object X is:

C(L1 . L2) = ∃i ∈ N. C(L1)[n ∈ N/n < i] ∧ C(L2)[n ∈ N/n ≥ i]
C(?m〈ϕ〉) = ∃i. ∀j. i = j ∧ ∃f. iREv(X, f, m) ∧ C(i) |= ϕ@X

C(X′!xm〈ϕ〉) = ∃i. ∀j. i = j ∧ ∃f, e. iEv(X,X′, f, m, e) ∧ C(i) |= ϕ@X ∧ C(i) |= (x
.
= f)

C(X′!m〈ϕ〉) = ∃i. ∀j. i = j ∧ ∃f, e. iEv(X,X′, f, m, e) ∧ C(i) |= ϕ@X

C(Put ϕ) = ∃i. ∀j. i = j ∧ ∃f, e. fEv(X, f, e) ∧ C(i) |= ϕ@X

C(Read e) = ∃i. ∀j. i = j ∧ ∃f. fREv(X,X′, f, e′) ∧ e = f

C(L∗ϕ) = ∃X ⊆ N. ∃i, j ∈ X.
(
∀k ∈ N. i < k ≤ j

)
∧ ∀i ∈ X. C(i) |= ϕ∧

∀i, j ∈ X.
(
∀k ∈ X. k ≥ j ∨ k ≤ i

)
→
(
C(L)

)
[x ∈ N/i < x ≤ j]

C(End) = true

Typing Rules

(T-Main)

Oi = object Xi{. . . } iRoles(G) = {X1, . . . ,Xn} G(G) +
⋃
i≤nEi admissible

∃j ≤ n. G = main−→Xj :m〈ϕ〉.G ∀i ≤ n. Post(G) ` Oi : prp
∗(G� Xi)B Ei

` O1 . . . On main{Xj !m()} : G

(T-Object)

∀i ≤ n. L�ac mi =?mi〈ϕi〉.Li
∀i ≤ n. Φ, ϕi, skip ` si : Li B Ei E =

⋃
i≤nEi

Φ ` object X{T1 m1(T x){s1} . . . Tn mn(T x){sn} T x = e} : LB E

(T-Return)
Φ⇒ [s; return e]ϕ

Φ, s ` return e : Put ϕB E (T-Call)

Φ, s; T x = X!m(e) ` s′ : LB E
Φ⇒ [s; T x = X!m(e)]ϕ

Φ, s ` T x = X!m(e); s′ : X!xm〈ϕ〉.LB E
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(T-Call-2)

Φ, s;X!m(e) ` s′ : LB E
Φ⇒ [s;X!m(e)]ϕ

Φ, s ` X!m(e); s′ : X!m〈ϕ〉.LB E
(T-Assign)

Φ, s; T x = e ` s
′ : LB E′

Φ, s ` T x = e; s′ : LB E

(T-Get)

Φ, s; T x = e.get ` s′ : LB E′
E = E′ ∪ {(n, n′)|∃m ∈ p2(e). n ∈ term(m) ∧ n′ ∈ node(s; e.get)}

Φ, s ` T x = e.get; s′ : Read e.LB E

(T-While)

ϕ ∧ Post(G), skip ` s′ : L′ B E′′ Φ⇒ [s′′]ϕ ϕ ∧ Post(G)⇒ [s]ϕ

ϕ ∧ Post(G), skip ` s : LB E′ E = E′ ∪ E′′

Φ, s′′ ` while e {s}; s′ : (L)∗ϕ . L′ B E

B Soundness

The proof for Theorem 1 is similar to the proof for Theorem 2 in [29], we thus only
give a sketch and point out where the proofs di�er.

Propagation

First, we state the correctness of propagation. Let tr �X be the projection of trace tr
on X, i.e., tr �X results from tr by replacing all events not issued by X.

Lemma 1. Let Prgm be a program and G a type for Prgm. If in all traces produced
by Prgm, the order of invocation events is the same, then every trace that satis�es the
translation of the propagated type i� it satis�es the translation of the original type:

` Prgm : G→ ∀tr. ∀X. Prgm ⇓ tr→
(
tr �X|= C(prp∗(G� X))↔ tr �X|= C(G� X)

)
Proof. We �x X and denote G � X with L. We show this by induction on the number
n of applications of prp for the �xpoint.

Induction Base, n = 0 Then prp∗(L) = L and the lemma holds trivially.

Induction Step, n = n′ + 1 By induction hypothesis there is a type L′ = prpn
′
(L)

such that the desired property holds. We make a case distinction on the applied
case in the de�nition of prp in its last application:
- Case 1 Put ϕ.?m〈ψ〉 Put ϕ.?m〈ψ ∧ ϕ@X〉

In this case we have to show that the start of execution of method m the formula
ψ as holds. Let m′ be the method whose termination action Put ϕ is responsible
for ϕ. By assumption, the order of invocation events is �xed and the program
can be typed. Thus, there is no trace such that between the invocation action
of m′ and m, there is another invocation event. Thus, each trace tr that contains
pairs of the form (iREv(X, f, m),C), for some f,C s.t. C |= ψ contains this pair
as part of a subtrace of the following form:[(

fEv(X, f ′, m′, e′),C′
)
,
(
iREv(X, f, m),C

)]
for some f ′,C s.t. C |= ϕ. Every state change on X must be executed by some
process on X, but as there is no such such process (as there would be an
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invocation event for it) between the two events in the subtrace, the state-part
of ϕ, i.e. ϕ@X, still holds at the invocation event: C |= ϕ@X. This is exactly
the condition captured by this propagation case.

- Case 2 Put ϕ . (L)∗ψ  Put ϕ ∧ ψ . (L)∗ψ
By the de�nition of C((L)∗) there is a set of indices X in every trace, such that
every such position i ∈ X, the invariant holds and for every pair of consecutive
positions i, j ∈ X, the subtrace tr[i..j] satis�es C(L). Now, Put ϕ is the last
event before the repetition, thus before the very �rst position i0 ∈ X there is
a pair

tr[i0 − 1] =
(
fEv(X, f, m, e),C

)
In C, no process is active at X. We only regard traces produced Prgm, thus tr
is well-formed1 and i0 must be a invocation reaction event

tr[i0] =
(
iREv(X, f ′, m′),C

)
Such that C |= ψ. With the same argument as above, the condition at ψ must
hold at i0 − 1, as there was no process who could have changed it. Note, that
i0 6= 0 as every local type starts with a receiving action, not a repetition.

- Case 3 (L)∗ψ . ?m
′〈ϕ〉 (L)∗ψ . ?m

′〈ϕ ∧ ψ〉
This case is analogous to case 2.

- Case 4 (L)∗ϕ . (L)
∗
ψ  (L)∗ϕ∧ψ . (L)

∗
ψ

This case is analogous to case 2.
- Case 5 (?m′〈ϕ〉 . L . Put ϕ′)∗ψ  (?m′〈ϕ ∧ ψ〉 . L . Put ϕ′ ∧ ψ)∗ψ

By the de�nition of C((L)∗), there is a set of indices X in every trace, such that
every such position i ∈ X, the invariant holds and for every pair of consecutive
positions i, j ∈ X, If the repetition start with a receiving action and ends with
a termination, the chosen positions are those of the termination actions and
the �rst action before (Again, the syntactic form guarantees such a position).
This reduces this case to show that the same propagation as in case 1 holds
and thus technical details are analogous to case 1.

Main Theorem

Given a well-formed global type G we can say that another (possibly not well-formed)
global G′ is a pre�x of G if we can extend G′ to G by concatenating another global
type:

G′ v G ⇐⇒ G = G′.G

And similarly for local types L and traces tr.
The main lemma is similar to subject reduction in non-model-theoretic semantics

for types, as it connects types and operational semantics of the language. It states that
each step in the execution preserves the property that the trace so far is a pre�x of a
a trace which is a model for the type.

Lemma 2. Let Prgm be a program and G a well-formed type with ` Prgm : G. Every
pre�x of every trace of Prgm satis�es the translation of a pre�x of G:

` Prgm : G→ ∀tr. Prgm ⇓ tr→
(
∀tr′. tr′ v tr→

(
∃G′. G′ v G ∧ tr′ |= C(G′)

))
1 The well-formedness of traces is de�ned in [15, 29]
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The property that the whole execution of the program satis�es the translation
of the whole type and not some pre�x follows from well-formedness of global types
(Theorem 1 in [29]) and deadlock freedom. The main di�erences to the proof in [29]
are the following:

All assumed conditions hold at the point they are used We distinguish between
the following kinds of assumed conditions:
� The precondition at method start. The precondition is a conjunction ϕ1 ∧ ϕ2

where ϕ1 is resulting from the projection and ϕ2 from the propagation. That
ϕ2 holds follows from Lemma 1. That ϕ1 holds follows from the fact that the
precondition is projected from a formula ψ in the global call, which is fully
proven by the caller, checked in rule (T-Call) with the condition that ψ is equal
to its projection on the caller.

� The selection condition of the passive choice. It must connect that the addi-
tional condition executes the statement branch which is typed with the corre-
sponding type branch. This follows directly from the two additional promises
of (T-O�er) with respect to (T-Select).

Methods are executed in the right order Assume there is a method m1 that is
executed on some object X before m2 in the type, but executed the other way
around in the generated trace. Then m2 does not depend on m1. But by assumption
the program has been typed. Rule (T-Main) checks, however, that the start of m1
causes m2 in its admissibility check and this means that m2 cannot be executed
before m1 (Lemma 36 in [29]).

Deadlock Freedom A deadlocked con�guration is a con�guration which is not ter-
minated, yet cannot continue execution. First we observe that every deadlock is
caused by processes blocking at get statements. It cannot be a single process, be-
cause a process has no access on its own future. It can also not be stored in the
heap between call and execution start, as this would mean that another method
was active to store it and this would violate the condition that all methods are
executed in the right order shown above.
Assume there would be a deadlock. W.l.o.g. we assume that only two processes
are involved, p1 executing m1 and p2 executing m2. If p1 blocks while attempting
to read a future belonging to m2 then the Points-To analysis will include m2 in the
set of possible method in rule (T-Get). As m1 has been type checked, this mean that
an edge from the corresponding termination to the corresponding read would be
added to the causality graph. The same holds for m2. The termination of mi is in the
same object type as the reading type, thus there is a path from the read in mi to
the termination in mi. The resulting graph is pictured below and contains a cycle.
The absence of cycles is however checked in rule (T-Main). For a full formalization
of deadlocks through causality graphs, we refer to [17].

m1 . . . ↑ . . . ↓

m2 . . . ↑ . . . ↓
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