
Compositional Correctness and Completeness for1

Symbolic Partial Order Reduction2

Åsmund Aqissiaq Arild Kløvstad �3

University of Oslo, Norway4

Eduard Kamburjan �5

University of Oslo, Norway6

Einar Broch Johnsen �7

University of Oslo, Norway8

Abstract9

Partial Order Reduction (POR) and Symbolic Execution (SE) are two fundamental abstraction10

techniques in program analysis. SE is particularly useful as a state abstraction technique for sequential11

programs, while POR addresses equivalent interleavings in the execution of concurrent programs.12

Recently, several promising connections between these two approaches have been investigated, which13

result in symbolic partial order reduction: partial order reduction of symbolically executed programs.14

In this work, we provide compositional notions of completeness and correctness for symbolic partial15

order reduction. We formalize completeness and correctness for (1) abstraction over program states16

and (2) trace equivalence, such that the abstraction gives rise to a complete and correct SE, the trace17

equivalence gives rise to a complete and correct POR, and their combination results in complete18

and correct symbolic partial order reduction. We develop our results for a core parallel imperative19

programming language and mechanize the proofs in Coq.20

2012 ACM Subject Classification Theory of computation → Parallel computing models21

Keywords and phrases Symbolic Execution, Coq, Trace Semantics, Partial Order Reduction22

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.2323

Supplementary Material The Coq logo () links directly to the Coq formalization [20] available at24

https://github.com/Aqissiaq/symex-formally-formalized25

26

Acknowledgements The first author would like to thank Yannick Zakowski for help with Coq27

formatting and Erik Voogd for valuable insights on symbolic semantics.28

1 Introduction29

Program analyses rely on representing the possible reachable states and traces of a program30

run efficiently and are commonly accompanied by a correctness theorem (all representable31

states and traces are reachable) and possibly a completeness theorem (all reachable states32

and traces are represented). Explicitly listing all states or traces leads to the “state space33

explosion”, as even for simple programs, the number of possible program states may grow so34

fast that examining them all explicitly becomes infeasible.35

One source of this growth is the domain of data — the number of possible values is very36

large, even for a single integer. Symbolic execution [7, 18, 19] (SE) mitigates this problem by37

representing values symbolically, thus covering many possible concrete states at once. SE is38

utilized to great effect in program analysis [3]. Another source of growth is concurrency, as39

the number of possible interleavings grows exponentially. Partial Order Reduction (POR)40

is a technique for tackling this explosion by taking advantage of the fact that independent41

events can be reordered without affecting the final result [16].42

© Åsmund Aqissiaq Arild Kløvstad, Eduard Kamburjan, Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aaklovst@ifi.uio.no
mailto:eduard@ifi.uio.no
mailto:einarj@ifi.uio.no
https://doi.org/10.4230/LIPIcs.CONCUR.2023.23
https://github.com/Aqissiaq/symex-formally-formalized
https://github.com/Aqissiaq/symex-formally-formalized
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Compositional Symbolic POR

The combined use of both POR and SE has recently begun to be investigated [6, 29],43

called symbolic partial order reduction (SPOR). Notions of correctness and completeness are44

available for both SE and POR, but how these notions can be composed to obtain correctness45

and completeness of SPOR remains an open challenge. In this paper, we tackle this challenge46

and give a compositional notion of correctness and completeness for SPOR, based on the47

abstraction and equivalence notions that define SE and POR. To formulate such a theory we48

use trace-based semantics. Trace semantics is both expressive [24, 32] and compositional [11],49

and allows a natural formulation of partial order reduction [6].50

concrete semantics concrete POR

symbolic semantics symbolic POR

(1)

(2)

Figure 1 State of the art and our contribution

State of the Art. Figure 1 shows the available correctness and completeness results for SE51

and for POR. Each corner denotes a program semantics, and the arrows denote correctness52

and completeness. First, let us examine the left side of the square, which is concerned with53

SE.54

The left edge of Figure 1, labeled (1), is provided by de Boer and Bonsangue [5], who55

define symbolic and concrete semantics for several minimal imperative languages to formulate56

and prove notions of correctness and completeness for SE. However, their work is limited to57

a sequential setting. The proof is based on using a suitable abstraction between concrete and58

symbolic states, that defines the SE.59

The bottom edge of Figure 1, labeled (2), is studied by de Boer et al. [6], who formulate60

partial order reduction for symbolic execution with explicit threads using a syntactic notion61

of interference freedom and implement this approach in the rewriting logic framework62

Maude [10]. Their results are not connected to the concrete semantics. The result is based63

on an equivalence relation between symbolic traces, that defines the SPOR, but does not64

use an explicit abstraction between states. We discuss further, related results on symbolic65

execution in Sec. 6.66

The top of Figure 1 concerns POR [1,13, 16, 26] for concrete executions, where numerous67

implementations are available. The correctness of such a reduction corresponds to the top68

edge of Figure 1, though it is not usually presented in terms of an equivalence relation as69

proposed by de Boer et al. Results directly of SPOR are given by Schemmel et al. [29], who70

apply (dynamic) partial order reduction to symbolic execution using “unfolding” to explore71

paths. This shows that POR is applicable directly to SE, but does not discuss a generic72

notion of state abstraction and trace equivalence.73

While all four corners of Figure 1 are well established, and several edges have been74

explored, there exists no general formalization of the properties for state abstraction and75

trace equivalence needed for a uniform and compositional treatment of different POR76

algorithms and SE techniques. Hence, the present work unifies notions of correctness and77

completeness for symbolic execution and partial order reduction, and fills in the remaining78

(black) edges of Figure 1. By compositional completeness and correctness, we mean that the79

diagonal follows automatically from the other edges of the figure.80

Approach. To fill the gap we formulate concrete and symbolic trace semantics for a81

Å. A. A. Kløvstad, E. Kamburjan, and E. B. Johnsen 23:3

small imperative language with parallel composition and show that these semantics enjoy82

a bisimulation relationship. We then formulate partial order reduction in terms of an83

equivalence relation on traces, and show that this also leads to a bisimulation of reduced84

and non-reduced semantics. These bisimulations extend to correctness and completeness85

results, and compose naturally to semantics with both symbolic execution and partial order86

reduction.87

The results are obtained in a framework extending the work of de Boer et al. and are88

centered around the notions of state abstraction and trace equivalence. Following de Boer et89

al., state abstraction is given by transforming concrete states according to symbolic states,90

and a concrete state is abstracted if it can be obtained by some symbolic transformation.91

Trace equivalence defines an equivalence relation on sequences of events which allows for92

partial order reduction. In particular, it suffices to explore one trace per equivalence class.93

Both symbolic and concrete states are implemented by total functions of variable names94

with generic properties. To reduce the number of rules and allow for elegant parallel95

composition the semantics are given by a reduction system in the style of Felleisen and96

Hieb [12] with contexts formalized as functions on statements and an inductive relation [21].97

The full semantics are obtained by stepwise transitive closure, which allows for proofs by98

induction and case analysis of the final step.99

Contributions. Our contribution is threefold.100

1. We unify and fill in the remaining edges in the above diagram. In particular we give101

correctness and completeness relations for concrete partial order reduction, directly relate102

partial order reduction in the symbolic and concrete case, and compose the results to103

relate concrete semantics to reduced symbolic semantics.104

2. Correctness and completeness for both symbolic execution and partial order reduction105

are formulated in a parametric fashion, allowing for different implementations of both,106

providing they fulfill certain conditions.107

3. Finally, the entire development is mechanized in Coq [4,33]. This lends credence to the108

results and allows for extensions and further work in a systematic manner.109

Structure. Section 2 introduces basic notions for symbolic execution with trace semantics110

for a basic imperative language with parallel composition. Then both concrete and symbolic111

semantics are given as reduction systems with contexts to handle both sequential and parallel112

composition. Finally we formulate and prove correctness and completeness of the symbolic113

semantics with respect to the concrete semantics. Section 3 introduces a notion of trace114

equivalence that connects correctness and completeness to partial order reduction, which is115

used in Section 4 to define independence of events in a semantic manner. We then define new116

PO-reduced semantics for both symbolic and concrete cases, and show that they bisimulate117

their non-reduced counterparts. Finally, Section 5 connects previous results and shows that118

bisimulation carries through POR to fill in the upper right half of the diagram. Section 6119

and 7 give further related work and concludes.120

2 Symbolic Trace Semantics121

In this section we introduce the basic notions of our framework. In particular, we define a122

small imperative language with parallel composition and formulate symbolic and concrete123

trace semantics for it. We relate the two semantics by a bisimulation defining both trace124

completeness and trace correctness.125

CONCUR 2023

23:4 Compositional Symbolic POR

e :: = n
∣∣ x ∣∣ e1 + e2 arith. expr.

b :: = true
∣∣ false

∣∣ ¬b ∣∣ b1 ∧ b2
∣∣ e1 ≤ e2 bool. expr.

s :: = x := e
∣∣ s1 ; s2

∣∣ s1 || s2
∣∣ if b {s1}{s2}

∣∣ while b {s}
∣∣ skip statements

Figure 2 Grammar for expressions and statements

2.1 Basic Notions126

For the basic setup we assume a set of program variables Var , a set of arithmetic expressions127

Aexpr and a set of Boolean expressions Bexpr . Our basic programming language is an128

imperative language with (side effect free) assignment, conditional branching, iteration and129

both sequential and parallel composition.130

I Definition 2.1 (Syntax). The sets of arithmetic expressions Aexpr , Boolean expressions131

Bexpr , and statements Stmt are defined by the grammar in Figure 2, where we let x range132

over Var , n over N, b over Bexpr , e over Aexpr and s over statements.133

Before we define the semantics, we require a notion of store to express program state. We134

distinguish between symbolic stores, for symbolic execution, and concrete stores, for concrete135

execution.136

I Definition 2.2 (Symbolic Store). A symbolic store σ is a substitution, i.e., a map from137

Var to Aexpr denoted by σ.138

We take equality of substitutions to be extensional, that is σ = σ′ if σ(x) = σ′(x) for all139

x. An update to a substitution is denoted by σ[x := e]. A substitution can be recursively140

applied to a Boolean or arithmetic expression, resulting in a new expression. We denote such141

an application by eσ.142

I Definition 2.3 (Concrete Store). A concrete store V is a valuation, i.e., a map from Var143

to N denoted by V .144

Like substitutions, valuations can be updated (denoted V [x := n]) and a valuation can be145

used to evaluate an expression. This evaluation is denoted V (e) and results in a natural146

number for arithmetic expressions and a Boolean for Boolean expressions. For a Boolean147

expression b, we say V is a model of b if V (b) = true and denote this by V |= b. The148

definitions of substitution and evaluation are standard and given in the auxiliary material.149

2.2 Trace Semantics150

Based on the notion of symbolic and concrete stores, we now give the symbolic and concrete151

semantics. Both semantics are based on traces, i.e., sequences of events. Events are152

assignments or guards in the symbolic case, or just assignments in the concrete case.153

I Definition 2.4 (Symbolic Trace). A symbolic trace is a sequence of conditions or symbolic154

assignments defined by the grammar155

τS ::= []
∣∣ τS :: (x := e)

∣∣ τS :: b156

I Definition 2.5 (Concrete Trace). A concrete trace is a sequence of concrete assignments157

defined by the grammar158

τC ::= []
∣∣ τC :: (x := e)159

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Expr.v#L10
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Parallel.v#L23

Å. A. A. Kløvstad, E. Kamburjan, and E. B. Johnsen 23:5

In both cases [] denotes the empty trace and we write the trace [] :: x :: y :: z . . . simply as160

[x, y, z . . .]. The concatenation of τ and τ ′ is denoted by τ · τ ′. The trace syntax is shared161

between symbolic and concrete traces, but the difference will be clear from context.162

We represent the current program state as a pair of a statement (the program remaining163

to be executed) and the trace generated so far. Evaluating expressions requires to evaluate164

the expression in the last substitution or valuation of the trace. To do so, we extract this165

final substitution or valuation from a trace and an initial substitution or valuation by folding166

over the trace. In the case of a symbolic trace, the result is a symbolic substitution, while a167

concrete trace results in a concrete valuation.168

I Definition 2.6 (Final Substitution). Given an initial substitution σ, the final substitution169

of a trace τS is denoted τS ⇓σ and inductively defined by170

[] ⇓σ = σ171

τS ::b ⇓σ = τS ⇓σ172

τS :: (x := e) ⇓σ = σ′[x := (eσ′)] where σ′ = τS ⇓σ173
174

When σ = id we omit it and write τS ⇓175

I Definition 2.7 (Final Valuation). Given an initial valuation V , the final valuation of a176

trace τC is denoted τC ⇓V and inductively defined by177

[] ⇓V = V178

τC :: (x := e) ⇓V = V ′[x := V ′(e)] where V ′ = τC ⇓V179
180

Semantics can then be given by a simple reduction relation on atomic statements (Figure 3),181

which extends to the full language by s/c-in-context. The symbolic (resp. concrete)182

relation works on pairs of statements and symbolic (resp. concrete) traces to extend them183

with appropriate events.184

I Definition 2.8 (Symbolic and Concrete Semantics). The symbolic semantics → between two185

symbolic configurations is given on the left of Fig. 3. The concrete semantics ⇒ between two186

concrete configurations is given on the right of Fig. 3.187

Both semantics are straightforward, we point out three details. First, the main difference is188

that the rules with branching (∗-if-t, ∗-if-f, ∗-while-t, ∗-while-f) are non-deterministic189

and add an event in the symbolic case, but are deterministic in the concrete case.190

Second, in order to concisely deal with both sequential and parallel composition, we use191

contexts [12]. A context C represents a statement with a “hole” (�) in it and is generated by192

the grammar:193

C ::= �
∣∣ (C ; s)

∣∣ (C || s)
∣∣ (s || C)194

Intuitively, the statement we are interested in may occur on its own, sequentially before some195

other statement, or on either side of a parallel operator. By C[s] we denote the statement s196

in the hole in context C.197

Finally, we point out that we model termination by reduction to skip.198

I Example 2.9. Consider the program s = y := 1 || x := 3 || if X ≤ 1 {Y := 2} {Y := 3}.199

We will show that (s, [])→∗ (skip, [x := 3, y := 1, x > 1, y := 3]). In other words that200

[x := 3, y := 1, x > 1, y := 3] is one possible trace of the program.201

CONCUR 2023

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L113
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L137
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PORExamples.v#L42

23:6 Compositional Symbolic POR

s-asgn
(x := e, τ) (skip, τ :: (x := e)) (x := e, τ) V (skip, τ :: (x := e))

c-asgn

s-if-t
(if b {s1}{s2}, τ) (s1, τ :: b)

τ ⇓V (b) = true
(if b {s1}{s2}, τ) V (s1, τ)

c-if-t

s-if-f
(if b {s1}{s2}, τ) (s2, τ :: ¬b)

τ ⇓V (b) = false
(if b {s1}{s2}, τ) V (s2, τ)

c-if-f

s-while-t
(while b {s}, τ) (s ; while b {s}, τ :: b)

τ ⇓V (b) = true
(while b {s}, τ) V (s ; while b {s}, τ)

c-while-t

s-while-f
(while b {s}, τ) (skip, τ :: ¬b)

τ ⇓V (b) = false
(while b {s}, τ) V (skip, τ)

c-while-f

s-seq
(skip ; s, τ) (s, τ) (skip ; s, τ) V (s, τ)

c-seq

s-par
(skip || skip, τ) (skip, τ) (skip || skip, τ) V (skip, τ)

c-par

s-in-context
(s, τ) (s′, τ ′)

(C[s], τ)→ (C[s′], τ ′)
(s, τ) V (s′, τ ′)

(C[s], τ) ⇒V (C[s′], τ ′)
c-in-context

Figure 3 Reduction rules for symbolic and concrete semantics

First apply s-in-context with C = y := 1 || � || if X ≤ 1 {Y := 2} {Y := 3} and s-asgn202

to obtain203

(s, [])→ (y := 1 || skip || if X ≤ 1 {Y := 2} {Y := 3}, [x := 3])204

The second assignment is similar, followed by s-if-f in the context skip || skip || � to obtain205

(skip || skip || if X ≤ 1 {Y := 2} {Y := 3}, [x := 3, y := 1])→ (skip || skip || Y := 3, [x := 3, y := 1, x > 1])206

After the last assignment, the superfluous skips are dispensed with by s-par and putting207

the steps in sequence gives the desired208

(s, [])→∗ (skip, [x := 2, y := x, z := x])209

Note that we could choose to apply the contexts in a different order, resulting in five210

other potential traces.211

2.3 Correctness and Completeness212

The value of symbolic execution comes from its ability to simultaneously capture many213

possible concrete execution paths. However, not all of these paths will be feasible for all initial214

valuations. The feasibility of any particular symbolic trace depends on its path condition —215

a conjunction of guards that allow execution to follow down this particular path — which is216

computed in a similar fashion to final substitutions.217

I Definition 2.10 (Path Condition). The path condition of a symbolic trace τS is denoted218

pc(τS) and defined by219

pc([]) = true220

pc(τS ::b) = pc(τS) ∧ b(τS ⇓)221

pc(τS :: (x := e)) = pc(τS)222
223

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L48
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L70
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L127

Å. A. A. Kløvstad, E. Kamburjan, and E. B. Johnsen 23:7

Because it is a conjunction of terms, once a path condition becomes false, it cannot224

become true again. The following lemma captures the contrapositive: a model of a trace’s225

path condition is also a model of any prefix’s path condition.226

I Lemma 2.11 (Path Condition Monotonicity). If V |= pc(τ :: ev), then V |= pc(τ)227

To relate the symbolic and concrete traces we define a notion of abstraction based on the228

correctness and completeness relations of de Boer and Bonsangue.229

I Definition 2.12 (Trace abstraction [5]). Given an initial valuation V , a symbolic trace230

τS and a concrete trace τC we say τS V -abstracts τC if V |= pc(τS) and τC ⇓V = V ◦ τS ⇓231

The steps of the symbolic and concrete systems correspond very closely. Every concrete232

step corresponds to a symbolic step whose path condition is satisfiable, and every symbolic233

step with a satisfiable path condition corresponds to a concrete step. In both cases the234

resulting final states are related by simple composition. This relationship is formalized in235

the following bisimulation result.236

I Theorem 2.13 (Bisimulation). For any initial valuation V and initial traces τ0, τ
′
0 such237

that τ0 V -abstracts τ ′0:238

if there is a concrete step (s, τ0) ⇒V (s′, τ), then there exists a symbolic step (s, τ ′0)→ (s′, τ ′)239

such that τ ′ V -abstracts τ , and240

if there is a symbolic step (s, τ ′0)→ (s′, τ ′) and V |= pc(τ ′), then there exists a concrete241

step (s, τ0) ⇒V (s′, τ) such that τ ⇓V = V ◦ τ ′ ⇓242

By induction over the transitive closure and Lemma 2.11 we obtain correctness and243

completeness results. Intuitively, correctness means that each symbolic execution whose path244

condition is satisfied by some initial valuation V corresponds to a concrete execution with245

the same initial valuation. Additionally its trace abstracts the concrete trace in the sense246

that the final concrete state is the concretization of V by the final symbolic state. In other247

words the subset of states described by its path condition contains V , and there is a concrete248

execution corresponding to the transformation described by its final symbolic state.249

I Corollary 2.14 (Trace Correctness). If (s, τS)→∗ (s′, τ ′S), τS V -abstracts τC , and250

V |= pc(τ ′S), then there exists a concrete trace τ ′C s.t (s, τC) ⇒∗
V (s′, τ ′C) and τ ′C ⇓V = τC ⇓V ◦(τ ′S ⇓)251

Completeness captures the opposite relationship: every concrete execution has a symbolic252

counterpart. Furthermore the symbolic trace recovers the concrete state, and its path253

condition is satisfied by the initial valuation.254

I Corollary 2.15 (Trace Completeness). If (s, τC) ⇒∗
V (s′, τ ′C) and τS V -abstracts τC ,255

there exist τ ′S s.t (s, τS)→∗ (s′, τ ′S) and τ ′S V -abstracts τ ′C .256

3 Trace Equivalence257

In this section we introduce a notion of trace equivalence which will be used to formulate258

partial order reduction in Section 4. Intuitively two traces should be equivalent if execution259

could continue from either one, i.e., if partial order reduction would prune away one of them.260

This is surely the case when their final states are the same. In the symbolic case their261

path conditions must also be equivalent. Additionally, we do not want to equate traces262

describing observably different behavior, so equivalent traces must contain the same events.263

These considerations motivate the following definition.264

CONCUR 2023

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L87
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L150
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L192
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L204
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L224

23:8 Compositional Symbolic POR

I Definition 3.1 (Symbolic Trace Equivalence). Symbolic traces τ and τ ′ are equivalent265

(denoted τ ∼ τ ′) if266

τ ′ is a permutation of τ ,267

τ ⇓σ= τ ′ ⇓σ for all initial substitutions σ, and268

V |= pc(τ) ⇐⇒ V |= pc(τ ′) for all valuations V269

I Definition 3.2 (Concrete Trace Equivalence). Concrete traces τ and τ ′ are equivalent270

(denoted τ ' τ ′) if271

τ ′ is a permutation of τ ,272

τ ⇓V = τ ′ ⇓V for all initial valuations V273

I Example 3.3. Let τ1 = [y := x, z := x] and τ2 = [z := x, y := x]. It is both the case274

that τ1 ∼ τ2 and τ1 ' τ2.1 They evidently contain the same events and have the same275

(trivially true) path condition. Any initial substitution σ results in a final substitution276

σ′(v) =
{
x, v ∈ {y, z}
σ(v), otherwise

and any initial valuation V results in V ′(v) =
{
V (x), v ∈ {y, z}
V (v), otherwise

277

Clearly, trace equivalence defines an equivalence relation. Furthermore it allows continued278

execution in the following sense: given a statement s and a trace τ , we can replace τ with279

an equivalent trace τ ′, such that the next execution step will result in two different, but280

equivalent traces.281

I Lemma 3.4 (). For equivalent traces τ ∼ τ ′, if (s, τ)→ (s′, τ1) then there exists τ2 such282

that (s, τ ′)→ (s′, τ2) and τ1 ∼ τ2.283

This lemma also holds for concrete traces with concrete equivalence and reduction system284

and underlies partial order reduction in both cases.285

Crucially, the properties of trace equivalence ensure that it preserves abstraction. The286

following theorem shows that the notion of V-abstraction carries through trace equivalence,287

which will allow us to connect it with partial order reduction in the sequel.288

I Theorem 3.5 (Abstraction Congruence). For equivalent symbolic traces τS ∼ τ ′S and289

concrete traces τC ' τ ′C , if τS V -abstracts τC then τ ′S V -abstracts τ ′C290

I Example 3.6. Continuing Example 3.3, the symbolic trace τ1 V -abstracts the concrete291

trace τ1 for every V , and so τ1 also V -abstracts the equivalent concrete trace τ2.292

In fact, every symbolic trace V -abstracts itself viewed as a concrete trace for any V .293

3.1 Example: Interference Freedom294

The reordering of independent events is the core of many POR approaches. In practice true295

independence is prohibitively expensive to compute, so some over-approximation is used.296

Interference freedom is a syntactic over-approximation of independence of events. We show297

that reordering interference free events is an instance of our notion of trace equivalence.298

Interference freedom between ev1 and ev2 means that ev1 does not read or write a variable299

written by ev2 and vice versa. Formally:300

1 Recall that symbolic traces are also concrete traces if they contain no branching events (guards).

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L21
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L153
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L61
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L284

Å. A. A. Kløvstad, E. Kamburjan, and E. B. Johnsen 23:9

I Definition 3.7 (Interference Freedom). Let ev be either a Boolean expression b or an301

assignment (x := e). R(ev) denotes the set of variables read by ev, ie. all the variables in b302

or e. W (ev) denotes the set of variables written by ev, ie. x. Then ev1, ev2 are interference303

free iff304

W (ev1) ∩W (ev2) = R(ev1) ∩W (ev2) = R(ev2) ∩W (ev1) = ∅305

Denote the interference freedom of ev1 and ev2 by ev1 � ev2306

Interference freedom is an independence relation in the sense that if ev1 � ev2, then the307

final state of [ev1, ev2] is equal to that of [ev2, ev1]. The reason is that interference freedom308

allows for “simultaneous” updates without worrying about the order of operations in the309

assignment case, and the variables involved in a Boolean expression can not be changed in310

the guard case.311

On the other hand, interference freedom is an over-approximation which is perhaps most312

easily seen by events like (x := x) and (x ≤ 3). Clearly they are semantically independent313

since the value of x does not change, but they are not interference free.314

Equipped with a concrete independence relation we can construct new traces by reordering315

adjacent independent events. Such a reordering is captured by the equivalence define above316

in the sense that it results in an equivalent trace.317

I Theorem 3.8 (Interference free reordering is a trace equivalence). Let ∼IF be the smallest318

equivalence relation on symbolic traces such that τ · [ev1, ev2] · τ ′ ∼IF τ · [ev2, ev1] · τ ′ for all319

τ, τ ′ and ev1 � ev2.320

The equivalence relation ∼IF is contained in ∼.321

The analogous result holds for concrete traces and ' .322

This example shows that a POR scheme based on reordering of independent events is323

captured by trace equivalence.324

4 Correctness and Completeness for Symbolic Partial Order325

Reduction326

We formulate POR in the present setting through the use of trace equivalence (defined above)327

and use it to define new PO-reduced reduction systems. These new systems bisimulate the328

non-reduced systems of Section 2, leading directly to correctness and completeness results.329

At its core, partial order reduction works by observing that some events commute in330

the execution of a parallel program. These events can be reordered without affecting the331

final result, and so it it not necessary to explore every interleaving. The reduction is often332

formulated in terms of an (in)dependence relation that determines which events may be333

reordered. Such a relation must make sure that independent steps leave the system in334

equivalent states, regardless of the order they are performed in.335

An independence relation lifts to an equivalence relation on traces by permuting adjacent336

independent events. POR approaches then employ some algorithm to compute the equivalence337

classes of such a relation and avoid exploring traces in the same class. In practice it is difficult338

to compute the independence of events, so a sound over-approximation is used instead.339

We instead take a more high-level approach. Considering trace equivalence to be a340

fundamental semantic building block, we develop our POR semantics parametric in this341

notion. This gives us an abstract notion, independent of the specific algorithm for POR.342

To take advantage of partial order reduction, we define new transition systems.343

CONCUR 2023

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/InterferenceFreedom.v#L144
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/InterferenceFreedom.v#L270

23:10 Compositional Symbolic POR

I Definition 4.1 (POR Semantics). The transition rules for symbolic POR are:344

τ0 ∼ τ ′0 (s, τ0) (s′, τ)
(s, τ ′0) POR (s′, τ)

(s, τ) POR (s′, τ ′)
(C[s], τ)→POR (C[s′], τ ′)

345

And the transition rules for concrete POR are:346

τ0 ' τ ′0 (s, τ0) V (s′, τ)
(s, τ ′0) P OR,V (s′, τ)

(s, τ) P OR,V (s′, τ ′)
(C[s], τ) ⇒P OR,V (C[s′], τ ′)

347

This new reduction relation includes the steps of the symbolic case but requires only that348

the initial trace is equivalent in the sense defined in Section 3. Crucially, given a class of349

equivalent traces we may choose only one of them to continue execution. This is the source350

of reduction. Note that it is possible for (s, τ ′0) to be unreachable in the original semantics,351

however the following completeness and correctness results ensure that this does not affect352

the final result. This approach most closely resembles sleep sets [15, 17] which keeps track of353

equivalent traces that do not need to be explored.354

I Example 4.2. Consider again the program from Example 2.9 and note that (y := 1)355

and (x := 3) are independent assignments. In the middle of some computation we are left356

with skip || skip || if x ≤ 1 {Y := 2}{Y := 3} and the trace [x := 3, y := 1]. However, we357

have previously explored a computation from the state358

(skip || skip || if x ≤ 1 {Y := 2}{Y := 3}, [y := 1, x := 3])359

Now the POR semantics let us replace the equivalent traces and use this computation instead.360

In order to utilize POR, we need to know that the reduced traces still model our programs’361

behavior. It should not throw away any important traces, nor should it invent new ones by362

taking unsound equivalence classes. Formally, we want the POR semantics to bisimulate363

their non-reduced counterpart up to trace equivalence.364

I Theorem 4.3 (POR bisimulation). For equivalent initial traces τ0 ∼ τ ′0:365

If (s, τ0)→POR (s′, τ) then there exists (s, τ ′0)→ (s′, τ ′) such that τ ∼ τ ′, and366

If (s, τ0)→ (s′, τ) then there exists (s, τ ′0)→POR (s′, τ ′) such that τ ∼ τ ′367

For equivalent initial traces τ0 ' τ ′0 and initial valuation V :368

If (s, τ0) ⇒P OR,V (s′, τ) then there exists (s, τ ′0) ⇒V (s′, τ ′) such that τ ' τ ′, and369

If (s, τ0) ⇒V (s′, τ) then there exists (s, τ ′0) ⇒P OR,V (s′, τ ′) such that τ ' τ ′370

From these bisimulation results, correctness and completeness follow by induction. Cor-371

rectness captures the intuition that every PO-reduced execution corresponds to a non-reduced372

execution with equivalent final traces. This means that partial order reduction is precise in373

the sense that it does not introduce new traces with different final states.374

Completeness is the opposite relationship: every direct execution has a corresponding375

reduced execution with equivalent traces. Since equivalent traces result in the same final376

state, completeness means that we do not lose any possible states when performing partial377

order reduction.378

I Corollary 4.4 (Correctness and Completeness). For two equivalent symbolic traces τ0 ∼ τ ′0:379

Completeness If (s, τ0)→∗POR (s′, τ) then there exists (s, τ ′0)→∗ (s′, τ ′) with τ ∼ τ ′380

Correctness If (s, τ0)→∗ (s′, τ) then there exists (s, τ ′0)→∗POR (s′, τ ′) with τ ∼ τ ′381

For two equivalent concrete traces τ0 ' τ ′0 and initial valuation V :382

Completeness If (s, τ0) ⇒∗
P OR,V (s′, τ) then there exists (s, τ ′0) ⇒∗

V (s′, τ ′) with τ ' τ ′383

Correctness If (s, τ0) ⇒∗
V (s′, τ) then there exists (s, τ ′0) ⇒∗

P OR,V (s′, τ ′) with τ ' τ ′384

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L86
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L215
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PORExamples.v#L89
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L95
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L223
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L133
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L116
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L262
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L245

Å. A. A. Kløvstad, E. Kamburjan, and E. B. Johnsen 23:11

(s, []) ⇒∗
V (s′, τC) (s, []) ⇒∗

P OR,V (s′, τ ′C)

(s, [])→∗ (s′, τS) (s, [])→∗POR (s′, τ ′S)

Theorem 4.3

Theorem 5.4
Theorem 5.1Theorem 2.13

Theorem 4.3

τC ' τ ′C τS ∼ τ ′S τS V -abstracts τC τ ′S V -abstracts τ ′C τ ′S V -abstracts τC

Figure 4 Overview of the correctness and completeness results

5 Composition of SE and POR385

In this section we show that the bisimulation results of Section 2 and 4 compose naturally.386

We use this composition to fill in the remaining edges of Fig. 1, resulting in Fig. 4. This leads387

to the main result: a bisimulation relation between direct concrete semantics and symbolic388

POR semantics. Importantly, this allows reasoning about program analysis using both SE389

and POR with the symbolic trace abstracting the concrete trace.390

The results are parametric in abstraction and trace equivalence in the following sense.391

Any equivalence relation on traces which is contained in ours — that is, whose equivalent392

traces have equivalent final states and path conditions — can be used to perform partial order393

reduction. Additionally, any symbolic abstraction satisfying Theorem 3.5 can be used for the394

symbolic execution. The result is a complete and correct symbolic partial order reduction395

where completeness and correctness follows from the respective completeness and correctness396

results of SE and POR semantics.397

First we relate symbolic and concrete POR by combining Theorem 2.13 and Theorem 4.3.398

I Theorem 5.1 (POR-POR Bisimulation). For initial traces τS , τC such that τS V -abstracts399

τC :400

If (s, τC) ⇒P OR,V (s′, τ ′C), then there exists (s, τS) →POR (s′, τ ′S) such that τ ′S V -401

abstracts τ ′C402

If (s, τS)→POR (s′, τ ′S) and V |= pc(τ ′S), then there exists (s, τC) ⇒P OR,V (s′, τ ′C) and403

τ ′C ⇓V = V ◦ (τ ′S ⇓)404

From this bisimulation, correctness and completeness relations are obtained by induction.405

These results are analogous to the direct relationships in Section 2, which shows that the406

correctness and completeness of symbolic execution is maintained through partial order407

reduction. In particular we may work with representatives of an equivalence class of traces408

rather than one single trace — which may greatly reduce the state space — and then perform409

symbolic execution in this new setting.410

I Corollary 5.2 (Trace POR Correctness). If (s, τS)→∗POR (s′, τ ′S), τS V -abstracts τC ,411

and V |= pc(τ ′S), then there exists a concrete trace τ ′C s.t (s, τC) ⇒∗
P OR,V (s′, τ ′C) and412

τ ′C ⇓V = τC ⇓V ◦(τ ′S ⇓)413

I Corollary 5.3 (Trace POR Completeness). If (s, τC) ⇒∗
P OR,V (s′, τ ′C) and τS V -abstracts414

τC , there exist τ ′S s.t (s, τS)→∗POR (s′, τ ′S) and τ ′S V -abstracts τ ′C .415

We are now ready to state our main result, filling in the diagonal and connecting416

concrete semantics directly to PO-reduced symbolic semantics. Formally, Theorem 2.13 and417

CONCUR 2023

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L293
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L335
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L362

23:12 Compositional Symbolic POR

Theorem 4.3 can be combined to obtain bisimulation of the basic concrete semantics and418

PO-reduced symbolic semantics.419

I Theorem 5.4 (Total Bisimulation). For initial traces τS , τC such that τS V -abstracts τC :420

If (s, τC) ⇒V (s′, τ ′C), then there exists (s, τS) →POR (s′, τ ′S) such that τ ′S V -abstracts421

τ ′C422

If (s, τS) →POR (s′, τ ′S) and V |= pc(τ ′S), then there exists (s, τC) ⇒V (s′, τ ′C) and423

τ ′C ⇓V = V ◦ (τ ′S ⇓)424

I Corollary 5.5 (Total Correctness). If (s, τ0)→∗POR (s′, τ), τ0 V -abstracts τ ′0 and V |= pc(τ),425

then there exists τ ′ such that (s, τ ′0) ⇒∗
V (s′, τ ′) and τ V -abstracts τ ′.426

I Corollary 5.6 (Total Completeness). If (s, τ0) ⇒∗
V (s′, τ) and τ ′0 V -abstracts τ0, there427

exist τ ′ s.t (s, τ ′0)→∗POR (s′, τ ′) and τ ′ V -abstracts τ .428

Figure 4 shows all four reduction systems — symbolic and concrete, with and without429

POR. Each double arrow denotes a notion of bisimulation, and we obtain the properties430

shown: both symbolic and concrete traces are equivalent across POR, and V -abstraction is431

maintained across the symbolic/concrete divide as well as their composition. Additionally we432

show the relationships between the four traces — the symbolic traces abstract their concrete433

counterparts, and the POR traces are equivalent — although by Theorem 3.5 it suffices to434

know the equivalences and one of the abstractions.435

5.1 Discussion436

The bisimulations compose naturally. As an example, consider Theorem 5.4 which is obtained437

by composing the symbolic/concrete bisimulation of Theorem 2.13 and the direct/reduced438

bisimulation of Theorem 4.3. Starting with a concrete execution with trace τC we first obtain439

a symbolic execution with trace τS such that τS V-abstracts τC . Then the POR-bisimulation440

of Theorem 4.3 gives a symbolic POR-computation with an equivalent trace τS . Since trace441

equivalence is a congruence for abstraction (Theorem 3.5) and τC is equivalent to itself, this442

final trace also abstracts τC .443

The ease of this composition is not unexpected, since both abstraction and trace equiva-444

lence were explicitly formulated to preserve the relevant parts of the program state. The result445

is that any partial order reduction which picks equivalent traces in this sense preserves the446

correctness and completeness properties of the symbolic execution. Explicitly, if the notion447

of trace equivalence is contained in ours and the symbolic abstraction can be transported448

along this equivalence in the sense of Theorem 3.5 then the techniques can be composed.449

5.2 Mechanization450

In this section we cover some of the details of the mechanization in Coq.451

The basic building blocks of program state are simple. Both substitutions and valuations452

are implemented as total maps from strings, parameterized by a result type. Updates,453

notation and several useful lemmas about maps can be proven generically and the notation454

mirrors that of Pierce et al. [25]. Similarly traces are an inductive type, parametric in the455

type of events. In essence they are lists, but extended to the right for convenience, with the456

expected operations and properties.457

Trace equivalence is defined as a relation. Then we show necessary properties of this458

relation, in particular Lemma 3.4 and Theorem 3.5 which are used in proofs. Additionally, we459

implement an equivalence by permuting independent events and show that it satisfies the same460

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L387
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L481
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L440

Å. A. A. Kløvstad, E. Kamburjan, and E. B. Johnsen 23:13

properties if the independence relation does. This part is parametric in the independence461

relation and serves as an example of a POR relation. The example at the end of Section 3 is462

an instance with interference freedom as the independence relation .463

Expressions (both arithmetic and Boolean) and statements are inductive types. As an464

example, the type of statements is given by:465

466
Inductive Stmt : Type :=467

| SAsgn (x:Var) (e:Aexpr)468

| SPar (s1 s2:Stmt)469

| SIf (b:Bexpr) (s1 s2:Stmt)470

...471472

To give semantics to this language, we define a head reduction relation and a type of473

contexts. The head reduction describes the single step reductions for each atomic and how it474

transforms the current trace. For example an assignment reduces to skip and appends the475

assignment to the current trace. Here <{_}> encloses language statements and Asgn__S x e476

represents the symbolic event (x := e).477

478
Variant head_red__S: (trace__S * Stmt) → (trace__S * Stmt) → Prop :=479

| head_red_asgn__S: ∀t x e,480

head_red__S (t, <{ x := e }>) (t :: Asgn__S x e, SSkip)481

...482483

Note that Variant is a version of Inductive that does not include recursive constructors.484

Contexts are implemented as functions Stmt → Stmt along with an inductive relation485

is_context: (Stmt → Stmt) → Prop — an approach inspired by Xavier Leroy [21]. This486

approach allows us to define transition relation semantics parametric in both the type of487

contexts and the head reduction relation. The following generalizes the ∗-in-context rules488

for any type of state X. In our case, X will be a type of traces, but note that X appears on the489

left — this makes the rule amenable to states represented by product types due to the way490

parentheses associate.491

492
Variant context_red493

(is_cont: (Stmt → Stmt) → Prop) (head_red: relation (X * Stmt))494

: relation (X * Stmt) :=495

| ctx_red_intro: ∀C x x’ s s’,496

head_red (x, s) (x’, s’) → is_context C →497

context_red is_cont head_red (x, C s) (x’, C s’).498499

Having used context_red with the appropriate is_context and head_red we obtain the full500

transition relation by stepwise reflexive-transitive closure to the right (clos_refl_trans_n1)501

from the Relations library.502

The proofs are performed in two steps. Induction on the transition relation leaves us503

with either a reflexive step or an induction hypothesis and some sequence followed by a504

step. Then unfolding and dependent destruction (from Program.Equality) can be used on the505

step to unpack ctx_red_intro and split on the head reduction rule while remembering the506

ultimate and penultimate traces.507

6 Related Work508

We focus on a simple formal model that permits reasoning about symbolic execution and509

partial order reduction. De Boer and Bonsangue [5] lay the foundations of our work — a510

symbolic execution model based on transition systems and symbolic substitutions which511

may be composed with concrete valuations. They do not consider parallelism, but do apply512

CONCUR 2023

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/InterferenceFreedom.v#L135

23:14 Compositional Symbolic POR

their model to languages with other features including recursive function calls and dynamic513

object creation. They also explore a kind of trace semantics for the latter extension, but it514

differs from the semantics considered herein. Extending the current work with more language515

features, including procedure calls and synchronization tools would be interesting.516

SymPaths [6] explores the use of POR for SE in a manner very similar to ours, but517

does not explicitly compose the correctness and completeness of SE and POR, nor treat518

the relationship to partial order reduction in the non-symbolic case. Additionally, their519

treatment of trace equivalence focuses on one specific independence relation while we take a520

more abstract view.521

Other formal approaches to symbolic execution have also been considered in the literature.522

Steinhöfel [31] focuses on the semantics of the SE system and uses a concretization function to523

relate sets of symbolic and concrete states. The Gillian platform [14,23] and related work [28]524

uses separation logic to construct a SE system that is parametric in the target memory model.525

Rosu et al. [22,27,30] develop reachability logic to present symbolic execution parameterized526

by the semantics of the target language. These all present alternative approaches to the left527

edge of Figure 4.528

There are also other approaches to partial order reduction. In particular, dynamic or529

stateless POR (DPOR) [1, 13, 16, 26] avoids exploring equivalent future traces by identifying530

backtracking points. Additionally the unfolding approach explores partial orders more directly531

as a tree-like event structure [26]. Unfolding has been fruitfully combined with symbolic532

execution in practice [29].533

7 Conclusion534

POR and SE are fundamental abstraction techniques in program analysis. SE is particu-535

larly useful as a state abstraction technique for sequential programs, while POR addresses536

equivalent interleavings in the execution of concurrent programs. In this paper, we study537

the foundations of both techniques based on transition systems and trace semantics, in the538

context of a core imperative language with parallelism. The formalization provides a unified539

view of concrete and symbolic semantics with and without partial order reduction. We540

further formalize correctness and completeness relations for both POR and SE, and compose541

these relations to study how SE and POR can be combined while preserving correctness542

and completeness. Our work shows that the framework of correctness and completeness543

relations between symbolic and concrete transition systems, introduced by de Boer and544

Bonsangue, extends to parallelism and trace semantics, and provides a natural setting to545

study formalizations of abstraction techniques for SE, such as POR.546

In addition, our formal development of correctness and completeness relations of SE and547

POR has been fully mechanized using Coq2. We believe the mechanization of this framework548

in Coq can be useful to the community to study further formalizations of abstraction549

techniques for symbolic execution and their correctness. In particular, in future work, we550

plan to extend the framework developed in this paper to understand relations between551

concrete SE frameworks typically used for software testing [9], such as Klee [8], in which552

states are described using symbolic stores as in this paper, and abstract SE frameworks553

typically used for deductive verification, such as KeY [2], in which states are described using554

predicates.555

2 Provided as supplementary material at https://github.com/Aqissiaq/symex-formally-formalized
and https://zenodo.org/record/8070170

https://github.com/Aqissiaq/symex-formally-formalized
https://zenodo.org/record/8070170

Å. A. A. Kløvstad, E. Kamburjan, and E. B. Johnsen 23:15

References556

1 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal557

dynamic partial order reduction. In Suresh Jagannathan and Peter Sewell, editors, Proc.558

41st Annual Symposium on Principles of Programming Languages (POPL’14), pages 373–384.559

ACM, 2014. doi:10.1145/2535838.2535845.560

2 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,561

and Mattias Ulbrich, editors. Deductive Software Verification - The KeY Book - From562

Theory to Practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016.563

doi:10.1007/978-3-319-49812-6.564

3 Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.565

A survey of symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):1–39,566

2018.567

4 Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:568

Coq’Art: the calculus of inductive constructions. Springer, 2013.569

5 Frank S de Boer and Marcello Bonsangue. Symbolic execution formally explained. Formal570

Aspects of Computing, 33(4):617–636, 2021.571

6 Frank S de Boer, Marcello Bonsangue, Einar Broch Johnsen, Violet Ka I Pun, S Lizeth572

Tapia Tarifa, and Lars Tveito. SymPaths: Symbolic execution meets partial order reduction.573

In Deductive Software Verification: Future Perspectives, pages 313–338. Springer, 2020.574

7 Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT - a formal system for testing575

and debugging programs by symbolic execution. In Martin L. Shooman and Raymond T. Yeh,576

editors, Proc. International Conference on Reliable Software 1975, pages 234–245. ACM, 1975.577

doi:10.1145/800027.808445.578

8 Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic579

generation of high-coverage tests for complex systems programs. In Richard Draves and580

Robbert van Renesse, editors, Proc. 8th USENIX Symposium on Operating Systems Design581

and Implementation (OSDI 2008), pages 209–224. USENIX Association, 2008. URL: http:582

//www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf.583

9 Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three decades later.584

Commun. ACM, 56(2):82–90, 2013. doi:10.1145/2408776.2408795.585

10 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José586

Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical587

Framework, How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of588

Lecture Notes in Computer Science. Springer, 2007. doi:10.1007/978-3-540-71999-1.589

11 Crystal Chang Din, Reiner Hähnle, Ludovic Henrio, Einar Broch Johnsen, Violet Ka I Pun,590

and Silvia Lizeth Tapia Tarifa. LAGC semantics of concurrent programming languages. arXiv591

preprint arXiv:2202.12195, 2022.592

12 Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of se-593

quential control and state. Theoretical Computer Science, 103(2):235–271, 1992. doi:594

10.1016/0304-3975(92)90014-7.595

13 Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model checking596

software. In Proc. 32nd Symposium on Principles of Programming Languages (POPL’05),597

pages 110—-121. ACM, 2005. doi:10.1145/1040305.1040315.598

14 José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and Philippa Gardner. Gillian,599

part i: a multi-language platform for symbolic execution. In Proc. 41st ACM Conference on600

Programming Language Design and Implementation (PLDI’20), pages 927–942, 2020.601

15 Patrice Godefroid. Using partial orders to improve automatic verification methods. In602

Edmund M. Clarke and Robert P. Kurshan, editors, Computer-Aided Verification, pages603

176–185. Springer, 1991.604

16 Patrice Godefroid. Partial-order methods for the verification of concurrent systems: an605

approach to the state-explosion problem. Springer, 1996.606

CONCUR 2023

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/800027.808445
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/1040305.1040315

23:16 Compositional Symbolic POR

17 Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient verification of607

deadlock freedom and safety properties. Formal Methods in System Design, 2:149–164, 1993.608

18 Shmuel Katz and Zohar Manna. Towards automatic debugging of programs. ACM SIGPLAN609

Notices, 10(6):143–155, 1975.610

19 James C King. Symbolic execution and program testing. Communications of the ACM,611

19(7):385–394, 1976.612

20 Åsmund Aqissiaq Arild Kløvstad. Compositional correctness and completeness for symbolic613

partial order reduction: Concur23, June 2023. doi:10.5281/zenodo.8070170.614

21 Xavier Leroy. Mechanized semantics. Course materials, 2020. URL: https://github.com/615

xavierleroy/cdf-mech-sem.616

22 Dorel Lucanu, Vlad Rusu, and Andrei Arusoaie. A generic framework for symbolic execution:617

A coinductive approach. Journal of Symbolic Computation, 80:125–163, 2017. SI: Program618

Verification. doi:10.1016/j.jsc.2016.07.012.619

23 Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. Gillian,620

part ii: Real-world verification for JavaScript and C. In Alexandra Silva and K. Rustan M.621

Leino, editors, Computer Aided Verification, pages 827–850. Springer, 2021.622

24 Antoni Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Report623

Series, 6(78), Jul. 1977. URL: https://tidsskrift.dk/daimipb/article/view/7691, doi:624

10.7146/dpb.v6i78.7691.625

25 Benjamin C Pierce, A Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael626

Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, A Tolmach, and B Yorgey. Software foundations,627

volume 2: Programming language foundations. 2017.628

26 César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. Unfolding-based629

partial order reduction. In Luca Aceto and David de Frutos-Escrig, editors, 26th International630

Conference on Concurrency Theory, CONCUR 2015, volume 42 of LIPIcs, pages 456–469.631

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.632

456.633

27 Grigore Rosu, Andrei Stefanescu, Stefan Ciobâcá, and Brandon M. Moore. One-path reach-634

ability logic. In Proc. 28th Annual ACM/IEEE Symposium on Logic in Computer Science635

(LICS’13), pages 358–367, 2013. doi:10.1109/LICS.2013.42.636

28 José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and Philippa637

Gardner. Symbolic execution for JavaScript. In Proc. 20th International Symposium on638

Principles and Practice of Declarative Programming, PPDP ’18. ACM, 2018. doi:10.1145/639

3236950.3236956.640

29 Daniel Schemmel, Julian Büning, César Rodríguez, David Laprell, and Klaus Wehrle. Symbolic641

partial-order execution for testing multi-threaded programs. In International Conference on642

Computer Aided Verification, pages 376–400. Springer, 2020.643

30 Andrei Ştefănescu, Ştefan Ciobâcă, Radu Mereuta, Brandon M. Moore, Traian Florin Şer-644

bănută, and Grigore Roşu. All-path reachability logic. In Gilles Dowek, editor, Rewriting and645

Typed Lambda Calculi, pages 425–440. Springer, 2014.646

31 Dominic Steinhöfel. Abstract execution: automatically proving infinitely many programs. PhD647

thesis, Technische Universität Darmstadt, 2020.648

32 Dominic Steinhöfel and Reiner Hähnle. The trace modality. In Dynamic Logic. New Trends649

and Applications, pages 124–140. Springer, 2020. doi:10.1007/978-3-030-38808-9_8.650

33 The Coq Development Team. The Coq proof assistant, September 2022. doi:10.5281/zenodo.651

7313584.652

A Auxiliary Lemmas653

I Lemma A.1 (Substitution [5]). V ◦ σ(e) = V (eσ)654

I Corollary A.2 (Soundness of Assignment [5]). V ◦ (σ[x := aσ]) = V ′[x := V ′(a)], where655

V ′ = V ◦ σ656

https://doi.org/10.5281/zenodo.8070170
https://github.com/xavierleroy/cdf-mech-sem
https://github.com/xavierleroy/cdf-mech-sem
https://github.com/xavierleroy/cdf-mech-sem
https://doi.org/10.1016/j.jsc.2016.07.012
https://tidsskrift.dk/daimipb/article/view/7691
https://doi.org/10.7146/dpb.v6i78.7691
https://doi.org/10.7146/dpb.v6i78.7691
https://doi.org/10.7146/dpb.v6i78.7691
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.1109/LICS.2013.42
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1007/978-3-030-38808-9_8
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584

Å. A. A. Kløvstad, E. Kamburjan, and E. B. Johnsen 23:17

B Selected Proofs657

B.1 Theorem 2.13: Bisimulation of concrete and symbolic semantics658

For any initial valuation V and initial traces τ0, τ
′
0 such that τ0 V -abstracts τ ′0:659

if there is a concrete step (s, τ0) ⇒V (s′, τ), then there exists a symbolic step (s, τ ′0)→ (s′, τ ′)660

such that τ ′ V -abstracts τ , and661

if there is a symbolic step (s, τ ′0)→ (s′, τ ′) and V |= pc(τ ′), then there exists a concrete662

step (s, τ0) ⇒V (s′, τ) such that τ ⇓V = V ◦ τ ′ ⇓663

Proof. Both directions are proven by case analysis and applying the corresponding rule (ie.664

the matching one from Figure 3). The skip-cases follow immediately, but the others take a665

bit more work.666

For the conditional steps (choice and iteration), the concrete-to-symbolic direction requires667

splitting on the evaluation of the guard and picking the right symbolic branch. Then668

Lemma A.1 ensures that the resulting trace is the correct one. The symbolic-to-concrete669

direction requires showing that if the true (resp. false) branch is chosen, then the guard670

evaluates to true (resp. false) — which, again, holds by Lemma A.1.671

Finally, both directions of the assignment step follow directly from Corollary A.2. J672

B.2 Lemma 3.4: Equivalent steps673

For equivalent traces τ ∼ τ ′, if (s, τ)→ (s′, τ1) then there exists τ2 so that (s, τ ′)→ (s′, τ2)674

and τ1 ∼ τ2675

Proof. First note that676

If τ ∼ τ ′, then τ :: e ∼ τ ′ :: e for any event e (1)677

Then we proceed by case analysis of the reduction step. In the skip cases, we pick τ2 = τ ′678

and the equivalence follows by assumption. In the other cases, τ ′ is extended by some event,679

but then the result is equivalent by 1. J680

B.3 Theorem 3.5: Abstraction Congruence681

For equivalent symbolic traces τS ∼ τ ′S and concrete traces τC ' τ ′C , if τS V -abstracts τC682

then τ ′S V -abstracts τ ′C .683

Proof. Since τS V -abstracts τC , V satisfies the path condition of τS and τC ⇓V is the684

composition of V and τS ⇓. But since it is trace equivalent, τ ′S has equivalent path condition,685

so it must also be satisfied. Furthermore its final substitution is the same as τS and likewise686

the final valuation of τ ′C is equal to that of τC , so τ ′C ⇓V = V ◦ τ ′S ⇓ as required. J687

B.4 Theorem 4.3: POR Bisimulation688

For equivalent initial traces τ0 ∼ τ ′0:689

If (s, τ0)→POR (s′, τ) then there exists (s, τ ′0)→ (s′, τ ′) such that τ ∼ τ ′, and690

If (s, τ0)→ (s′, τ) then there exists (s, τ ′0)→POR (s′, τ ′) such that τ ∼ τ ′691

For equivalent initial traces τ0 ' τ ′0 and initial valuation V :692

If (s, τ0) ⇒P OR,V (s′, τ) then there exists (s, τ ′0) ⇒V (s′, τ ′) such that τ ' τ ′, and693

If (s, τ0) ⇒V (s′, τ) then there exists (s, τ ′0) ⇒P OR,V (s′, τ ′) such that τ ' τ ′694

Proof. Both results follow directly from unpacking contexts and applying Lemma 3.4. J695

CONCUR 2023

23:18 Compositional Symbolic POR

B.5 Theorem 5.1: POR-POR Bisimulation696

For initial traces τS , τC such that τS V -abstracts τC :697

If (s, τC) ⇒P OR,V (s′, τ ′C), then there exists (s, τS) →POR (s′, τ ′S) such that τ ′S V -698

abstracts τ ′C699

If (s, τS)→POR (s′, τ ′S) and V |= pc(τ ′S), then there exists (s, τC) ⇒P OR,V (s′, τ ′C) and700

τ ′C ⇓V = V ◦ (τ ′S ⇓)701

Proof. Let us consider the first (completeness) direction. By the concrete version of Theo-702

rem 4.3 we obtain the concrete step (s, τ) ⇒V (s′, τ ′′C) with τ ′′C ' τ ′C . Then, by Theorem 2.13703

we have a symbolic step (s, τ)→ (s′, τ ′′S) such that τ ′′S V -abstracts τ ′′C . Finally, the symbolic704

half of Theorem 4.3 provides the desired (s, τS)→POR (s′, τ ′S) with τ ′S ∼ τ ′′S and abstraction705

congruence (Theorem 3.5) shows τ ′S V -abstracts τ ′C . The other direction is analoguous, using706

the other half of each bisimulation. J707

B.6 Theorem 5.4: Total Bisimulation708

For initial traces τS , τC such that τS V -abstracts τC :709

If (s, τC) ⇒V (s′, τ ′C), then there exists (s, τS)→POR (s′, τ ′S) such that τ ′S V -abstracts710

τ ′C711

If (s, τS) →POR (s′, τ ′S) and V |= pc(τ ′S), then there exists (s, τC) ⇒V (s′, τ ′C) and712

τ ′C ⇓V = V ◦ (τ ′S ⇓)713

Proof. The proof follows a similar structure to the above, composing the concrete/symbolic714

(Theorem 2.13) and symbolic POR (Theorem 4.3) bisimulations. J715

	1 Introduction
	2 Symbolic Trace Semantics
	2.1 Basic Notions
	2.2 Trace Semantics
	2.3 Correctness and Completeness

	3 Trace Equivalence
	3.1 Example: Interference Freedom

	4 Correctness and Completeness for Symbolic Partial Order Reduction
	5 Composition of SE and POR
	5.1 Discussion
	5.2 Mechanization

	6 Related Work
	7 Conclusion
	A Auxiliary Lemmas
	B Selected Proofs
	B.1 Theorem 2.13: Bisimulation of concrete and symbolic semantics
	B.2 Lemma 3.4: Equivalent steps
	B.3 Theorem 3.5: Abstraction Congruence
	B.4 Theorem 4.3: POR Bisimulation
	B.5 Theorem 5.1: POR-POR Bisimulation
	B.6 Theorem 5.4: Total Bisimulation

