
Same Same But Different:
Interoperability of
Software Product Line Variants∗

Ferruccio Damiani1, Reiner Hähnle2,
Eduard Kamburjan2, and Michael Lienhardt1

Abstract Software Product Lines (SPLs) are an established area of research pro-
viding approaches to describe multiple variants of a software product by represent-
ing them as a highly variable system. Multi-SPLs (MPLs) are an emerging area
of research addressing approaches to describe sets of interdependent, highly vari-
able systems, that are typically managed and developed in a decentralized fashion.
Current approaches do not offer a mechanism to manage and orchestrate multiple
variants from one product line within the same application. We experienced the need
for such a mechanism in an industry project with Deutsche Bahn, where we do not
merely model a highly variable system, but a system with highly variable subsys-
tems. Based on MPL concepts and delta-oriented oriented programming, we present
a novel solution to the design challenges arising from having to manage and inter-
operate multiple subsystems with multiple variants: how to reference variants, how
to avoid name or type clashes, and how to keep variants interoperable.

1 Introduction

Many existing software and non-software systems are built as complex assemblages
of highly variable subsystems that coexist in multiple variants and that need to inter-
operate. Consider, for example, one track in a railway system. Such a track typically
contains many different variants of sensors (to detect a train, its speed, etc.), and
many variants of signals (of different forms or functions). The FormbaR2 model-
ing project, conducted with Deutsche Bahn, aims to provide a uniform and formal

University of Torino, 10124 Torino, Italy e-mail: ferruccio.damiani@unito.it,
michael.lienhardt@di.unito.it · Technische Universität Darmstadt, 64289 Darmstadt, Germany
e-mail: {haehnle, kamburjan}@cs.tu-darmstadt.de

∗ This paper is dedicated to our friend and colleague Arnd Poetzsch-Heffter on the occasion of
his sixtieth birthday.

2 https://formbar.raillab.de

1

2 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

model [17] of operational and technical rulebooks for railroad operations: within
this project, the necessity to describe highly variable subsystems that coexist in mul-
tiple variants and that need to interoperate thus arises naturally.

In software systems, there exist several approaches to model highly variable sys-
tems, labeled as Software Product Lines (SPLs) [5, 19, 2, 22]. These are generalized
by Multi-Software Product Lines (MPLs) [14, 10] that model sets of interdependent
highly variable systems, typically managed and developed in a decentralized fashion
by multiple stakeholders. However, MPLs do not target modeling of interoperability
between multiple variants of the same SPL.

To address this issue we introduce the notion of variant-interoperable SPL (VPL)
and propose linguistic mechanisms that support interoperability among different
variants of one VPL. Each VPL encapsulates and models the variability of one
system. We define a formalism that is able to reference, to generate and to com-
pose multiple variants of one VPL in the context of its supersystem. To do so, each
variant is associated with one (possibly newly generated) module and statements
are able to use variant references instead of modules to reference classes and in-
terfaces. During variant generation, all such variant references are replaced by the
module which contains the generated variant. The final variant of the whole system
contains no SPL-specific constructs. We also give a generalization of VPLs to de-
pendent VPLs (DVPL). A DVPL takes variants of other product lines as parameters
and is thus able to model the composition of variable subsystems. A VPL is obtained
as the special case of a DVPL without parameters. Thus, in our approach, an MPL
can be described by: (i) a set of DVPLs; and (ii) a glue program that may contain
references to different variants of the DVPLs.

Delta-Oriented Programming (DOP) [20] is a flexible and modular approach to
implement SPLs. A delta-oriented SPL consists of: (i) a feature model defining the
set of variants in terms of features (each feature represents an abstract description of
functionality and each variant is identified by a set of features, called a product); (ii)
an artifact base comprising a base program and of a set of delta modules (deltas for
short), which are containers of program modifications (e.g., for Java-like programs,
a delta can add, remove or modify classes and interfaces); and (iii) configuration
knowledge which defines how to generate the SPL’s variants by specifying an ac-
tivation mapping that associates to each delta an activation condition (i.e., a set of
products for which that delta is activated), and specifying an application ordering
between deltas: given a product the corresponding variant is derived by applying the
activated deltas to the base program according to the application ordering. DOP is a
generalization of Feature-Oriented Programming (FOP) [3], a previously proposed
approach to implement SPLs where deltas correspond one-to-one to features and do
not contain remove operations.

In the context of the FormbaR project we model railway operations [17] using
the Abstract Behavioural Specification (ABS) [13, 16] language, a delta-oriented
modeling language. The challenge to model interoperable, multiple variants of the
same subsystem that arose in this project is described in [7]. In ABS, variants are
expressed in the executable language fragment Core ABS [16]. In this paper, we use
railway stations and signals as a running example. We use a non-dependent VPL

Same Same But Different: Interoperability of Software Product Line Variants 3

to model signals (which may be light or form signals and main or pre signals). A
station is a DVPL that takes two signal SPLs variants as input. We illustrate the
modeling capabilities by showing how one can ensure that all signals of a station
are either light signals or all are form signals (generalizing the treatment of features
from [10]). We also show how to model that every main signal is preceded by a pre
signal.

Our contribution is the design of a delta-oriented DVPL language that can model
interoperation of multiple variants from the same product line as well as from dif-
ferent product lines. We do not aim to fully explore the design space, but provide
a concise system for basic functionality. However, we provide a discussion of our
design decisions and how interoperability changes the role of product lines during
development.

This work is structured as follows: Sect. 2 introduces FAM (Featherweight Core
ABS with Modules) a foundational language for Core ABS. Sect. 3 introduces delta-
oriented (non-dependent) VPLs on top of FAM. Sect. 4 generalizes to dependent
interoperable product lines. Sect. 5 gives the reasoning behind our design decisions
and how interoperability affects modeling. Sect. 6 gives related work and Sect. 7
concludes.

2 Featherweight Core ABS with Modules

In this section we introduce FAM (Featherweight Core ABS with Modules) a foun-
dational language for Core ABS [16]. Following [15], we use the overline notation
for (possibly empty) sequences of elements. For example, CD stands for a sequence
of class declarations CD1 · · ·CDn (n ≥ 0)—the empty sequence is denoted by /0.
Moreover, when no confusion may arise, we identify sequences of pairwise distinct
elements with sets. We write CD as short for {CD1 . . . ,CDn}, etc. FAM is an exten-
sion of Featherweight Core ABS [6], a previously proposed foundational language
for Core ABS, that does not model modules. As seen in Sect. 3, modules play a key
role in the definition of variants in VPL.

Fig. 1 shows the abstract syntax of FAM. A FAM program Prgm consists of a
set of modules Mod. A module has a name M, import and export clauses, a set of
class definitions CD and a set of interface declarations ID. To use a class defined in
one module in a different module, the defining module must export it and the using
module must import it. There are no such restrictions when using a class inside its
defining module. We allow wildcards * in the import/export clauses.

A class definition CD consists of a name C, an optional implements clause and a
set of method and field definitions. The references CR and IR are used respectively
to reference classes and interfaces inside of modules. We assume some primitive
types (including Unit, used as return type for methods without a return value) and
let T range over interface names and primitive types.

Class definitions and interface definitions in ABS are similar to Java, but ABS
does not support class inheritance. Our development is independent of the exact

4 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

Prgm ::= Mod Program

Mod ::= module M; import SC from M; export SC; CD ID Module

SC ::= C, I | * CD ::= class C
[
implements IR IR

]
{AD} Selection, Class

CR ::= M.C | C IR ::= M.I | I Class/Interface Reference

AD ::= FD |MD FD ::= T f=e MD ::= MSD{. . .} Attribute (Field, Method)

MSD ::= T m(T v) ID ::= interface I
[
extends IR IR

]
{MSD} Signature, Interface

e ::= new CR(e) | . . . T ::= IR | Unit | Int | · · · Expression, Type

Fig. 1 Syntax of Featherweight Core ABS with Modules (FAM)—expressions and statements
(method bodies) are left unspecified.

syntax of expressions e and statements s, so we leave it unspecified. We show only
the object creation expression new CR(e), which creates a new instance of the class
referenced by CR.

3 Delta-Oriented VPLs

We introduce Featherweight Delta ABS with Modules (FDAM), a foundational lan-
guage for delta-oriented VPLs where variants are FAM programs. FDAM is an
extension of Featherweight Delta ABS (FDABS) [6], a foundational language for
standard ABS without variant interoperability.

3.1 Variant-Interoperable Product Lines

To handle multiple variants of an SPL and ensure their interoperability, we need to
introduce several mechanisms that extend FAM:

1. We must be able to reference different variants of the same SPL. To this end, a
class reference may be prefixed with a variant reference, i.e. a syntactic construct
that identifies a specific SPL variant.

2. The notion of artifact base of a delta-oriented SPL must support interoperability
of different SPL variants: specifically, different variants must be able to share
common interfaces. This is achieved with a unique block containing the code
that is common to all variants.

3. The variant generation process must generate code that can coexist and interop-
erate, even though the variants will necessarily have overlapping signatures. To
this end, the code of each referenced variant is encapsulated by placing it in a
separate module, while variant references are replaced by module references. As

Same Same But Different: Interoperability of Software Product Line Variants 5

each variant refers to a unique module, multiple references to the same variant
refer to the same module (that is, they are generated exactly once).

3.2 Syntax

Featherweight Delta ABS with Modules (FDAM) is a language for delta-oriented
VPLs where variants are FAM programs. It allows to describe an MPL by a set
of VPLs Vpl and a glue program Gprgm (i.e. a program that may contain variant
references). Fig. 2 gives the formal syntax of VPLs and extended references (i.e. the
class/interface references allowed in the glue program, that may be prefixed variant
references).

Vpl ::=productline V; features F with ϕ; VPL

Prgm unique Mod ∆ DConfig

∆ ::=delta D;CO IO Delta

DConfig ::=DAC DAC ::= delta D when ϕ; Configuration Knowledge

CO ::=CAO | CMO | CRO | uses M Class Operation

CAO ::=adds CD CRO ::= removes CR Class Add/Remove Operations

CMO ::=modifies CR{AO} Class Modifies Operations

AO ::=adds AD | removes MSD | removes T f Attribute Operation

modifies AD

IO ::=IAO | IMO | IRO | uses M Interface Operation

IAO ::=adds ID IRO ::= removes IR Interface Add/Remove Operations

IMO ::=modifies IR{SO} Interface Modify Operation

SO ::=adds MSD | removes MSD Signature Operation

CR ::=VR.M.C |M.C | C IR ::= VR.M.I |M.I | I Extended Class/Interface Reference

VR ::=V | V[F] Variant Reference

Fig. 2 Syntax of Featherweight Delta ABS with Modules: VPLs (top) and extended references
(bottom).

A Vpl has a unique name V, and a set of features F, which are constrained by
some feature model ϕ , a propositional formula over F. Furthermore, a VPL has a set
of deltas ∆ and configuration knowledge DConfig (comprising an ordered sequence
of delta activation clauses DAC) that relates each delta to an activation condition and
specifies a partial order of delta application. Finally, a VPL has a base program as
well as a unique block, consisting of module definitions on which the deltas operate.

6 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

Each delta has a name D and a sequence of class/interface operations. A class/in-
terface operation may add, modify or remove a class/interface. A uses clause sets a
module name as default prefix for further selections. During variant generation the
application of the delta throws an error if the element is already in the code (if it
is supposed to be added) or absent (if it is supposed to be removed or modified).3

Adding and removing a class/interface is straightforward. In case of class/interface
modification, a delta may add or remove signatures in interfaces and attributes in
classes. A class modification may also modify an attribute: either replace the initial-
ization expression of a field or replace the body of a method (the new body can call
the original implementation of the method with the keyword original [6]).

Within a glue program class/interface references have the possibility to refer-
ence a class/interface of a variant by extended references. An extended reference
is a class/interface reference that may be prefixed by a variant reference. A variant
reference VR consists either of the name of the target VPL V and the features F
used for variant selection; or simply the name of the target VPL V when selecting
a unique class/interface. A variant is selected by providing a set of features F to a
VPL. If that set does not satisfy the feature model ϕ , then an error is thrown during
variant generation. All other clauses are defined as in Sect. 2.

The only form of extended references allowed in a VPL V are of the form V.C
or V.I to reference its own unique block. Variant selections and references to the
unique part of other VPLs are not allowed.

Intuitively, the generation of the variants referenced from an FDAM glue pro-
gram works as follows: A new module name M is created, and modules mod from the
unique block are added under M_mod. Next, for each referenced variant, each con-
figured delta is applied to a copy of the base program, provided its activation condi-
tion is satisfied. All modified classes/interfaces are copied into M_mod and modified
there. All added classes/interfaces are added into M_mod. Finally, all references are
updated and all variant references occurring in the glue program are replaced by
references to the generated modules. Fig. 3 illustrates this workflow and we give a
more detailed description in Sect. 3.4.

Glue program

unique

base program

Glue program

VPL 1

variant V1' variant V1''variant V2' variant V2''

base programVPL 2

selects V1'
selects V1''

selects V2'
selects V2''

modifies

modifies

FDAM Program Generated FAM Program

Fig. 3 Schematic Overview over a FDAM program (representing an MPL) and the generated FAM
Program.

3 The ABS tool chain is equipped with a mechanism for statically detecting these errors [9].

Same Same But Different: Interoperability of Software Product Line Variants 7

3.3 A VPL for Railway Signals

We illustrate the VPL concept with a model of railway signals, see Fig. 4. A signal
is either a main or a pre signal and either a form signal (showing its signal aspects
with geometric shapes) or a light signal (using colors and light patterns). This is
modeled by the features Pre, Main, Light, Form, respectively. We impose the
constraint that exactly one of Main and Pre and one of Form and Light must be
selected.

1 productline SLine;
2 features Main, Pre, Light, Form with Main↔¬Pre ∧ Light↔¬Form

;
3 module BMd;
4 class Signal implements SLine.SMd.Sig {}
5 unique{
6 module SMd;
7 interface Sig { . . . }
8 }
9 delta SigForm; modifies class BMd.Signal { . . . } . . .

10 delta SigPre; modifies class BMd.Signal { . . . } . . .
11 delta SigMain; modifies class BMd.Signal { . . . } . . .
12 delta SigLight; modifies class BMd.Signal { . . . } . . .
13

14 // Glue program
15 module main;
16 class Main{
17 Unit main() {
18 SLine.SMd.Sig s1 = new SLine[Pre,Form].BMd.Signal();
19 SLine.SMd.Sig s2 = new SLine[Main,Form].BMd.Signal();
20 s1.connect(s2);
21 SLine.SMd.Sig s3 = new SLine[Pre,Form].BMd.Signal();
22 SLine.SMd.Sig s4 = new SLine[Main,Form].BMd.Signal();
23 s3.connect(s4);
24 }
25 }

Fig. 4 A VPL for railway signals (configuration knowledge, which associates an activation condi-
tion to each delta and specifies the application order of the the delta, is omitted) and a glue program
that uses it.

The unique block provides an interface SMd.Sig which serves as the interface
of the signal model to the outside. The base program provides an empty class BMd.
Signal that implements this interface. Every variant of the VPL SLine generates a
different variant of the class of Signal by adding the required functionality. We do
not provide complete delta declarations. While we focus on the Signal class, each
delta can add auxiliary classes (for example, a Bulb class for light signals).

The glue program contains the main module, providing the Main class with the
main() method that creates a station with two main and two pre signals. After the

8 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

declarations in the main() method, an expression like s1 == s2 would type check.
Observe that the Signal classes must be referenced with a variant selection, but
this is not necessary for Sig, because it is unique. This is appropriate, because all
Signal classes in all variants implement it. We provide a few examples to further
illustrate the role of the unique block.

Example 1 (Empty unique block). Consider Fig. 4, but with an empty unique block.
The interface is added to module BMd in the variants instead, and the first two lines
of the main method are replaced with

18 SLine[Pre,Form].BMd.Sig s1 = new SLine[Pre,Form].BMd.Signal
();

19 SLine[Main,Form].BMd.Sig s2 = new SLine[Main,Form].BMd.
Signal();

Then s1 == s2 would not type check, because each referenced type is added as a
separate interface. However, if lines 21, 22 of Fig. 4 are changed accordingly, then
s1 == s3 would still type check, because the selected features identify a variant
uniquely.

Example 2 (Empty base program). Consider again Fig. 4 but with an empty base
program, where all deltas modify the interface and add classes that implement the
modified interface. For example, replace delta SigForm with

delta SigForm; modifies interface SLine.SMd.Sig { . . . }
adds class SMd.Signal implements SMd.Sig { . . . }

In this case, line 18 of Fig 4 won’t type check, because the Sig class of the variant
is based on a copy of the non-variant class and is not its subtype.

3.4 Glue Program Flattening for FDAM

Glue program flattening refers to the transformation of an FDAM program that mod-
els an MPL, i.e. a glue program plus a set of VPLs, into an FAM program, see Fig. 3.
This transformation involves code generation for all the variants referenced in the
glue program (as outlined at the end of Sect. 3.2). Consider the MPL consisting of
the glue program and the VPL in Fig. 4.

We assume an injective function mod mapping variant references and module
names to fresh (relative to the glue program) names. We assume mod ignores the
order of features. For each variant selection V(F) and each module mod this function
is used to create a new module with name mod(V(F),mod) and for each VPL V and
each module mod it is used to create a new module with name mod(V,mod).

Example 3. In Fig. 4, for each module mod in the unique block a module named
mod(SLine,mod) is created, to which the unique modules and classes are added.
Next, each variant reference in the glue code is processed. Let us consider SLine
[Pre,Form].BMd. The selected feature set is checked against the constraint of the

Same Same But Different: Interoperability of Software Product Line Variants 9

VPL. In this case, {Pre,Form} satisfies Main↔¬Pre∧Light↔¬Form. The con-
figuration knowledge is used to determine which deltas are applied in which order
to the base program. Here, only SigPre and SigForm are applied.

For each class/interface M.C/M.I added in any delta activated to generate the
selected variant, a module mod(SLine[Pre,Form]),M]) is created (if it does not yet
exist) and the class is added there. For each class/interface reference mod.C′ in M.C,
a clause import C′ from mod; is added to mod(SLine[Pre,Form],M). Finally, an
export *; clause is added.

For each class/interface M.C/M.I modified in any delta activated to generate the
selected variant, a module mod(SLine[Pre,Form],M) is created (if it does not yet
exist) and the class/interface is copied there before any modifications are applied. In
this case, all import and export clauses are also copied from their original module.

During post-processing, all variant references SLine[Pre,Form].M.C are re-
placed by mod(SLine[Pre,Form],M).C. This reference is made visible by the
clause import C from mod(SLine[Pre,Form],M) added to the containing module.

This algorithm is applied recursively on the resulting program. If we apply the
described algorithm once to the FDAM MPL in Fig. 4, then the FAM program in
Fig. 5 is generated, where an obvious choice for mod has been adopted.

4 Delta-Oriented DVPLs

The VPL concept makes it possible to reference multiple variants of a product line
from a glue program that is external to the product line. However, one has to know
the exact product at each variant reference. If, for example, we attempt to model a
station that has light signals as well as form signals, this leads to code duplication.
This can be avoided by making VPLs parametric in the referenced variants: We
extend VPLs to dependent VPLs (DVPL). A DVPL takes variants of other product
lines as parameters: a product of a DVPL is identified by a set of features and a set of
product lines (matching the parameters), each of them with an associated product.

4.1 Syntax

We extend the FDAM language from Sect. 3 to Featherweight Dependent Delta
ABS with Modules (FDDAM). Fig. 6 gives the formal syntax. Product lines are
extended with optional product line parameters P. These parameters can be used
used in the feature model, which may reference features of the passed parameters
with P.F. Propositional formulas ψ are formulas over P.F and F. A DVPL also has
an optional set of DVPL names V in its uses clause.

The deltas and the base program may contain variant references of the form P
(where P is one of the parameters) or V′ (where V′ is either the V itself, or one
one of the DVPLs listed in the uses clause). In the glue program, variant references

10 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

1 module SLine_SMd;
2 export *;
3 interface SMd { ... }
4

5 module SLine_Pre_Form_BMd;
6 import Sig from SLine_SMd;
7 export *;
8 class Signal implements SLine_SMd.Sig {...}
9

10 module SLine_Main_Form_BMd;
11 import Sig from SLine_SMd;
12 export *;
13 class Signal implements SLine_SMd.Sig {...}
14

15

16 module main;
17 import Signal from SLine_Pre_Form_BMd;
18 import Signal from SLine_Main_Form_BMd;
19 import Sig from SLine_SMd;
20 class Main {
21 Unit main() {
22 SLine_SMd.Sig s1 = new SLine_Pre_Form_BMd.Signal();
23 SLine_SMd.Sig s2 = new SLine_Main_Form_BMd.Signal();
24 s1.connect(s2);
25 SLine_SMd.Sig s3 = new SLine_Pre_Form_BMd.Signal();
26 SLine_SMd.Sig s4 = new SLine_Main_Form_BMd.Signal();
27 s3.connect(s4);
28 }
29 }

Fig. 5 FAM program obtained by flattening the glue program in Fig. 4 under the assumption that
no auxiliary classes or interfaces are added by the activated deltas (see the explanation in Sect. 3.3).

to DVPLs have the form V[F](VR): in addition to features, they may depend on
variants of other product lines declared as parameters. The variants listed in the
parameters VR must select products of a matching product line in accordance with
the DVPL’s declaration. All other clauses are defined as in Sects. 2, 3.

Dvpl ::=productline V(V P);[uses V;]features F with ψ; DVPL

Prgm unique{Mod} ∆ DConfig

VR ::=V | V[F](VR) | P Variant References

Fig. 6 Syntax of Featherweight Dependent Delta ABS with Modules.

Same Same But Different: Interoperability of Software Product Line Variants 11

A DVPL supports two kinds of dependencies:

1. It may refer to a variant associated with a parameter P by a prefix of the form
P.M, where M is a module name.

2. It may use the unique part of other DVPLs: in a DVPL V, any reference to a
unique class C or interface I from outside must be done with an extended refer-
ence of the form V′.C or V′.I. The referenced DVPL V′ (when different from V
itself) must be listed in the uses clause of V.

All names occurring in the parameters declared by a DVPL are implicitly added
to its uses clause.

Example 4. The following model uses the Sig interface of the VPL SLine in Fig. 4.
The DVPL BLine has a dependency on the unique part of SLine, declared via uses
SLine. As the interface Sig is from the unique part of the SLine VPL, it is unnec-

essary to refer to any variant of SLine. Therefore, BLine has no parameters.

1 productline BLine;
2 uses SLine;
3 unique {
4 module ExampleMd;
5 interface ExampleI {
6 addSignal(SLine.SMd.Sig sig);
7 }
8 ...

Variant generation works bottom-up: variants of DVPLs without parameters are
generated first. Variants of other DVPLs are generated by instantiating their param-
eters with variant selections, once these have been reduced to module references.
We provide a more detailed description in Sect. 4.3.

4.2 A DVPL for Railway Stations

Consider the DVPL in Fig. 7 which models a train station with two pre/main signal
pairs. The signals within a pair must be implemented with the same technology, i.e.
they must be both light signals or both form signals. The feature model ensures this
as follows: Parameter sl1 is constrained to be a pre signal by sl1.Pre, similarly
sl2 must be a main signal. The first equivalence ensures that both feature the same
technology. Finally, the features of the variants referenced in the parameters are
consistently connected to the features of BlockLine. There is no uses dependency
to SLine, as it occurs in the parameters.

The attempt to pass two main signal variants or a light pre signal and form main
signal to the parameters of BlockLine causes variant generation to fail. A correct
instantiation of BlockLine, for example, with light signals is:

BlockLine[Light](SLine[Light, Pre](), SLine[Light, Main]())

12 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

1 productline BlockLine(SLine sl1, SLine sl2);
2 features Light, Form with sl1.Form ↔ sl2.Form ∧ sl1.Pre ∧ sl2

.Main ∧
3 Light ↔ sl1.Light ∧ Form ↔ sl1.

Form;
4 delta AlwaysDelta;
5 adds interface BlMd.BlockI { ... }
6 adds class BlMd.Block implements BlMd.BlockI {
7 SLine.SMd.Sig s1 = new sl1.BMd.Signal();
8 SLine.SMd.Sig s2 = new sl2.BMd.Signal();
9 SLine.SMd.Sig s3 = new sl1.BMd.Signal();

10 SLine.SMd.Sig s4 = new sl2.BMd.Signal();
11 Unit Block() {
12 s1.connect(s2);
13 s3.connect(s4);
14 }
15 }
16 delta AlwaysDelta when True;

Fig. 7 A DVPL modeling a railway block station.

Dependent product lines can declare other dependent product lines as parameters.
The DVPL in Fig. 8 models a railway line with two block stations that reference the
neighboring signal of each other. It adds a class Line in module LMd with its block
stations and their facing signals as fields. The BlockI interface from BlockLine

is not unique and thus must be referenced in the products bl1, bl2. Interface Sig

, however, is referenced unqualified. No parameter of LineLine is from SLine,
therefore, a dependency uses SLine is supplied.

1 productline LineLine(BlockLine bl1, BlockLine bl2);
2 uses SLine;
3 delta AlwaysDelta;
4 adds class LMd.Line {
5 bl1.BlMd.BlockI b1 = new bl1.BlMd.Block();
6 bl2.BlMd.BlockI b2 = new bl2.BlMd.Block();
7 SLine.SMd.Sig s1 = b1.getRightSignal();
8 SLine.SMd.Sig s2 = b2.getLeftSignal();
9 Unit Line() {

10 b1.connect(s2);
11 b2.connect(s1);
12 }
13 }
14 delta AlwaysDelta when True;

Fig. 8 A DVPL modeling a railway block section.

Same Same But Different: Interoperability of Software Product Line Variants 13

4.3 Glue Program Flattening for FDDAM

Flattening a FDDAM glue program is based on the procedure described in Sect. 3.4
which must be modified and extended as follows:

1. Reference Selection. Variant references may occur nested in FDDAM, so a vari-
ant reference or product line without parameters must be selected. That reference
is either to a non-dependent VPL, or only contains uses dependencies.

2. Post-Processing of a Single Iteration. After variant generation for a VPL two
additional steps are performed:

a. If the selected VPL is a DVPL with uses V dependencies (but without parame-
ters), then appropriate import clauses of the form import * frommod(V,mod)
are added to the generated module, for each mod in the unique block of V.

b. Variant references in the base program or deltas of the DVPL are replaced
by module references as described in Sect. 3.4. However, this is not possi-
ble when the reference to be resolved is a parameter of a DVPL, because a
parameter must have the syntactic shape of a variant reference, not that of a
module reference. Instead, DVPLs are partially instantiated: A copy is created
where the parameter corresponding to the variant reference to be resolved is
instantiated. To resolve references in these copies we use an injective func-
tion dep which maps pairs of DVPL names and variant selections to fresh
DVPL names. This function is used to generate the fresh names of partially
instantiated DVPLs.
For the overall flattening process we also define an auxiliary function aux that
maps DVPL names to pairs of module names and class/interface names. This
is used to add import clauses when the final variant is generated, because the
import clauses must be added for all parameters of the DVPL. For all DVPLs
present in the beginning aux is set to /0.
If, during post-processing, the variant reference VR to be resolved occurs in
the parameter list of a DVPL, then that DVPL is copied and the following
actions are performed on the copy:
i. The DPVL’s name V is replaced with dep(V,VR).

ii. The instantiated parameter P is removed from the parameter list.
iii. All features of P occurring in the feature model are replaced with True or

False, depending on whether the feature is selected or not.
iv. Every reference of the form P.M in the deltas or base program of the DVPL

is replaced with mod(VR,M).
The auxiliary function is set to:

aux(dep(V,VR)) = {(mod(VR,M),C) | P.M.C occurs in dep(V,VR)} ∪
aux(V)

The DVPL variant reference to be resolved is then replaced with dep(V,VR).
Fig. 9 shows a copy of BlockLine after the reference to SLine[Light, Pre

]() has been resolved. Please observe that the parameter sl1 is gone and the

14 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

feature constraint has been simplified using sl1.Pre and ¬sl1.Form. More-
over, aux(BlockLine_SLine_Light_Pre)= {(SLine_Light_Pre_BMd, Signal)}.

3. Final Post-Processing. For each (m,C) ∈ aux(V), where VPL V has no param-
eters (is fully initialized), the clause import C from M; is added to all modules
generated from V. The final processing of the example in Fig. 9 generates the
following import clauses:

import Signal from SLine_Light_Pre_BMd;
import Signal from SLine_Light_Main_BMd;

productline BlockLine_SLine_Light_Pre(SLine sl2);
features Light, Form with ¬sl2.Form ∧ sl2.Light ∧ sl1.Main ∧
Light ∧ ¬Form;

delta AlwaysDelta;
adds interface BlMd.BlockI { ... }
adds class BlMd.Block implements BlMd.BlockI {

SLine.SMd.Sig s1 = new SLine_Light_Pre_BMd.Signal();
SLine.SMd.Sig s2 = new sl2.BMd.Signal();
SLine.SMd.Sig s3 = new SLine_Light_Pre_BMd.Signal();
SLine.SMd.Sig s4 = new sl2.BMd.Signal();
Unit Block() {

s1.connect(s2);
s3.connect(s4);

}
}
delta AlwaysDelta when True;

Fig. 9 The DVPL resulting from partial instantiation of the DVPL in Fig. 7.

5 Discussion of Design Decisions

In this section we briefly discuss and explain some central design decisions taken,
including possible alternatives.

5.1 Variability, Commonality and Interoperability

We use the unique block to share elements common to all variants. This goes beyond
the idea that product lines model only variability. Instead, DVPLs specify both, the
variable and the common parts of a concept: In addition to modeling variability,
DVPLs are a means to structure the overall code. We chose to place aspects of a

Same Same But Different: Interoperability of Software Product Line Variants 15

model that do not vary over products inside a dedicated unique block of a DVPL.
Two other possible solutions do not require such a block, but have other downsides:

• One alternative is to place common parts into the glue program. However, mov-
ing a referenced interface outside of a product line results in a less coherent
overall model: The DVPL is now not a single stand-alone unit, but relies on the
correct context (namely the one providing the interface).

• Another solution would be to link a DVPL (modeling the variable part of a con-
cept) and a module (modeling the common part) with a new syntactic construct,
to make the coupling explicit. Such an external coupling introduces a new con-
cept to the language and is less elegant than coupling variablity and commonality
by including and marking common parts in the DVPL.

Variant references in VPLs are similar to dynamic mixin composition in, for
example, Scala. The Scala code below creates an object of class C and adds the
trait/mixin T. During compilation, this is replaced by an anonymous class:

val o = new C with T

Both, VPLs and dynamic mixins, are used for on-the-fly generation of variant con-
cepts. Despite this, both mechanisms differ in scope and aim:

• VPLs are more general, in the sense that they operate on an arbitrarily large
conceptual model. Mixins are confined to single classes.

• Mixins are integrated into the type hierarchy, while the code generated by VPLs
merely copies part of the type hierarchy and operates on the copy.

5.2 Implementing Interoperability

We decided to base the implementation of interoperability among different variants
of a product line on ABS modules and on invariant classes/interfaces of the product
line (identified by the unique keyword).

Modules constitute an appropriate mechanism to encapsulate different variants
with overlapping namespaces. As seen above, the module mechanism cleanly sepa-
rates the identifiers to access different variants while retaining considerable flexibil-
ity over what is visible via the import/export mechanism. In the Sline product line,
for example, it is possible to specify that the Sig interface and the Signal class are
accessible by the variants, but not by possible auxiliary classes such as a Bulb class
that might be part of the implementation of a light signal.

Modules are a standard concept, available in ABS (and many other languages)
that is sufficient to solve the problem of overlapping name spaces and graded visi-
bility, without the need for dedicated special mechanisms.

As an alternative to modules and unique model elements it would have been
possible to realize interoperability by a dedicated name space concept plus a type

16 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

system. This would, however, require the introduction of new concepts that arguably
are harder to comprehend.

6 Related Work

Kästner et al. [18] proposed a variability-aware module system, where each module
represents an SPL that allows for type checking modules in isolation. Variability in-
side each module and its interface is expressed by means of #ifdef preprocessor
directives and variable linking, respectively. A major difference to our proposal is
their approach to implement variability (to build variants): they use an annotative
approach (#ifdef preprocessor directives), while we use a transformational ap-
proach (DOP)—see [22, 26] for a classification and survey of different approaches
to implement variability.

Schröter et al. [24] advocate investigating mechanisms to support compositional
analyses of MPLs for different stages of the development process. In particular,
they outline the notion of syntactical interfaces to provide a view of reusable pro-
gramming artifacts, as well as behavioral interfaces that build on syntactical in-
terfaces to support formal verification. Schröter et al. [25] propose feature-context
interfaces aimed at supporting type checking SPLs developed according to the FOP
approach which, as pointed out in Sect. 1, is encompassed by DOP (see [21] for a
detailed comparison between FOP and DOP). A feature-context interface supports
type checking of a feature module in the context of a set of features FC. It provides
an invariable API specifying classes and members of the feature modules corre-
sponding to the features in FC that are intended to be accessible. More recently,
Schröter et al. [23] proposed a concept of feature model interface (based on the fea-
ture model slicing operator introduced by Acher et al. [1]) that consists of a subset
of features (thus it hides all other features and dependencies) and used it in combi-
nation with a concept of feature model composition through aggregation to support
compositional analyses of feature models.

Damiani et al. [12] informally outline linguistic constructs to extend DOP for
SPLs of Java programs to implement MPLs. The idea is to define an MPL as an SPL
that imports other SPLs. This extension is very flexible, however, it does not enforce
any boundary between different SPLs: the artifact base of the importing SPL is inter-
spersed with the artifact bases of the imported SPLs. Thus the proposed constructs
are not suitable for compositional analyses. More recently, Damiani et al. [10] ex-
tended the notions proposed in [23] from feature models to complete SPLs. They
propose, in the context of DOP for SPLs of Java programs, the concepts of SPL Sig-
nature (SPLS), Dependent SPL (DSPL), and DSPL-DSPL composition and show
how to use these concepts to support compositional type checking of delta-oriented
MPL (by relying on existing techniques for type checking DOP SPLs [4, 11, 8]).
An SPLS is a syntactical interface that provides a variability-aware API, expressed
in the flexible and modular DOP approach, specifying which classes and members
of the variants of a DSPL are intended to be accessible by variants of other DSPLs.

Same Same But Different: Interoperability of Software Product Line Variants 17

In contrast to feature-context interfaces [25], the concept of SPLS [10] represents a
variability-aware API that supports compositional type checking of MPLs.

None of the above mentioned proposals contains a mechanism for interoperation
of multiple variants from the same product line in the same application, the main
goal of the present paper. The concept of DVPLs over core ABS programs proposed
in this paper, formalized in the FDDAM language, is closely related to the notion of
DSPL of Java programs by Damiani et al. [10], formalized in IFM∆J—a calculus for
product lines where variants are programs written in IFJ [12] (an imperative version
of Featherweight Java [15]). In particular, both approaches support to model an MPL
as a set of dependent product lines. The main differences are as follows:

• IFM∆J uses SPLSs, syntactic interfaces providing variability-aware APIs, to ex-
press the dependencies of a product line. In IFM∆J a DSPL has anonymous pa-
rameters described by SPLS names.

– On one hand, parameters in IFM∆J are more flexible than parameters in FD-
DAM, since they can be instantiated by suitable variants of any product line
that implements the associated SPLS—in contrast to FDDAM, where each
parameter of a DVPL is associated with a specific product line name.

– On the other hand, parameters in IFM∆J are less flexible than parameters in
DSPL, since in IFM∆J a DSPL cannot have more than one parameter for each
SPLS and different parameters must be instantiated by variants of different
product lines—in contrast to FDDAM, where each parameter has a name and
it is possible to have different parameters associated to the same product line.

• FDDAM provides unique blocks and glue programs to write applications that
reference different variants (possibly from the same product line) and make them
interoperate. In contrast, IFM∆J does not provide any mechanisms to write ap-
plications that reference different variants from the same product line.

FDDAM is more suited for our model of railway operations in FormbaR: the prod-
uct line for a parameter is always known beforehand. As shown in the examples,
interoperable variants occur naturally in this domain.

7 Conclusion

We proposed the concept of dependent variant-interoperable software product lines
(DVPL). It provides novel linguistic mechanisms that support interoperability among
different variants of one product line and enables describing an MPL by a set of
DVPLs and a glue program that may contain references to different variants of the
DVPLs. We have illustrated our proposal as an extension of a foundational language
for ABS, a modelling language that supports delta-oriented SPLs, and outlined its
application to a case study from the FormbaR project performed for Deutsche Bahn
AG.

18 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt

In future work we would like to fully formalize our proposal and develop a com-
positional type-checking analysis for MPLs described according to our proposal.
The starting point for developing the analysis is represented by the work of Dami-
ani et al. [10] (see Sect. 6). Furthermore, we plan to implement the proposal for full
ABS.

Acknowledgments

This work is supported by FormbaR, part of AG Signalling/DB Raillab (form-
bar.raillab.de); EU Horizon 2020 project HyVar (www.hyvar-project.eu), GA No.
644298; and ICT COST Action IC1402 ARVI (www.cost-arvi.eu).

References

1. M. Acher, P. Collet, P. Lahire, and R. B. France. Slicing feature models. In 26th IEEE/ACM
International Conference on Automated Software Engineering, (ASE), 2011, pages 424–427,
2011.

2. S. Apel, D. S. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer, 2013.

3. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE Transac-
tions on Software Engineering, 30:355–371, 2004.

4. L. Bettini, F. Damiani, and I. Schaefer. Compositional type checking of delta-oriented soft-
ware product lines. Acta Informatica, 50(2):77–122, 2013.

5. P. Clements and L. Northrop. Software Product Lines: Practices & Patterns. Addison Wesley
Longman, 2001.

6. F. Damiani, R. Hähnle, E. Kamburjan, and M. Lienhardt. A unified and formal programming
model for deltas and traits. In Fundamental Approaches to Software Engineering - 20th Inter-
national Conference, FASE 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,
volume 10202 of Lecture Notes in Computer Science, pages 424–441. Springer, 2017.

7. F. Damiani, R. Hähnle, E. Kamburjan, and M. Lienhardt. Interoperability of software product
line variants, 2018. To appear in SPLC’18.

8. F. Damiani and M. Lienhardt. On type checking delta-oriented product lines. In Integrated
Formal Methods - 12th International Conference, IFM 2016, Reykjavik, Iceland, June 1-
5, 2016, Proceedings, volume 9681 of Lecture Notes in Computer Science, pages 47–62.
Springer, 2016.

9. F. Damiani, M. Lienhardt, R. Muschevici, and I. Schaefer. An extension of the ABS toolchain
with a mechanism for type checking spls. In Integrated Formal Methods - 13th International
Conference, IFM 2017, Turin, Italy, September 20-22, 2017, Proceedings, volume 10510 of
Lecture Notes in Computer Science, pages 111–126. Springer, 2017.

10. F. Damiani, M. Lienhardt, and L. Paolini. A formal model for multi spls. In FSEN, volume
10522 of Lecture Notes in Computer Science, pages 67–83. Springer, 2017.

11. F. Damiani and I. Schaefer. Family-based analysis of type safety for delta-oriented software
product lines. In T. Margaria and B. Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change, volume 7609 of
Lecture Notes in Computer Science, pages 193–207. Springer Berlin Heidelberg, 2012.

Same Same But Different: Interoperability of Software Product Line Variants 19

12. F. Damiani, I. Schaefer, and T. Winkelmann. Delta-oriented multi software product lines. In
Proceedings of the 18th International Software Product Line Conference - Volume 1, SPLC
’14, pages 232–236. ACM, 2014.

13. R. Hähnle. The Abstract Behavioral Specification language: A tutorial introduction. In
M. Bonsangue, F. de Boer, E. Giachino, and R. Hähnle, editors, Intl. School on Formal Models
for Components and Objects: Post Proceedings, volume 7866 of LNCS, pages 1–37. Springer,
2013.

14. G. Holl, P. Grünbacher, and R. Rabiser. A systematic review and an expert survey on capa-
bilities supporting multi product lines. Information & Software Technology, 54(8):828–852,
2012.

15. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. ACM TOPLAS, 23(3):396–450, 2001.

16. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core language
for abstract behavioral specification. In Formal Methods for Components and Objects - 9th
International Symposium, FMCO 2010, Graz, Austria, November 29 - December 1, 2010.
Revised Papers, pages 142–164, 2010.

17. E. Kamburjan and R. Hähnle. Uniform modeling of railway operations. In FTSCS, volume
694 of Communications in Computer and Information Science, pages 55–71, 2016.

18. C. Kästner, K. Ostermann, and S. Erdweg. A variability-aware module system. In Proceedings
of the ACM International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, pages 773–792. ACM, 2012.

19. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering - Foundations,
Principles, and Techniques. Springer, Berlin, Germany, 2005.

20. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-Oriented Programming
of Software Product Lines. In Software Product Lines: Going Beyond (SPLC 2010), volume
6287 of LNCS, pages 77–91, 2010.

21. I. Schaefer and F. Damiani. Pure delta-oriented programming. In Proceedings of the 2nd
International Workshop on Feature-Oriented Software Development, FOSD ’10, pages 49–
56. ACM, 2010.

22. I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck, A. Pathak, S. Tru-
jillo, and K. Villela. Software diversity. International Journal on Software Tools for Technol-
ogy Transfer, 14(5):477–495, 2012.

23. R. Schröter, S. Krieter, T. Thüm, F. Benduhn, and G. Saake. Feature-model interfaces: The
highway to compositional analyses of highly-configurable systems. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 667–678. ACM, 2016.

24. R. Schröter, N. Siegmund, and T. Thüm. Towards modular analysis of multi product lines.
In Proceedings of the 17th International Software Product Line Conference Co-located Work-
shops, SPLC’13, pages 96–99. ACM, 2013.

25. R. Schröter, N. Siegmund, T. Thüm, and G. Saake. Feature-context interfaces: Tailored pro-
gramming interfaces for spls. In Proceedings of the 18th International Software Product Line
Conference - Volume 1, SPLC’14, pages 102–111. ACM, 2014.

26. T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification and survey of analysis
strategies for software product lines. ACM Comput. Surv., 47(1):6:1–6:45, 2014.

